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Context

Today
factorization or discrete logarithms

New enemy

Quantum computer

Solutions
Creating new schemes that are resistant to quantum attack.
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What is a lattice ?

Definition
Λ : A periodic "grid" of Rn.
Basis : B = [b1, b2, . . . , bn]

Λ =
n∑

k=1
Z · bi
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The shortest vector problem

Definition
Given Λ a lattice, find a
shortest non zero vector w.r.t
L2 norm.

⇓

NP-hard [Ajtai1996]

v0

∥v0∥ = λ1(Λ)
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The approximate Shortest Vector Problem

Definition
Given Λ ⊂ Rn lattice, γ > 1,
find any vector v such that
∥v∥ < γ · λ1(Λ).

γ = Θ(2n)⇒ poly(n)
algo [LLL1982]

γ = Ω(n/ log(n))⇒
NP-hard [GG2000]

γ
· λ

1
(Λ
)
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Lattice reduction

Goal
Find a basis of Λ with short
"somewhat orthogonal"
vectors

b1
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Lattice reduction

Lagrange algorithm [Lagrange1773]
Compute the most reduced basis en dim 2.

Lenstra-Lenstra-Lovasz (LLL) [LLL1982]
Efficient in low dimension.

Runtime : nO(1)

memory : O(n)

Block-Korkine-Zolotarev (BKZ-β) [Schnorr1987]
β offers a trade-off between quality and efficiency.

Runtime : after a number of tours at most Θ(n2 log n/β2) the first
basis vector of BKZ is short. Tour complexity : 2O(β2). [LN2020]
memory : nO(1)
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dimension 2 : The Lagrange algorithm

Input : Given a basis B = [b1, b2].
Output : A reduced basis [b1, b2].

While |b2
tb1| > min(∥b1∥2, ∥b2∥2)/2

1 b2 ← b2 − ⌊µ2,1⌉b1

with µ2,1 =
|b2

tb1|
∥b1∥2

2 If ∥b2∥2 < ∥b1∥2 swap the two
vectors and go to step 1.
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To sum up

Lattice reduction uses (approx-)SVP oracles ;

(approx-)SVP easier when input basis already reduced.
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Definitions

L-reduction
A pair of vectors (u, v) is L-reduced or Lagrange-reduced if

∥u± v∥ ≥ max (∥u∥, ∥v∥)

Pair-wise L-reduction
A set of linearly independent vectors S is said to be L-reduced if for all
(u, v) ∈ S2, (u, v) is L-reduced.

B LLL-reduced ⇏ B L-reduced.

L4 algorithm 10 / 26
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Our work

A new algorithm inspired by LLL and Lagrange.

Test Lattices : Darmstadt SVP Challenge generator
https://www.latticechallenge.org/svp-challenge/

1000 lattices per dim : from 40 to 200, step of 10 (in almost cases)
Comparison between our result v0 and λ̃1 ≈ λ1(Λ) :

approx factor =
∥v0∥
λ̃1

Python implementation using FpyLLL library on MatriCS HPC
Platform : https://www.matrics.u-picardie.fr/
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Our new L4 (Lagrange-LLL) algorithm

Input : A LLL-reduced basis B.
Output : A better LLL-reduced basis B′ with ∥b′1∥ ≤ ∥b1∥.

Steps :
1 Compute a set
2 B = LLLReduce(S) ;
3 Repeat step 1 and step 2 as long as ∥b1∥ is decreasing.
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Construction of S

Sample L4
1 S ← B ;
2 Repeat α1n times :

a. u = RandomChoose(S) ;
b. Repeat α2n times :

i. v = RandomChoose(S) ;
ii. If 0 < ∥u± v∥ ≤ max(∥u∥; ∥v∥)∥ do

S ← S ∪ {u± v} ;
done

3 S ← Sort(S).

α1 = 1 and α2 = 1/2 =⇒ faster than LLL.
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Our new L4 (Lagrange-LLL) algorithm
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3 Repeat step 1 and step 2 as long as ∥b1∥ is decreasing.

Complexity
Time complexity : O(k × CLLL)

k number of calls to LLL
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number of LLL calls

Conjecture

k = O(log(n))
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L4 : Experimental runtime
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L4 : Norm of the First Vector
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Randomization

Equivalent bases
Λ = L(B1) = L(B2) ⇐⇒ B2 = B1 × U , for some U unimodular.

Randomization
Input : A basis B1.
Output : A new basis B2.

1 Generate randomly U such that
det U = ±1 ;

2 Compute B2 = B1 × U.

L4-Rand k : k randomizations ;
L4-Max k : stop if no
improvement after k
randomizations.
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Randomization : Norm of the First Vector
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Randomization : Experimental runtime
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Darmstadt SVP Challenge : ∥b1∥ ≤ 1.05λ̃1 ?

Dimension LLL L4 L4-Max2 L4-Max4 L4-Rand10
40 161 355 760 842 915
50 9 64 318 544 626
60 0 4 34 103 93
70 0 0 1 2 4
80 0 0 0 0 0
90 0 0 0 0 0

...

1000 tests/dim

Randomization 21 / 26



L4 VS BKZ

L4 VS BKZ-12
→ similar runtime
→ worst approximation factor

Idea 1 : Using BKZ instead of LLL in L4
Not working : Too many L-reduced basis vectors

Idea 2 : Using L4 instead of LLL in the pre-computation of BKZ
Better results ! ! !

L4+BKZ24 22 / 26
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Average approximation factor
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Our results

L4+BKZ-24
approx factor 3% better on average.
proportion of improved basis ↗ with dim.

BKZ-24 after L4 VS BKZ-24 after LLL
In 35∼45 % of the cases, our method improves the runtime.

L4+BKZ-24 VS BKZ-24
For all dim, there are some cases where everything is better.
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Conclusion

→ A new algorithm inspired by LLL and Lagrange reduction
→ Improve the approximation factor for SVP when used as pre-processing

of BKZ
→ In some cases faster than BKZ

Future work
→ Better implementation
→ Improve the sample
→ Including L4 in BKZ implementation

Thank you !
https://zenodo.org/records/13847623
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