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Fast multiple-precision arithmetic – why?

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3])

A common multiple-precision library to use is GMP, which is also very fast.
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Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
m×1-multiplication: r ← a ·b0 (mul_1)
Addition of m×1-multiplication: r ← r +a ·b0 (addmul_1)

Schoolbook m×n -multiplication is then
r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end
With these we can generate division, Toom-Cook multiplication, GCD, fast polynomial
multiplication, ...
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Apple M1 Pipeline (Simplified)
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Research done by Dougall Johnson [4].



CPU Pipeline

Simple version:

1 Read some instructions from memory
2 Schedule the instructions to the correct unit
3 Units executes instructions

This scheme allows for:

Concurrent execution of multiple instructions
Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain)
Consider the algorithm

x0 ← a0,
x1 ← x0+a1,
x2 ← x1+a2.

x0 needs to be evaluated be-
fore x1 can be computed.
And x1 needs to be evaluated
before x2 can be computed.
This is called a dependency
chain.
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Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2)
MUL (2)
ALU+FLAGS (3)

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)
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5 cycles per 4 words?
Benchmarks says yes!



What can be improved?

On Apple M1, GMP’s addmul_1 will do k+1
k cycles per word asymptotically, where k is

the number of unrolls. Can we improve its performance?

The idea is to fully unroll one size parameter in the multiplication, and have a lookup
table for all the basecase sizes. This will:

Reduce some overhead,
Avoid breaking carry chains, hopefully let

n+1
n cycles per word −→ 1 cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.
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High multiplication

High multiplication is multiplication where we scrap the lower part of the result.
Important use cases are floating point arithmetic and modular arithmetic.
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– high multiplication between two words u and v : ⌊uv/β⌋
– full multiplication



High multiplication (cont.)
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Full multiplication: n2 multiplications, no error
Sloppy approximate: n·(n+1)

2 multiplications, error< (n−1)βn

Precise approximate: n·(n+1)
2 full and n−1 high multiplications, error< (2n−3)βn−1

With precise approximate we can check if the upper n words are guaranteed to be
correctly rounded.
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Results, full multiplication
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Results, full multiplication
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107 multiplications with lengths m,n ∈ {1,2, . . . ,N}, uniformly random

GMP (mpn_mul) Ours (flint_mpn_mul)
N Time C J I Time C J I

Random, x86-64 (Zen 3)
8 0.32 s 18.3% 22.3% 0% 0.18 s 20.9% 48.4% 0.00%

16 0.55 s 10.0% 18.2% 0% 0.43 s 14.3% 33.1% 3.05%
32 1.39 s 10.5% 12.7% 0% 1.32 s 10.7% 16.7% 0.41%
64 4.48 s 11.5% 11.6% 0% 4.29 s 12.9% 14.3% 0.12%

Random, ARM64 (M1)
8 0.30 s 11.4% 0.00% 0.00% 0.23 s 11.2% 41.7% 0.01%

16 0.50 s 10.9% 0.00% 0.00% 0.43 s 10.5% 41.6% 0.00%
32 1.31 s 9.6% 0.00% 0.00% 1.13 s 10.0% 13.9% 0.00%
64 4.16 s 8.3% 0.20% 0.02% 3.82 s 9.8% 4.2% 0.06%

Table: Conditional branch misprediction rates “C”, indirect jump address misprediction rates “J”
and instruction cache miss rates “I”.



Results, high multiplication on Zen 3
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Results, high multiplication on Zen 3
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Multiply two 100×100 FP matrices using dot products (Zen 3)
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Conclusions and thoughts

Critical functions require hardware awareness!
Straight line programs (SLPs) can be important to reduce overhead when going
from native data types to multiple precision arithmetic
Handwritten assembly still remain critical for multiple precision arithmetic
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