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Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Examples:
On this chess board, I know mat in 3 moves
I know where is Wally/Waldo on this drawing
I know a solution to this sudoku grid
I know a preimage of this hash function value

Challenge

Response

• Sound: Alice has a wrong solution =⇒ Bob is not convinced.
• Complete: Alice has the solution =⇒ Bob is convinced.
• Zero-knowledge: Bob does NOT learn the solution.
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Example: Sigma protocol
Alice Bob

I know x ∈ Zq such that
gx = y in G, #G = q prime

n $←− Zq
A = gn

c $←− Zq
c

s = n + c · x mod q
s g s ?= A · y c

with A · y c = gn · gx ·c

then gn · gx ·c = gn+x ·c

Hide the verification
in the exponents
(the scalar field)
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Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that gx = y

G, g , y

︸ ︷︷ ︸
Setup

n $←− Zq, A = gn

c = H(A, y)
s = n + c · x mod q

︸ ︷︷ ︸
Prove

π = (A, c, s)︸ ︷︷ ︸
proof

g s ?= A · y c

c ?= H(A, y)︸ ︷︷ ︸
Verify
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zk-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of
Knowledge

”I have a computationally sound, complete, zero-knowledge, succinct,
non-interactive proof that a statement is true and that I know a related secret”.

Succinct
A proof is very short and easy to verify.

Non-interactive
No interaction between the prover and verifier for proof generation and verification
(except the proof message).

ARgument of Knowledge
Honest verifier is convinced that a computationally bounded prover knows a secret
information.
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zk-SNARKs in a nutshell

Main ideas:
1. Reduce a general statement satisfiability to a polynomial equation satisfiability.
2. Use Schwartz–Zippel lemma to succinctly verify the polynomial equation with

high probability.
3. Use homomorphic hiding cryptography to blindly verify the polynomial equation.
4. Make the protocol non-interactive.
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Needs of groups for proof systems and SNARK

Statement Proof

group G′ of prime order over Fq /
Hash function over base field Fq

group G of prime order q over Fp

• ed_25519 signature verification
q = 2255 − 19
• Hash function verification y = H(x)
H: Poseidon, Anemoi...

Group where multiplication
in the exponents is possible:
given ga, gb, compute gab

without knowing a, b
→ ≈ pairing-friendly curves
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Elliptic curve E/Fp : y 2 = x 3 + ax + b, a, b ∈ Fp, p ≥ 5, group law

ℓP,Q(x , y)

P
Q

R

vP+Q(x)

P + Q

• E (Fp) has an efficient group law → G1
(chord and tangent rule)
• #E (Fp) = p + 1− t, trace t: |t| ≤ 2√p
• large prime q | p + 1− t coprime to p
• E (Fp)[q] = {P ∈ E (Fp) : [q]P = O} has order q
• E [q] ≃ Z/qZ× Z/qZ (for crypto)
• only generic attacks against DLP on well-chosen

genus 1 and genus 2 curves
• optimal parameter sizes
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Pairing as a black box

(G1, +), (G2, +), (GT , ·) three cyclic groups of large prime order q
Pairing: map e : G1 × G2 → GT

1. bilinear: e(P1 + P2, Q) = e(P1, Q) · e(P2, Q), e(P, Q1 + Q2) = e(P, Q1) · e(P, Q2)
2. non-degenerate: e(G1, G2) ̸= 1 for ⟨G1⟩ = G1, ⟨G2⟩ = G2

3. efficiently computable.
Most often used in practice: swap scalars, multiply in the exponents

e([a]P, [b]Q) = e([b]P, [a]Q) = e(P, Q)ab .

Can multiply only once!

