Fast basecases for arbitrary-size multiplication

Albin Ahlbäck¹ Fredrik Johansson²

¹LIX, CNRS, École polytechnique

²Inria Bordeaux

4 March 2025

Examples include:

- Correctly rounded floating point arithmetic without the use of lookup tables (e.g. MPFR [1])
- Verifying the Riemann hypothesis up to very big numbers [2]
- Certified homotopy continuation (ex. [3])

Examples include:

- Correctly rounded floating point arithmetic without the use of lookup tables (e.g. MPFR [1])
- Verifying the Riemann hypothesis up to very big numbers [2]
- Certified homotopy continuation (ex. [3])

Examples include:

- Correctly rounded floating point arithmetic without the use of lookup tables (e.g. MPFR [1])
- Verifying the Riemann hypothesis up to very big numbers [2]

Certified homotopy continuation (ex. [3])

Examples include:

- Correctly rounded floating point arithmetic without the use of lookup tables (e.g. MPFR [1])
- Verifying the Riemann hypothesis up to very big numbers [2]
- Certified homotopy continuation (ex. [3])

Examples include:

- Correctly rounded floating point arithmetic without the use of lookup tables (e.g. MPFR [1])
- Verifying the Riemann hypothesis up to very big numbers [2]
- Certified homotopy continuation (ex. [3])

Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook $\mathcal{O}(n)$ operations:

- Left and right shift: $r \leftarrow \lfloor a \cdot 2^e \rfloor$
- Addition and subtraction: $r \leftarrow a \pm b$
- $m \times 1 multiplication: r \leftarrow a \cdot b_0$ (mul_1)
- Addition of $m \times 1$ -multiplication: $r \leftarrow r + a \cdot b_0$ (addmul_1)

Schoolbook $m \times n$ -multiplication is then

$$r \leftarrow a \cdot b_0 \qquad // \text{ mul_1}$$
for $i \leftarrow 1$ to $n-1$ do
$$r \leftarrow r + (a \cdot b_i) \cdot \beta^i \qquad // \text{ addmul_1}$$
end

With these we can generate division, Toom-Cook multiplication, GCD, fast polynomial multiplication, ...

Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook $\mathcal{O}(n)$ operations:

- Left and right shift: $r \leftarrow \lfloor a \cdot 2^e \rfloor$
- Addition and subtraction: $r \leftarrow a \pm b$
- $m \times 1 multiplication: r \leftarrow a \cdot b_0$ (mul_1)
- Addition of $m \times 1$ -multiplication: $r \leftarrow r + a \cdot b_0$ (addmul_1)

Schoolbook $m \times n$ -multiplication is then

$$r \leftarrow a \cdot b_0 \qquad // \text{ mul_1}$$
for $i \leftarrow 1$ to $n-1$ do
$$r \leftarrow r + (a \cdot b_i) \cdot \beta^i \qquad // \text{ addmul_1}$$
end

With these we can generate division, Toom-Cook multiplication, GCD, fast polynomial multiplication, ...

Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook $\mathcal{O}(n)$ operations:

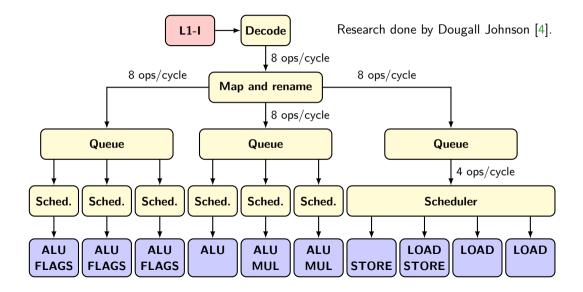
- Left and right shift: $r \leftarrow \lfloor a \cdot 2^e \rfloor$
- Addition and subtraction: $r \leftarrow a \pm b$
- $m \times 1-multiplication: r \leftarrow a \cdot b_0$ (mul_1)
- Addition of $m \times 1$ -multiplication: $r \leftarrow r + a \cdot b_0$ (addmul_1)

Schoolbook $m \times n$ -multiplication is then

$$r \leftarrow a \cdot b_0 \qquad // \text{ mul_1}$$
for $i \leftarrow 1$ to $n-1$ do
$$r \leftarrow r + (a \cdot b_i) \cdot \beta^i \qquad // \text{ addmul_1}$$
end

With these we can generate division, Toom-Cook multiplication, GCD, fast polynomial multiplication, ...

