Another L makes it better? Lagrange meets LLL and may improve BKZ pre-processing

Sébastien BALNY, Claire DELAPLACE, Gilles DEQUEN

Today

factorization or discrete logarithms

2

イロン イ団 と イヨン イヨン

Today

factorization or discrete logarithms

Quantum computer

イロン イ団 と イヨン イヨン

3

Today factorization or discrete logarithms

Quantum computer

Today factorization or discrete logarithms

Quantum computer

イロト イヨト イヨト イヨト

Solutions

Creating new schemes that are resistant to quantum attack.

Today factorization or discrete logarithms

Quantum computer

イロト イヨト イヨト イヨト

Solutions

Creating new schemes that are resistant to quantum attack.

LATTICE BASED CRYPTOGRAPHY

Lagrange algorithm [Lagrange1773]

Compute the most reduced basis en dim 2.

< 回 > < 三 > < 三 >

Lagrange algorithm [Lagrange1773]

Compute the most reduced basis en dim 2.

Lenstra-Lenstra-Lovasz (LLL) [LLL1982]

Efficient in low dimension.

- Runtime : $n^{\mathcal{O}(1)}$
- memory : $\mathcal{O}(n)$

御下 ・ヨト ・ヨト

Lagrange algorithm [Lagrange1773]

Compute the most reduced basis en dim 2.

Lenstra-Lenstra-Lovasz (LLL) [LLL1982]

Efficient in low dimension.

- Runtime : $n^{\mathcal{O}(1)}$
- memory : $\mathcal{O}(n)$

Block-Korkine-Zolotarev (BKZ- β) [Schnorr1987]

 β offers a trade-off between quality and efficiency.

- Runtime : after a number of tours at most $\Theta(n^2 \log n/\beta^2)$ the first basis vector of BKZ is short. Tour complexity : $2^{\mathcal{O}(\beta^2)}$. [LN2020]
- memory : $n^{\mathcal{O}(1)}$

(日) (日) (日)

While $|b_2{}^t b_1| > \min(||b_1||^2, ||b_2||^2)/2$ **1** $b_2 \leftarrow b_2 - \lfloor \mu_{2,1} \rceil b_1$ with $\mu_{2,1} = \frac{|b_2{}^t b_1|}{||b_1||^2}$ **2** If $||b_2||^2 < ||b_1||^2$ swap the two vectors and go to step 1.

▲圖▶ ▲ 国▶ ▲ 国▶ …

Input : Given a basis $B = [b_1, b_2]$. Output : A reduced basis $[b_1, b_2]$. While $|b_2^t b_1| > \min(||b_1||^2, ||b_2||^2)/2$ $b_2 \leftarrow b_2 - \lfloor \mu_{2,1} \rfloor b_1$ with $\mu_{2,1} = \frac{|\mathbf{b_2}^t \mathbf{b_1}|}{\|\mathbf{b_1}\|^2}$ 2 If $||b_2||^2 < ||b_1||^2$ swap the two vectors and go to step 1.

Input : Given a basis $B = [b_1, b_2]$. Output : A reduced basis $[b_1, b_2]$. While $|b_2^t b_1| > \min(||b_1||^2, ||b_2||^2)/2$ $b_2 \leftarrow b_2 - \lfloor \mu_{2,1} \rfloor b_1$ with $\mu_{2,1} = \frac{|\mathbf{b}_2{}^t \mathbf{b}_1|}{\|\mathbf{b}_1\|^2}$ 2 If $||b_2||^2 < ||b_1||^2$ swap the two vectors and go to step 1.

Input : Given a basis $B = [b_1, b_2]$. Output : A reduced basis $[b_1, b_2]$. While $|b_2^t b_1| > \min(||b_1||^2, ||b_2||^2)/2$ $b_2 \leftarrow b_2 - \lfloor \mu_{2,1} \rfloor b_1$ with $\mu_{2,1} = \frac{|\mathbf{b}_2{}^t \mathbf{b}_1|}{\|\mathbf{b}_1\|^2}$ 2 If $||b_2||^2 < ||b_1||^2$ swap the two vectors and go to step 1.

Input : Given a basis $B = [b_1, b_2]$. Output : A reduced basis $[b_1, b_2]$. While $|b_2^t b_1| > \min(||b_1||^2, ||b_2||^2)/2$ $b_2 \leftarrow b_2 - \lfloor \mu_{2,1} \rfloor b_1$ with $\mu_{2,1} = \frac{|\mathbf{b}_2{}^t \mathbf{b}_1|}{\|\mathbf{b}_1\|^2}$ 2 If $||b_2||^2 < ||b_1||^2$ swap the two vectors and go to step 1.