; Many applications in asymmetric cryptography.
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Cryptographic pairing

Modified Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

e : E (Fp)[q]× E (Fpk )[q] F∗
pk , e([a]P, [b]Q) = e(P, Q)ab

Attacks
• inversion of e : hard problem (exponential)
• discrete logarithm computation in E (Fp) : hard problem (exponential, in O(√q))
• discrete logarithm computation in F∗

pk : easier, subexponential → take a large
enough field
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Finding pairing-friendly curves
Designed on purpose: otherwise k ≈ q
Choose prime integer q, degree k then obtain p: inefficient curve
Design families: parameterized p(x), q(x), t(x)

• Complex Multiplication (CM) equation: t2 − 4p = −Dy2

• (Compute t2 − 4p, get its square-free factorization)
• D discriminant, square-free (in number theory, if D = 1, 2 mod 4 then D ← 4D)

SEA: from coefficients to parameters CM: from parameters to coefficients
E/Fp : y2 = x3 + ax + b
Schroof–Elkies–Atkin (SEA)
compute trace t
order q = p + 1− t
iterate over a, b until q is prime

base field Fp, trace t, order q
CM equation t2 − 4p = −Dy2

compute Hilbert Class polynomial HD(X )
compute a root j , HD(j) = 0 mod p
j(E ) = 1728 4a3

4a3+27b2

E/Fp : y2 = x3 + 3j
j−1728x + 2j

1728−j
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First ordinary pairing-friendly curves: MNT [MNT01]

Miyaji, Nakabayashi, Takano, #E (Fp) = p(x) + 1− t(x) = q(x)

k = 3


t(x) = −1± 6x
q(x) = 12x2 ∓ 6x + 1
p(x) = 12x2 − 1
Dy2 = 12x2 ± 12x − 5

k = 4


t(x) = −x , x + 1
q(x) = x2 + 2x + 2, x2 + 1
p(x) = x2 + x + 1
Dy2 = 3x2 + 4x + 4

k = 6


t(x) = 1± 2x
q(x) = 4x2 ∓ 2x + 1
p(x) = 4x2 + 1
Dy2 = 12x2 − 4x + 3

CODA [MS18]:
k = 6, 753 bits, E6 ≈ 137 bits of security, D = −241873351932854907, seed u =
0xaa3a58eb20d1fec36e5e772ee6d3ff28c296465f137300399db8a5521e18d33581a262716214583d3b89820dd0c000

k = 4, 753 bits, E4 ≈ 113 bits of security
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Cycle of curves: unlimited chains of SNARKs [BCTV14]

elliptic curve
E1(Fp) of prime order q

elliptic curve
E0(Fq) of prime order p

statement
in a group of
prime order p
over a field Fq

statement
in a group of
prime order q
over a field Fp

MNT-4 and MNT-6 curves form a cycle
k = 4, MNT-4: t = −x , order q = x2 + 1, field p = x2 + x + 1
k = 6, MNT-6 (x ↔ 2x): t ′ = 1− x , order p = x2 + x + 1, field q = x2 + 1
Unique known cycle of pairing-friendly curves. Impossibility results: [CCW19, BMUS23]
New constructions with higher dimensional curves [CCN24, CK24]
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Very popular pairing-friendly curves: Barreto-Naehrig (BN) [BN06]

EBN : y2 = x3 + b, p ≡ 1 mod 3, D = 3 (ordinary), jE = 0

p = 36u4 + 36u3 + 24u2 + 6u + 1
t = 6u2 + 1
q = p + 1− t = 36u4 + 36u3 + 18u2 + 6u + 1

t2 − 4p = −3(6u2 + 4u + 1)2 → no CM method needed

Comes from the Aurifeuillean factorization of Φ12 : Φ12(6u2) = q(u)q(−u)

Security level log2 q log2 p k finite field ρ = log p/ log q

102 256 256 12 3072 1
123 384 384 12 4608 1
132 448 448 12 5376 1

Formerly BN-254 in Euthereum with seed 0x44e992b44a6909f1
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Barreto, Lynn, Scott curves [BLS03]

Any k, 3 | k, 18 ∤ k possible
BLS12 (k = 12) becomes more and more popular, replacing BN curves