Apple M1 Pipeline (Simplified)



Simple version:

- **1** Read some instructions from memory
- 2 Schedule the instructions to the correct unit
- **3** Units executes instructions

This scheme allows for:

- Concurrent execution of multiple instructions
- Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain) Consider the algorithm

> $x_0 \leftarrow a_0,$ $x_1 \leftarrow x_0 + a_1,$ $x_2 \leftarrow x_1 + a_2.$

 x_0 needs to be evaluated before x_1 can be computed. And x_1 needs to be evaluated before x_2 can be computed. This is called a *dependency chain*. Simple version:

- **1** Read some instructions from memory
- 2 Schedule the instructions to the correct unit
- **3** Units executes instructions

This scheme allows for:

- Concurrent execution of multiple instructions
- Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain) Consider the algorithm

> $x_0 \leftarrow a_0,$ $x_1 \leftarrow x_0 + a_1,$ $x_2 \leftarrow x_1 + a_2.$

 x_0 needs to be evaluated before x_1 can be computed. And x_1 needs to be evaluated before x_2 can be computed. This is called a *dependency chain*. Simple version:

- **1** Read some instructions from memory
- 2 Schedule the instructions to the correct unit
- **3** Units executes instructions

This scheme allows for:

- Concurrent execution of multiple instructions
- Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain) Consider the algorithm

> $x_0 \leftarrow a_0,$ $x_1 \leftarrow x_0 + a_1,$ $x_2 \leftarrow x_1 + a_2.$

 x_0 needs to be evaluated before x_1 can be computed. And x_1 needs to be evaluated before x_2 can be computed. This is called a *dependency chain*.

Lower bound of GMP's addmul_1

L(top):]	Ldp	u0,	u1,	[up], #:	16	adds	x0, r0	, x0	
1	Ldp	u2,	u3,	[up], #:	16	adcs	u0, r1	, uO	
1	Ldp	r0,	r1,	[rp]		adcs	u1, r2	, u1	
]	Ldp	r2,	r3,	[rp,#16]]	adcs	u2, r3	, u2	
n	nul	x0,	u0,	vO		adc	u3, u3	, zero	
υ	ımulh	u0,	u0,	vO		adds	x0, x0	, CY	
n	nul	x1,	u1,	v0		adcs	u0, u0	, x1	
υ	ımulh	u1,	u1,	vO		adcs	u1, u1	, x2	
n	nul	x2,	u2,	vO		adcs	u2, u2	, x3	
υ	ımulh	u2,	u2,	v0		adc	CY, u3	, zero	
n	nul	хЗ,	u3,	vO		stp	x0, u0	, [rp],	#16
υ	ımulh	u3,	u3,	vO		stp	u1, u2	, [rp],	#16
11	- (C .		/ /	l-	sub	n, n,	#1	
•••	e (amount) TORE (3/2)	Cy	cies	/ 4 word	S	cbnz	n, L(t	op)	

MUL (2) ALU+FLAGS (3)

Lower bound of GMP's addmul 1

L(top):	ldp	u0,	u1,	[up], #16
	ldp			[up], #16
	ldp	r0,	r1,	[rp]
	ldp	r2,	r3,	[rp,#16]
	mul	x0,	u0,	v0
	umulh	u0,	u0,	vO
	mul	x1,	u1,	vO
	umulh	u1,	u1,	vO
	mul	x2,	u2,	vO
	umulh	u2,	u2,	vO
	mul	хЗ,	u3,	vO
	umulh	u3,	u3,	v0
	pe (amount) STORE (3/2)	C	cles	/ 4 words

MUL (2)

ALU+FLAGS (3)

adds	x0, r0, x0
adcs	u0, r1, u0
adcs	u1, r2, u1
adcs	u2, r3, u2
adc	u3, u3, zero
adds	x0, x0, CY
adcs	u0, u0, x1
adcs	u1, u1, x2
adcs	u2, u2, x3
adc	CY, u3, zero
stp	x0, u0, [rp], #16
stp	u1, u2, [rp], #16
sub	n, n, #1
cbnz	n, L(top)

