
Fast basecases for arbitrary-size multiplication

Albin Ahlbäck1 Fredrik Johansson2

1LIX, CNRS, École polytechnique

2Inria Bordeaux

4 March 2025



Fast multiple-precision arithmetic – why?

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3])

A common multiple-precision library to use is GMP, which is also very fast.



Fast multiple-precision arithmetic – why?

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3])

A common multiple-precision library to use is GMP, which is also very fast.



Fast multiple-precision arithmetic – why?

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3])

A common multiple-precision library to use is GMP, which is also very fast.



Fast multiple-precision arithmetic – why?

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3])

A common multiple-precision library to use is GMP, which is also very fast.



Fast multiple-precision arithmetic – why?

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3])

A common multiple-precision library to use is GMP, which is also very fast.



Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
m×1-multiplication: r ← a ·b0 (mul_1)
Addition of m×1-multiplication: r ← r +a ·b0 (addmul_1)

Schoolbook m×n -multiplication is then
r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end
With these we can generate division, Toom-Cook multiplication, GCD, fast polynomial
multiplication, ...



Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
m×1-multiplication: r ← a ·b0 (mul_1)
Addition of m×1-multiplication: r ← r +a ·b0 (addmul_1)

Schoolbook m×n -multiplication is then
r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end
With these we can generate division, Toom-Cook multiplication, GCD, fast polynomial
multiplication, ...



Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
m×1-multiplication: r ← a ·b0 (mul_1)
Addition of m×1-multiplication: r ← r +a ·b0 (addmul_1)

Schoolbook m×n -multiplication is then
r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end
With these we can generate division, Toom-Cook multiplication, GCD, fast polynomial
multiplication, ...



Apple M1 Pipeline (Simplified)

L1-I Decode

Map and rename

Queue Queue Queue

Sched. Sched. Sched. Sched. Sched. Sched. Scheduler

ALU
FLAGS

ALU
FLAGS

ALU
FLAGS

ALU ALU
MUL

ALU
MUL STORE

LOAD
STORE

LOAD LOAD

8 ops/cycle

8 ops/cycle

8 ops/cycle 8 ops/cycle

4 ops/cycle

Research done by Dougall Johnson [4].



CPU Pipeline

Simple version:

1 Read some instructions from memory
2 Schedule the instructions to the correct unit
3 Units executes instructions

This scheme allows for:

Concurrent execution of multiple instructions
Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain)
Consider the algorithm

x0 ← a0,
x1 ← x0+a1,
x2 ← x1+a2.

x0 needs to be evaluated be-
fore x1 can be computed.
And x1 needs to be evaluated
before x2 can be computed.
This is called a dependency
chain.



CPU Pipeline

Simple version:

1 Read some instructions from memory
2 Schedule the instructions to the correct unit
3 Units executes instructions

This scheme allows for:

Concurrent execution of multiple instructions
Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain)
Consider the algorithm

x0 ← a0,
x1 ← x0+a1,
x2 ← x1+a2.

x0 needs to be evaluated be-
fore x1 can be computed.
And x1 needs to be evaluated
before x2 can be computed.
This is called a dependency
chain.



CPU Pipeline

Simple version:

1 Read some instructions from memory
2 Schedule the instructions to the correct unit
3 Units executes instructions

This scheme allows for:

Concurrent execution of multiple instructions
Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain)
Consider the algorithm

x0 ← a0,
x1 ← x0+a1,
x2 ← x1+a2.

x0 needs to be evaluated be-
fore x1 can be computed.
And x1 needs to be evaluated
before x2 can be computed.
This is called a dependency
chain.



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2)
MUL (2)
ALU+FLAGS (3)

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2) 2
MUL (2)
ALU+FLAGS (3)

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2) 2
MUL (2) 4
ALU+FLAGS (3)

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2) 2
MUL (2) 4
ALU+FLAGS (3) 4

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2) 2
MUL (2) 4
ALU+FLAGS (3) �4 5

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)

5 cycles per 4 words?
Benchmarks says yes!



What can be improved?

On Apple M1, GMP’s addmul_1 will do k+1
k cycles per word asymptotically, where k is

the number of unrolls. Can we improve its performance?