Input : Given a basis $B = [b_1, b_2]$. Output : A reduced basis $[b_1, b_2]$. While $|b_2^t b_1| > \min(||b_1||^2, ||b_2||^2)/2$ $b_2 \leftarrow b_2 - \lfloor \mu_{2,1} \rfloor b_1$ with $\mu_{2,1} = \frac{|\mathbf{b_2}^t \mathbf{b_1}|}{\|\mathbf{b_1}\|^2}$ 2 If $||b_2||^2 < ||b_1||^2$ swap the two vectors and go to step 1.

• Lattice reduction uses (approx-)SVP oracles;

3

イロン イ団 と イヨン イヨン

- Lattice reduction uses (approx-)SVP oracles;
- (approx-)SVP easier when input basis already reduced.

イロン イ団 と イヨン イヨン

L-reduction

A pair of vectors (u, v) is L-reduced or Lagrange-reduced if

 $\|u\pm v\|\geq max\left(\|u\|,\|v\|\right)$

L-reduction

A pair of vectors (u, v) is L-reduced or Lagrange-reduced if

 $\|\mathbf{u} \pm \mathbf{v}\| \geq \max\left(\|\mathbf{u}\|, \|\mathbf{v}\|\right)$

Pair-wise L-reduction

A set of linearly independent vectors ${\cal S}$ is said to be L-reduced if for all $(u,v)\in {\cal S}^2,$ (u,v) is L-reduced.

個 ト イヨ ト イヨト

L-reduction

A pair of vectors (u, v) is L-reduced or Lagrange-reduced if

 $\|\mathbf{u} \pm \mathbf{v}\| \geq \max\left(\|\mathbf{u}\|, \|\mathbf{v}\|\right)$

Pair-wise L-reduction

A set of linearly independent vectors ${\cal S}$ is said to be L-reduced if for all $(u,v)\in {\cal S}^2,$ (u,v) is L-reduced.

$$\mathsf{B} \mathsf{LLL}\mathsf{-reduced} \quad \Rightarrow \quad \mathsf{B} \mathsf{L}\mathsf{-reduced}.$$

個 ト イヨ ト イヨト

A new algorithm inspired by LLL and Lagrange.

・ロト ・ 四ト ・ ヨト ・ ヨト

A new algorithm inspired by LLL and Lagrange.

• Test Lattices : Darmstadt SVP Challenge generator

https://www.latticechallenge.org/svp-challenge/

1000 lattices per dim : from 40 to 200, step of 10 (in almost cases)

• Comparison between our result v_0 and $\tilde{\lambda}_1 \approx \lambda_1(\Lambda)$:

$$\text{approx factor} = \frac{\|v_0\|}{\tilde{\lambda}_1}$$

• Python implementation using FpyLLL library on MatriCS HPC Platform : https://www.matrics.u-picardie.fr/

・ロト ・四ト ・ヨト ・ヨト

Input : A LLL-reduced basis B. Output : A better LLL-reduced basis B' with $\|b'_1\| \le \|b_1\|$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Input : A LLL-reduced basis B. Output : A better LLL-reduced basis B' with $\|b'_1\| \le \|b_1\|$.

Steps :

- Compute a set $S = B \cup \{b_i \pm b_j \mid \#(b_i, b_j) \in B \times B\}$;
- **2** B = LLLReduce(S);
- **③** Repeat step 1 and step 2 as long as $||b_1||$ is decreasing.

- 4 回 ト 4 回 ト

Input : A LLL-reduced basis B. Output : A better LLL-reduced basis B' with $\|b'_1\| \le \|b_1\|$.

Steps :

- Compute a set $S = B \cup \{b_i \pm b_j | (b_i, b_j) \text{not L-reduced} \}$;
- **2** B = LLLReduce(S);
- **③** Repeat step 1 and step 2 as long as $||b_1||$ is decreasing.

(人間) トイヨト イヨト

Construction of ${\boldsymbol{S}}$

Sample L4

• $S \leftarrow B$; • Repeat $\alpha_1 n$ times : • a. u = RandomChoose(S); • b. Repeat $\alpha_2 n$ times : • i. v = RandomChoose(S); • ii. If $0 < ||u \pm v|| \le \max(||u||; ||v||)||$ do $S \leftarrow S \cup \{u \pm v\}$; • done • $S \leftarrow \text{Sort}(S)$.