Lower bound of GMP's addmul 1

#16 #16

L(top):	ldp	u0,	u1,	[up], #16			
	ldp	u2,	u3,	[up], #16			
	ldp	r0,	r1,	[rp]			
	ldp	r2,	r3,	[rp,#16]			
	mul	x0,	u0,	vO			
	umulh	u0,	u0,	vO			
	mul	x1,	u1,	vO			
	umulh	u1,	u1,	vO			
	mul	x2,	u2,	vO			
	umulh	u2,	u2,	vO			
	mul	хЗ,	u3,	vO			
	umulh	u3,	u3,	vO			
	pe (amount) STORE (3/2)		ycles	/ 4 words			
MUL (2			4				
ALU+FLAGS (3)							

adds	x0,	r0,	x0	
adcs	u0,	r1,	u0	
adcs	u1,	r2,	u1	
adcs	u2,	r3,	u2	
adc	u3,	u3,	zero	
adds	x0,	x0,	CY	
adcs	u0,	u0,	x1	
adcs	u1,	u1,	x2	
adcs	u2,	u2,	xЗ	
adc	CY,	u3,	zero	
stp	x0,	u0,	[rp],	#16
stp	u1,	u2,	[rp],	#16
sub	n, 1	n, #1	1	
cbnz	n, l	L(top	p)	

Lower bound of GMP's addmul_1

L(top):	ldp	u0.	u1.	[up], #16
_,,	ldp			[up], #16
	1			
	ldp			[rp]
	ldp	r2,	r3,	[rp,#16]
	mul	x0,	u0,	v0
	umulh	u0,	u0,	v0
	mul	x1,	u1,	vO
	umulh	u1,	u1,	vO
	mul	x2,	u2,	v0
	umulh	u2,	u2,	v0
	mul	хЗ,	u3,	v0
	umulh	u3,	u3,	v0
		ycles	/ 4 words	
LOAD/STORE (3/2)				2
MUL (2)				4
•	, LAGS (3)			4
	(-)			

adds	x0,	r0,	x0		
adcs	u0,	r1,	u0		
adcs	u1,	r2,	u1		
adcs	u2,	r3,	u2		
adc	u3,	u3,	zero		
adds	x0,	x0,	CY		
adcs	u0,	u0,	x1		
adcs	u1,	u1,	x2		
adcs	u2,	u2,	xЗ		
adc	CY,	u3,	zero		
stp	x0,	u0,	[rp]	,	#16
stp	u1,	u2,	[rp]	,	#16
sub	n, 1	n, #:	1		
cbnz	n, 1	L(toj)		

Lower bound of GMP's addmul_1

L(top):	ldp	u0.	u1.	[up], #16
2(00p).	ldp			[up], #16
	1			
	ldp	r0,	r1,	[rp]
	ldp	r2,	r3,	[rp,#16]
	mul	x0,	u0,	vO
	umulh	u0,	u0,	vO
	mul	x1,	u1,	vO
	umulh	u1,	u1,	vO
	mul	x2,	u2,	vO
	umulh	u2,	u2,	vO
	mul	хЗ,	u3,	vO
	umulh	u3,	u3,	vO
Unit ty	C	cles	/ 4 words	
LOAD/			2	
MUL (2)				4
· ·	ĹAGS (3)			A 5

				_	
adds	x0,	r0,	x0		
adcs	u0,	r1,	u0		
adcs	u1,	r2,	u1		
adcs	u2,	r3,	u2		
adc	u3,	u3,	zero		
adds	x0,	x0,	СҮ		
adcs	u0,	u0,	x1		
adcs	u1,	u1,	x2		
adcs	u2,	u2,	xЗ		
adc	CY,	u3,	zero		
stp	x0,	u0,	[rp]	,	#16
stp	u1,	u2,	[rp]	,	#16
sub	n, 1	n, #:	1		
cbnz	n, 1	L(toj)		

5 cycles per 4 words? Benchmarks says yes!

On Apple M1, GMP's addmul_1 will do $\frac{k+1}{k}$ cycles per word *asymptotically*, where k is the number of unrolls. Can we improve its performance?

The idea is to fully unroll one size parameter in the multiplication, and have a lookup table for all the basecase sizes. This will:

Reduce some overhead,

Avoid breaking carry chains, hopefully let

$$\frac{n+1}{n}$$
 cycles per word $\longrightarrow 1$ cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.

On Apple M1, GMP's addmul_1 will do $\frac{k+1}{k}$ cycles per word *asymptotically*, where k is the number of unrolls. Can we improve its performance?