The idea is to fully unroll one size parameter in the multiplication, and have a lookup
table for all the basecase sizes. This will:

Reduce some overhead,
Avoid breaking carry chains, hopefully let

n+1
n cycles per word −→ 1 cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.



What can be improved?

On Apple M1, GMP’s addmul_1 will do k+1
k cycles per word asymptotically, where k is

the number of unrolls. Can we improve its performance?

The idea is to fully unroll one size parameter in the multiplication, and have a lookup
table for all the basecase sizes. This will:

Reduce some overhead,
Avoid breaking carry chains, hopefully let

n+1
n cycles per word −→ 1 cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.



What can be improved?

On Apple M1, GMP’s addmul_1 will do k+1
k cycles per word asymptotically, where k is

the number of unrolls. Can we improve its performance?

The idea is to fully unroll one size parameter in the multiplication, and have a lookup
table for all the basecase sizes. This will:

Reduce some overhead,
Avoid breaking carry chains, hopefully let

n+1
n cycles per word −→ 1 cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.



High multiplication

High multiplication is multiplication where we scrap the lower part of the result.
Important use cases are floating point arithmetic and modular arithmetic.

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Full multiplication

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Sloppy approximate

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Precise approximate

– scrapped
– high multiplication between two words u and v : ⌊uv/β⌋
– full multiplication



High multiplication (cont.)

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Full multiplication

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Sloppy approximate

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Precise approximate

Full multiplication: n2 multiplications, no error
Sloppy approximate: n·(n+1)

2 multiplications, error< (n−1)βn

Precise approximate: n·(n+1)
2 full and n−1 high multiplications, error< (2n−3)βn−1

With precise approximate we can check if the upper n words are guaranteed to be
correctly rounded.



High multiplication (cont.)

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Full multiplication

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Sloppy approximate

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Precise approximate

Full multiplication: n2 multiplications, no error
Sloppy approximate: n·(n+1)

2 multiplications, error< (n−1)βn

Precise approximate: n·(n+1)
2 full and n−1 high multiplications, error< (2n−3)βn−1

With precise approximate we can check if the upper n words are guaranteed to be
correctly rounded.



High multiplication (cont.)

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Full multiplication

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Sloppy approximate

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Precise approximate

Full multiplication: n2 multiplications, no error
Sloppy approximate: n·(n+1)

2 multiplications, error< (n−1)βn

Precise approximate: n·(n+1)
2 full and n−1 high multiplications, error< (2n−3)βn−1

With precise approximate we can check if the upper n words are guaranteed to be
correctly rounded.



High multiplication (cont.)

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Full multiplication

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Sloppy approximate

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Precise approximate

Full multiplication: n2 multiplications, no error
Sloppy approximate: n·(n+1)

2 multiplications, error< (n−1)βn

Precise approximate: n·(n+1)
2 full and n−1 high multiplications, error< (2n−3)βn−1

With precise approximate we can check if the upper n words are guaranteed to be
correctly rounded.



Results, full multiplication

1 3 5 7 9 11 13 15
0

100

200

300

400

Number of words, n

Cl
oc

k
cy

cle
s

GMP, x86 (Zen 3)
FLINT, x86 (Zen 3)

GMP, ARM (Apple M1)
FLINT, ARM (Apple M1)



Results, full multiplication

1 2 3 4 5
0

20

40

60

Number of words, n

Cl
oc

k
cy

cle
s

GMP, x86 (Zen 3)
FLINT, x86 (Zen 3)

GMP, ARM (Apple M1)
FLINT, ARM (Apple M1)



Results, full multiplication

1 3 5 7 9 11 13 15
1
2
3
4
5
6
7
8
9

Number of words, n

Cl
oc

k
cy

cle
s/

n2

GMP, x86 (Zen 3)
FLINT, x86 (Zen 3)

GMP, ARM (Apple M1)
FLINT, ARM (Apple M1)