3

イロン イ理 とく ヨン イヨン

Construction of ${\boldsymbol{S}}$

Sample L4

$$\begin{array}{lll} \textbf{S} \leftarrow \textbf{B} ;\\ \textbf{@} & \text{Repeat } \alpha_1 n \text{ times }:\\ \textbf{a. } \textbf{u} = \text{RandomChoose}(S) ;\\ \textbf{b. } & \text{Repeat } \alpha_2 n \text{ times }:\\ \textbf{i. } \textbf{v} = \text{RandomChoose}(S) ;\\ \textbf{ii. } & \text{If } 0 < \|\textbf{u} \pm \textbf{v}\| \leq \max(\|\textbf{u}\|;\|\textbf{v}\|)\| \text{ do }\\ S \leftarrow S \cup \{\textbf{u} \pm \textbf{v}\};\\ \text{done} \end{array}$$

$$\alpha_1 = 1$$
 and $\alpha_2 = 1/2 \implies faster than LLL.$

2

イロン イ団 と イヨン イヨン

Steps :

- Compute a set $S = B \cup \{b_i \pm b_j | (b_i, b_j) \text{not L-reduced} \}$;
- **2** B = LLLReduce(S);
- 3 Repeat step 1 and step 2 as long as $||b_1||$ is decreasing.

Steps :

- Compute a set $S = B \cup \{b_i \pm b_j | (b_i, b_j) \text{not L-reduced} \}$;
- **2** B = LLLReduce(S); \leftarrow complexity C_{LLL}
- $\textcircled{0} \ \ \mathsf{Repeat \ step \ } 1 \ \ \mathsf{and \ step \ } 2 \ \mathsf{as \ } \mathsf{long \ } \mathsf{as \ } \|b_1\| \ \mathsf{is \ decreasing.} \\$

《曰》 《圖》 《臣》 《臣》

Steps :

- Compute a set $S = B \cup \{b_i \pm b_j | (b_i, b_j) \text{ not L-reduced}\}; \ll C_{LLL}$
- **2** B = LLLReduce(S); \leftarrow complexity C_{LLL}

Steps :

- Compute a set $S = B \cup \{b_i \pm b_j | (b_i, b_j) \text{ not } L\text{-reduced}\}; \ll C_{LLL}$
- **2** B = LLLReduce(S); \leftarrow complexity C_{LLL}

Complexity

```
Time complexity : \mathcal{O}(k \times C_{LLL})
```

k number of calls to LLL

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

number of LLL calls

1000 tests/dim

L4 algorithm

15 / 26

2

number of LLL calls

Conjecture

$$k = \mathcal{O}(\log(n))$$

1000 tests/dim

L4 algorithm

3

L4 : Experimental runtime

1000 tests/dim

3

L4 : Norm of the First Vector

1000 tests/dim

2

 $\begin{array}{ll} \mbox{Equivalent bases} \\ \Lambda = \mathcal{L}(B_1) = \mathcal{L}(B_2) & \Longleftrightarrow & B_2 = B_1 \times U \mbox{ , for some } U \mbox{ unimodular.} \end{array}$

3

Equivalent bases

 $\Lambda = \mathcal{L}(\mathsf{B}_1) = \mathcal{L}(\mathsf{B}_2) \quad \Longleftrightarrow \quad \mathsf{B}_2 = \mathsf{B}_1 \times \mathit{U} \text{ , for some } \mathit{U} \text{ unimodular}.$

Randomization

Input : A basis B_1 . Output : A new basis B_2 .

- Generate randomly U such that det $U = \pm 1$;
- **2** Compute $B_2 = B_1 \times U$.

< 回 > < 三 > < 三 >

Equivalent bases

 $\Lambda = \mathcal{L}(\mathsf{B}_1) = \mathcal{L}(\mathsf{B}_2) \quad \Longleftrightarrow \quad \mathsf{B}_2 = \mathsf{B}_1 \times \mathit{U} \text{ , for some } \mathit{U} \text{ unimodular}.$

Randomization

Input : A basis B_1 . Output : A new basis B_2 .

- Generate randomly U such that det $U = \pm 1$;
- **2** Compute $B_2 = B_1 \times U$.