EBLS : y2 = x3 + b, p ≡ 1 mod 3, D = 3 (ordinary)

p = (u − 1)2/3(u4 − u2 + 1) + u
t = u + 1
q = (u4 − u2 + 1) = Φ12(u)

p + 1− t = (u − 1)2/3︸ ︷︷ ︸
cofactor

(u4 − u2 + 1)

t2 − 4p = −3y(u)2 → no CM method needed

BLS12-381 (Zcash [Bow17]) with seed -0xd201000000010000
BLS12-377 (Zexe [BCG+]) with seed 0x8508c00000000001
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CØCØ embedded curve: Kosba et al. construction [KZM+15]

BN curve E1(Fp)
of prime order q

elliptic curve E0(Fq)
of order 4s

CØCØ: given q, search for a curve
E0 over Fq of order 4 times a prime

statement
in a group of
prime order s
over a field Fq

SNARK with
a pairing e :

G1 × G2 → GT
#Gi = q

polynomials
in Fq[X ]

arithme-
tisation

proof of
the circuit
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Embedded SNARK-friendly curves

Usually a twist-secure elliptic curve in Montgomery or (twisted) Edwards form

Input: base field Fq
Output: an embedded curve over Fq of order 4s or 8s with prime s
Procedure: Increment the curve coefficients until a suitable curve is found
(Nothing-up-my-sleeves strategy)

CØCØ [KZM+15] with BN-254a,
JubJub [ZCa21] or Bandersnatch [MSZ21] with BLS12-381,
first attempt to generalize Bandersnatch [SEH24]
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Bandersnatch [MSZ21]

• Find an embedded elliptic curve E ′ over FqBLS12-381 of trace t ′, above BLS12-381
• With a small discriminant D′ in t ′2 − 4q = −D′y ′2 to allow faster scalar

multiplication with GLV
• twist-secure: q + 1− t ′, q + 1 + t ′ contain a large prime
• Use the CM method

u = −0xd201000000010000, q = u4 − u2 + 1 is prime (BLS12-381)
The trace t ′ can be any integer in the range (−2√q; 2√q)
Idea: enumerate small D′, get t ′, order s, twist order s ′ until s, s ′ contain a large prime

Bandersnatch curve: D′ = 2 (i.e. D′ = −8), s = 22 × p253, s ′ = 27 · 33 × p244
Is it a magical curve? It is too good to be true?
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More Bandersnatch curves
Extend the search space for discriminants D′

Rewrite the algorithm to enumerate the curves much faster

We get more embedded twist-secure curves with BLS12-381:
• D = 2, Bandersnatch
• D = 1030258, r = 4p253, r ′ = 23 · 7p250
• D = 1429201, r = 4p253, r ′ = 28 · 5p245
• D = 1470074, r = 29p246, r ′ = 22 · 34 · 5p245
• D = 1992138, r = 27p248, r ′ = 22 · 32 · 79p244
• D = 7636102, r = 22p253, r ′ = 23 · 32 · 23p245
• . . .

More embedded prime-order curves with BLS12-381:
• D = 6673027, r prime, r ′ = c · p234 (twist-secure)
• D = 7321939, r prime, r ′ = c ′ · p206
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Imaginary Quadratic Number Field

Let d > 0 a square-free integer.

K = Q[x ]/(x2 + d) ≃ Q(
√
−d)

is a imaginary quadratic number field whose maximal order is OK = Z[τ ] where

τ =
{√
−d if d ̸≡ 3 mod 4,

1+
√

−d
2 if d ≡ 3 mod 4.

The norm of an algebraic integer a + bτ , a, b ∈ Z is

NK/Q(a + bτ) =
{

Res(a + bX , X 2 + d) = a2 + db2 if d ≡ 1, 2 mod 4
Res(a + bX , X 2 − X + d+1

4 ) = a2 + ab + d+1
4 b2 if d ≡ 3 mod 4.
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Solving norm equation
Given positive integer n, find η ∈ Z[τ ] of norm n → sometimes no solution

Example: K = Q(
√
−5), τ =

√
−5. Solve for π = a + bτ ∈ OK ,

NK/Q(π) = a2 + 5b2 = p prime
• ramified primes p = 2, 5
• inert primes 11, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97
• splitting primes 3, 7, 23, 43, 47, 67, 83 but no solution
• splitting primes having solutions: 29 = N(3± 2τ), 41 = N(6± τ),

61 = N(4± 3τ), 89 = N(3± 4τ)
In average (over 105 p): 1/2 are split, 1/4 have a solution π, p = N(π).