The idea is to fully unroll one size parameter in the multiplication, and have a lookup table for all the basecase sizes. This will:

- Reduce some overhead,
- Avoid breaking carry chains, hopefully let

$$\frac{n+1}{n}$$
 cycles per word $\longrightarrow 1$ cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.

On Apple M1, GMP's addmul_1 will do $\frac{k+1}{k}$ cycles per word *asymptotically*, where k is the number of unrolls. Can we improve its performance?

The idea is to fully unroll one size parameter in the multiplication, and have a lookup table for all the basecase sizes. This will:

Reduce some overhead,

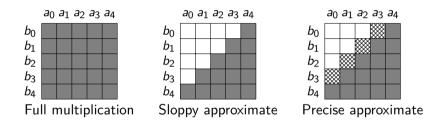
Avoid breaking carry chains, hopefully let

$$\frac{n+1}{n}$$
 cycles per word $\longrightarrow 1$ cycle per word

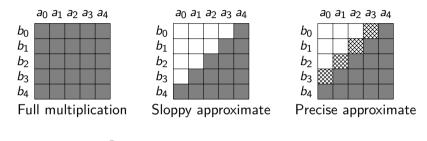
asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.

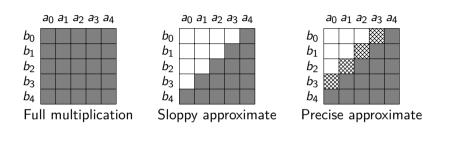
High multiplication is multiplication where we scrap the lower part of the result. Important use cases are floating point arithmetic and modular arithmetic.



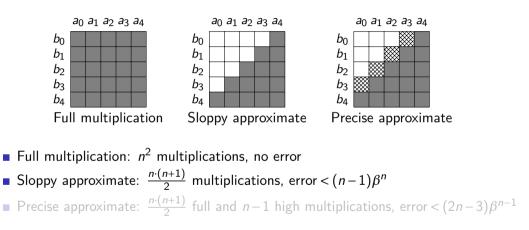
- scrapped
- \bigotimes high multiplication between two words u and v: $\lfloor uv/\beta \rfloor$
 - full multiplication

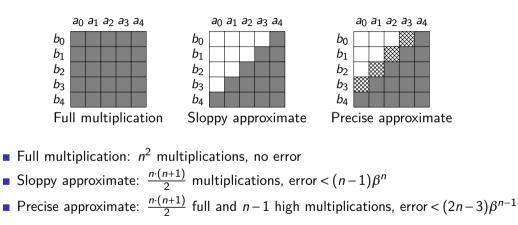


Full multiplication: n² multiplications, no error
 Sloppy approximate: n·(n+1)/2 multiplications, error < (n-1)βⁿ
 Precise approximate: n·(n+1)/2 full and n-1 high multiplications, error < (2n-3)βⁿ⁻¹

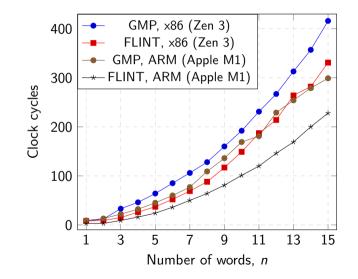


- Full multiplication: n^2 multiplications, no error
- Sloppy approximate: n·(n+1)/2 multiplications, error < (n-1)βⁿ
 Precise approximate: n·(n+1)/2 full and n-1 high multiplications, error < (2n-3)βⁿ⁻¹