• L4-Rand k : k randomizations;

A (10) × (10)

Equivalent bases

 $\Lambda = \mathcal{L}(\mathsf{B}_1) = \mathcal{L}(\mathsf{B}_2) \quad \Longleftrightarrow \quad \mathsf{B}_2 = \mathsf{B}_1 \times \mathit{U} \text{ , for some } \mathit{U} \text{ unimodular}.$

Randomization

Input : A basis B_1 . Output : A new basis B_2 .

- Generate randomly U such that det $U = \pm 1$;
- **2** Compute $B_2 = B_1 \times U$.

• L4-Rand k : k randomizations;

• L4-Max k : stop if no improvement after k randomizations.

Randomization : Norm of the First Vector

1000 tests/dim

3

Randomization : Experimental runtime

1000 tests/dim

Randomization

3

イロン イ団 と イヨン イヨン

Darmstadt SVP Challenge : $\|b_1\| \le 1.05 \tilde{\lambda}_1$?

Dimension	LLL	L4	L4-Max2	L4-Max4	L4-Rand10
40	161	355	760	842	915
50	9	64	318	544	626
60	0	4	34	103	93
70	0	0	1	2	4
80	0	0	0	0	0
90	0	0	0	0	0

÷

1000 tests/dim

・ロト ・四ト ・ヨト ・ヨト

L4 VS BKZ

L4 VS BKZ-12

- $\rightarrow\,$ similar runtime
- $\rightarrow\,$ worst approximation factor

3

イロン イ団 と イヨン イヨン

L4 VS BKZ

L4 VS BKZ-12

- \rightarrow similar runtime
- $\rightarrow\,$ worst approximation factor

Idea 1 : Using BKZ instead of LLL in L4

Not working : Too many L-reduced basis vectors

→ 圖 ▶ → 国 ▶ → 国 ▶

L4 VS BKZ

L4 VS BKZ-12

- \rightarrow similar runtime
- $\rightarrow\,$ worst approximation factor

Idea 1 : Using BKZ instead of LLL in L4

Not working : Too many L-reduced basis vectors

Idea 2 : Using L4 instead of LLL in the pre-computation of BKZ Better results ! ! !

Average approximation factor

100 tests/dim

3

・ロト ・ 四ト ・ ヨト ・ ヨト

100 tests/dim

2

L4+BKZ-24

- approx factor 3% better on average.
- proportion of improved basis \nearrow with dim.

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

L4+BKZ-24

- approx factor 3% better on average.
- proportion of improved basis \nearrow with dim.

BKZ-24 after L4 VS BKZ-24 after LLL

 $\bullet\,$ In 35~45 % of the cases, our method improves the runtime.

通 ト イ ヨ ト イ ヨ ト

L4+BKZ-24

- approx factor 3% better on average.
- proportion of improved basis \nearrow with dim.

BKZ-24 after L4 VS BKZ-24 after LLL

• In $35{\sim}45$ % of the cases, our method improves the runtime.

L4+BKZ-24 VS BKZ-24

• For all dim, there are some cases where everything is better.

Conclusion

- $\rightarrow\,$ A new algorithm inspired by LLL and Lagrange reduction
- $\rightarrow\,$ Improve the approximation factor for SVP when used as pre-processing of BKZ
- $\rightarrow\,$ In some cases faster than BKZ

・ロト ・ 四ト ・ ヨト ・ ヨト

Conclusion

- $\rightarrow\,$ A new algorithm inspired by LLL and Lagrange reduction
- $\rightarrow\,$ Improve the approximation factor for SVP when used as pre-processing of BKZ
- $\rightarrow\,$ In some cases faster than BKZ

Future work

- \rightarrow Better implementation
- ightarrow Improve the sample
- $\rightarrow\,$ Including L4 in BKZ implementation

> < = > < = >

Conclusion

- $\rightarrow\,$ A new algorithm inspired by LLL and Lagrange reduction
- $\rightarrow\,$ Improve the approximation factor for SVP when used as pre-processing of BKZ
- $\rightarrow\,$ In some cases faster than BKZ

Future work

- $\rightarrow\,$ Better implementation
- $\rightarrow\,$ Improve the sample
- $\rightarrow\,$ Including L4 in BKZ implementation

Thank you !

https://zenodo.org/records/13847623

Conclusion

・ロト ・四ト ・ヨト ・ヨト