• −d is a square in half the cases
• prime ideal p above p is principal with 1/h(K ) chance, h(K ) = Class Number

then π = a + bτ exists, NK/Q(π) = p
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Algorithm 1: EmbeddedCurve(q, Dmin, Dmax)

Input: prime integer q, minimum and maximum values of D > 0
Output: A list of traces and discriminants of embedded elliptic curves for Fq
L ← {}
for D from Dmin to Dmax do

if D is square-free and −D is a square modulo q then

s ←
{√
−D mod q d ̸≡ 3 mod 4

1+
√

−D
2 mod q d ≡ 3 mod 4

lift s in Z
π ← a + bX the shortest non-zero element of the lattice Z⟨q, X − s⟩
if π has norm q then

(t ′, y ′)←
{

(2a, b) if d ≡ 3 mod 4
(2a + b, b) otherwise

if r = q + 1− t ′, r ′ = q + 1 + t ′ contain a large prime then
L ← L ∪ {(D, t ′, y ′)}

return L
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Atkin-Morain, ECPP, and the CM method [AM93]

• internal step in ECPP: find an elliptic curve over Z/nZ of non-prime order of
known factorization
• enumerate small D until a curve is found
• For each D, solve a norm equation n = A2 + DB2 in OK , K = Q[

√
−D]

• the curve trace is t ′ = 2A, check order
• Do not compute H−D(X ) each time, only when a good D is found

Estimated chance to solve the norm equation n = NK/Q(η): 1
2h(K)

=⇒ try many D until a solution is found.
h(K ) grows with D.
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Example with D = 6673027
q = qBLS12-381 = u4 − u2 + 1 where
u = -0xd201000000010000 = −(263 + 262 + 260 + 257 + 248 + 216)
D = 6673027 ≡ 3 mod 4, h(D) = 360
s ← 1+

√
−D

2 mod q

2-dim reduction (rows) GaussReduce
[

q 0
−s 1

]
[

125559217103576390750801819080760038445 148223899205865772742806981386395067
−49458940538103050268164576706759590014 417560298539131963054131572411958320435

]
1st row → (a, b) such that a2 + ab + D+1

4 b2 = q
4q = (2a + b)2 + Db2, embedded curve trace t = 2a + b, y = b
prime order s = q + 1− t = (t−2)2+Dy2

4 ,
twist order q + 1 + t = 32 · 192 · 953 · p234
PARI-GP: j(E ) mod q, E : y2 = x3 − 3x + bq,
bq = 10908001762325402974914188089519822993112853370962247355940024813778856917972

29/40



Related work: plain/hybrid cycles of curves
Plain cycles: 2 plain prime-order elliptic curves (no pairing)
secp256k1/secq256k1, HALO: Tweedledum/tweedledee, HALO2: Pallas-Vesta – Pasta

1. start from any prime-order elliptic curve of small-enough discriminant D
2. swap scalar field order q and base field order p to get the 2nd curve parameters
3. use the CM method on (q, p, D) to get the 2nd curve coefficients

D small required, SafeCurve criterion |D| ≥ 2110 never satisfied

Hybrid cycles: a plain curve and a BN pairing-friendly curve, both prime order
BN254-Grumpkin, BN382-plain, Pluto (BN446) - Eris. Prime-order pairing-friendly
curves are very rare, no better solution than BN known