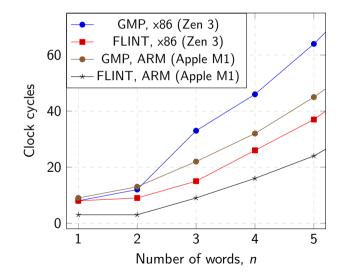




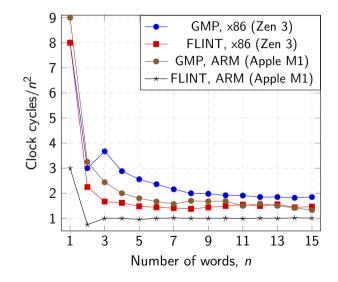
Results, full multiplication



Results, full multiplication



Results, full multiplication

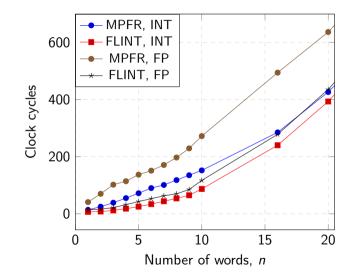


10⁷ multiplications with lengths $m, n \in \{1, 2, ..., N\}$, uniformly random

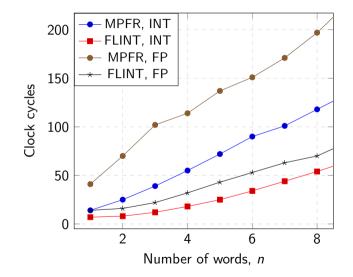
	GMP (mpn_mul)				Our	s (flin	t_mpn_r	nul)
Ν	Time	С	J	I	Time	С	J	I
Random, x86-64 (Zen 3)								
8	0.32 s	18.3%	22.3%	0%	0.18 s	20.9%	48.4%	0.00%
16	0.55 s	10.0%	18.2%	0%	0.43 s	14.3%	33.1%	3.05%
32	1.39 s	10.5%	12.7%	0%	1.32 s	10.7%	16.7%	0.41%
64	4.48 s	11.5%	11.6%	0%	4.29 s	12.9%	14.3%	0.12%
			Rando	om, ARI	V64 (M	1)		
8	0.30 s	11.4%	0.00%	0.00%	0.23 s	11.2%	41.7%	0.01%
16	0.50 s	10.9%	0.00%	0.00%	0.43 s	10.5%	41.6%	0.00%
32	1.31 s	9.6%	0.00%	0.00%	1.13 s	10.0%	13.9%	0.00%
64	4.16 s	8.3%	0.20%	0.02%	3.82 s	9.8%	4.2%	0.06%

Table: Conditional branch misprediction rates "C", indirect jump address misprediction rates "J" and instruction cache miss rates "I".

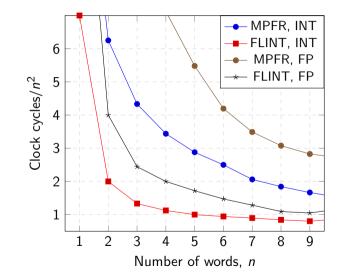
Results, high multiplication on Zen 3



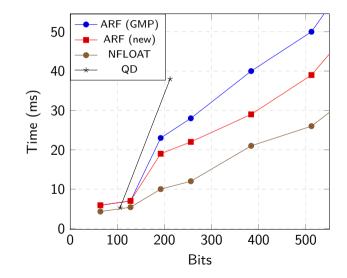
Results, high multiplication on Zen 3



Results, high multiplication on Zen 3



Multiply two 100×100 FP matrices using dot products (Zen 3)



Critical functions require hardware awareness!

- Straight line programs (SLPs) can be important to reduce overhead when going from native data types to multiple precision arithmetic
- Handwritten assembly still remain critical for multiple precision arithmetic

- Critical functions require hardware awareness!
- Straight line programs (SLPs) can be important to reduce overhead when going from native data types to multiple precision arithmetic
- Handwritten assembly still remain critical for multiple precision arithmetic

- Critical functions require hardware awareness!
- Straight line programs (SLPs) can be important to reduce overhead when going from native data types to multiple precision arithmetic
- Handwritten assembly still remain critical for multiple precision arithmetic

- Laurent Fousse et al. "MPFR: A multiple-precision binary floating-point library with correct rounding". In: ACM Trans. Math. Softw. 33.2 (June 2007), 13-es. ISSN: 0098-3500. DOI: 10.1145/1236463.1236468.
- [2] Dave Platt and Tim Trudgian. "The Riemann hypothesis is true up to 3.10¹²". In: Bulletin of the London Mathematical Society 53.3 (Jan. 2021), pp. 792-797. ISSN: 1469-2120. DOI: 10.1112/blms.12460.
- [3] Alexandre Guillemot and Pierre Lairez. "Validated Numerics for Algebraic Path Tracking". In: Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation. ISSAC '24. ACM, July 2024, pp. 36–45. DOI: 10.1145/3666000.3669673.
- [4] Dougall Johnson. Firestorm Overview. 2023. URL: https://dougallj.github.io/applecpu/firestorm.html (visited on 02/28/2025).