107 multiplications with lengths m,n ∈ {1,2, . . . ,N}, uniformly random

GMP (mpn_mul) Ours (flint_mpn_mul)
N Time C J I Time C J I

Random, x86-64 (Zen 3)
8 0.32 s 18.3% 22.3% 0% 0.18 s 20.9% 48.4% 0.00%

16 0.55 s 10.0% 18.2% 0% 0.43 s 14.3% 33.1% 3.05%
32 1.39 s 10.5% 12.7% 0% 1.32 s 10.7% 16.7% 0.41%
64 4.48 s 11.5% 11.6% 0% 4.29 s 12.9% 14.3% 0.12%

Random, ARM64 (M1)
8 0.30 s 11.4% 0.00% 0.00% 0.23 s 11.2% 41.7% 0.01%

16 0.50 s 10.9% 0.00% 0.00% 0.43 s 10.5% 41.6% 0.00%
32 1.31 s 9.6% 0.00% 0.00% 1.13 s 10.0% 13.9% 0.00%
64 4.16 s 8.3% 0.20% 0.02% 3.82 s 9.8% 4.2% 0.06%

Table: Conditional branch misprediction rates “C”, indirect jump address misprediction rates “J”
and instruction cache miss rates “I”.



Results, high multiplication on Zen 3

0 5 10 15 20

0

200

400

600

Number of words, n

Cl
oc

k
cy

cle
s

MPFR, INT
FLINT, INT
MPFR, FP
FLINT, FP



Results, high multiplication on Zen 3

2 4 6 8
0

50

100

150

200

Number of words, n

Cl
oc

k
cy

cle
s

MPFR, INT
FLINT, INT
MPFR, FP
FLINT, FP



Results, high multiplication on Zen 3

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

Number of words, n

Cl
oc

k
cy

cle
s/

n2

MPFR, INT
FLINT, INT
MPFR, FP
FLINT, FP



Multiply two 100×100 FP matrices using dot products (Zen 3)

0 100 200 300 400 500
0

10

20

30

40

50

Bits

Ti
m

e
(m

s)

ARF (GMP)
ARF (new)
NFLOAT

QD



Conclusions and thoughts

Critical functions require hardware awareness!
Straight line programs (SLPs) can be important to reduce overhead when going
from native data types to multiple precision arithmetic
Handwritten assembly still remain critical for multiple precision arithmetic



Conclusions and thoughts

Critical functions require hardware awareness!
Straight line programs (SLPs) can be important to reduce overhead when going
from native data types to multiple precision arithmetic
Handwritten assembly still remain critical for multiple precision arithmetic



Conclusions and thoughts

Critical functions require hardware awareness!
Straight line programs (SLPs) can be important to reduce overhead when going
from native data types to multiple precision arithmetic
Handwritten assembly still remain critical for multiple precision arithmetic



Bibliography

[1] Laurent Fousse et al. “MPFR: A multiple-precision binary floating-point library with correct
rounding”. In: ACM Trans. Math. Softw. 33.2 (June 2007), 13–es. ISSNISSNISSN: 0098-3500. DOIDOIDOI:
10.1145/1236463.1236468.

[2] Dave Platt and Tim Trudgian. “The Riemann hypothesis is true up to 3 ·1012”. In: Bulletin of the
London Mathematical Society 53.3 (Jan. 2021), pp. 792–797. ISSNISSNISSN: 1469-2120. DOIDOIDOI:
10.1112/blms.12460.

[3] Alexandre Guillemot and Pierre Lairez. “Validated Numerics for Algebraic Path Tracking”. In:
Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation. ISSAC
’24. ACM, July 2024, pp. 36–45. DOIDOIDOI: 10.1145/3666000.3669673.

[4] Dougall Johnson. Firestorm Overview. 2023. URLURLURL:
https://dougallj.github.io/applecpu/firestorm.html (visited on 02/28/2025).

https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1112/blms.12460
https://doi.org/10.1145/3666000.3669673
https://dougallj.github.io/applecpu/firestorm.html

	Title page
	Fast Multiple-Precision Arithmetic – Why?
	Basics of Multiple-Precision Arithmetic
	Apple M1 Pipeline (Simplified)
	Lower bound of GMP's addmul_1
	What can be improved?
	High multiplication
	Results
	Conclusions
	Bibliography
	References