E0/Fp
prime order q

j(E0) = 0, D = −3

E1/Fq
prime order p

j(E1) = 0, D = −3
30/40
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ed_25519 as an embedded curve

q = 2255 − 19
• Curve25519 in Montgomery form
E ′ : y2 = x3 + 48662x2 + x
• Ed25519 in twisted Edwards form
E ′ : − x2 + y2 = 1− 121665

121666x2y2

E ′(Fq) of order 8r , r prime

Prime p, curve E/Fp
of prime order q
• D = 65012179
• D = 103953715

E ′ embedded curve of E
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Families of embedded curves with BLS12
Sanso’s first work [SEH24]. Idea: design families of embedded curves, whose
parameters are given by polynomials, like families of pairing-friendly curves. Always the
same story:

1. Do it for BLS12 curves: easy doing! (fastest optimal ate pairing computation,
easiest cofactor clearing, subgroup membership testing, hashing, scalar
multiplication with high-dimension GLV...)

2. generalize to other pairing-friendly curves: problems arise
With previous section point of view: Solve a norm equation for q = x4− x2 + 1, D = 3
Obvious solution: q = ((2x2 − 1)2 + 3(1)2)/4
embedded curve trace: t ′ = 2x2 − 1,
embedded curve order: s = ((t ′ − 2)2 + 3(1)2)/4 = x4 − 3x2 + 3 irreducible
and generating primes.

=⇒ family!
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Generalization: Families of embedded curves for BLS12

BLS12 E/Fp
pairing-friendly
subgroup G1

of prime order q

elliptic curve
E1(Fq)

of prime order r

elliptic curve
E0(Fr )

of prime order q

elliptic curve
E2(Fq)

of order 4s, s prime

BW E ′/FQ
pairing-friendly
subgroup G′

1
of prime order p

embedded
curve

embedded
curve

plain
cycle

2-chain

statement

SNARK-1 SNARK-2
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BLS12 with embedded curves

seed L equation p q embedded curve plain cycle curve
EBLS/Fp (bits) (bits) equation E1,2/Fq equation E0/Fr

0xffff007fda000001 25 y2 = x3 + 1 383 256 E1 : y2 = x3 + 19 y2 = x3 + 7
264 − 248 + 239 − 229 − 227 + 225 + 1 E2 : y2 = x3 + 17

0xfc3ec00400000001 34 y2 = x3 + 1 383 256 E1 : y2 = x3 + 23 y2 = x3 + 29
264 − 258 + 254 − 248 − 246 + 234 + 1 E2 : y2 = x3 + 29

-0xef000ffefdffffff 25 y2 = x3 + 1 382 256 E1 : y2 = x3 + 11 y2 = x3 + 17
−264 + 260 + 256 − 244 + 232 + 225 + 1 E2 : y2 = x3 + 17

0xdf07fffdfc000001 26 y2 = x3 + 1 382 256 E1 : y2 = x3 + 11 y2 = x3 + 7
264 − 261 − 256 + 251 − 233 − 226 + 1 E2 : y2 = x3 + 23
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Some technicalities

• q(u) = u4 − u2 + 1 = Φ12(u) (BLS12) [SEH24]
q(u) = (u6 + 37u3 + 343)/343 (KSS18), with Sagemath code at [Hop20]
q(u) = (u8 + 48u4 + 625)/61250 (KSS16)

• Solve for t ′(u), y ′(u) in 4q(u) = t ′(u)2 + Dy ′(u)2

Solution:
• Combine Dai–Lin–Zhao–Zhou [DLZZ23] with Smith [Smi15, §4]
• BLS12 [SEH24] t ′ = 2u2 − 1, y ′ = 1
• KSS16 t ′ = (31(u/5)4 + 1)/7, y ′ = (−17(u/5)4 − 1)/14
• KSS18 t ′ = −20(u/7)3 − 1, y ′ = −18(u/7)3 − 1
• Consider the quadratic twists, 3rd and 6-th twists (D = 3), 4-th twists (D = 1)
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Our Algorithm

E has endomorphism ϕ, char. poly χ(X ) = X 2 − tϕX + degϕ

t2
ϕ − 4 degϕ = −Dn2 and −D matches E ’s in t2 − 4p = −Dy2

1. λ(x)← a root of χ(X ) mod q(x)
e.g. if χ(X ) = X 2 + D, λ(x) =

√
−D = (t(x)− 2)/y(x) mod q(x)

2. U(x), V (x)← half-gcd(q(x), λ(x))
3. with Smith’s technique [Smi15, §4], reduce the matrix[

U(x) −V (x)
−tϕU(x) + degϕ V (x) U(x)

]
whose determinant is

det = U2 − tϕUV + degϕ V 2 = Res(χ(X ), U − VX )
to obtain a short row (a0(x), a1(x))

4. (t ′, y ′) = (a0, a1) if D = 1, 2 mod 4,
(t ′, y ′) = (2a0 − a1, a1) if D = 3 mod 4.
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Example with KSS16
EKSS16 : y ′2 = x ′3 + ax ′, j = 1728, D = 1, χ = X 2 + 1

1. q(x) = (x8 + 48x4 + 625)/61250, λϕ = (x4 + 24)/7 mod q(x)
2. U, V = (1,−λϕ) = (1,−(x4 + 24)/7) (no half-gcd needed)

3. det
[
b1
b2

]
= det

[
1 −(x4 + 24)/7

(x4 + 24)/7 1

]
= 1250q(x)

4. find integers (i , j) mod 1250 = 2 · 54 such that the denominator simplifies in
(ib1 + jb2)/1250 = (i + j(x4 + 24)/7, i(x4 + 24)/7− j)/1250

5. x ≡ 25, 45 mod 70 by construction (KSS16) =⇒ x ≡ 5 mod 10 =⇒ 54 | x4.
Write x = 10x0 + 5 = 5(2x0 + 1)) =⇒ it simplifies to i + 807j ≡ 0 mod 2 · 54.

6. enumerate over (i , j) and keep those such that (a0, a1) = (ib1 + jb2) satisfies
a2

0 + a2
1 = q(x)

We obtain:

(i , j) =(31, 17),
(t ′, y ′) =(31b1 + 17b2)/1250 = ((17(x/5)4 + 1)/14, (31(x/5)4 + 1)/14) .
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Embedded curves for KSS16

Parameters (t ′, y ′) such that q = (t ′2 + y ′2)/4 with D = 1.

(t ′, y ′) s.t. q = (t ′2 + 4y ′2)/4 s = q + 1− t ′ family

t ′, y ′ (31(u/5)4 + 1)/7, (−17(u/5)4 − 1)/7 (u8 − 386u4 + 55 · 17)/61250 (yes, c=2)
−t ′, y ′ (−31(u/5)4 − 1)/7, (−17(u/5)4 − 1)/7 (u8 + 482u4 + 54 · 113)/61250 (yes, c=2)
y ′, t ′ (−17(u/5)4 − 1)/7, (31(u/5)4 + 1)/7 (u8 + 286u4 + 54 · 113)/61250 (yes, c=32)
−y ′, t ′ (17(u/5)4 + 1)/7, (31(u/5)4 + 1)/7 (u8 − 190u4 + 55 · 17)/61250 (yes, c=20)

Valid seed: 234 − 232 + 230 + 226 − 25 − 23 − 1=0x343ffffd7 (row 2), 254-bit order
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Conclusion
Inspirations from 80’s and 90’s papers with modern software on nowadays’CPU solve
our problems!
• embedded curves as isolated points (Bandersnatch) are always possible to find

with large enough D
• for SNARK, additional constraint 2L | s − 1, larger search space → larger D →

much longer time
• families require to change the seed → not always possible to replace BLS12-381
• next step: combine embedded families with outer curves families like Geppetto,

BW6-751?
• still unknown: embedded and pairing-friendly elliptic curves

(only known construction: starting from the pairing-friendly curve)
• preprint at https://inria.hal.science/hal-04750802

Thank you for your attention.
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