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Elliptic curves

o Let k be a field. An elliptic curve over
k is given by an equation

E:y?>=x3+Ax+ B,

where A, B € k and 4A3 +27B2 £ 0. P
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@ The rational points of E, denoted
E(k), form a group under the group
law
‘three colinear points sum to zero,
and zero is the point at infinity.’




Isogenies and endomorphisms of elliptic curves

Let E, E’ be elliptic curves over k.

Definition

An isogeny ¢: E — E’ is a rational map that induces a group homomorphism
E(k) — E'(k). An endomorphism of E is an isogeny ¢ : E — E.

@ If nis an integer, then the multiplication-by-n map
[n]: P~ nP

is an endomorphism of E

o If k =g, then the Frobenius endomorphism of E is an endomorphism:

g E— E
(x,y) = (x9,y9).



Degrees, duals, and traces

@ The degree of an isogeny ¢: E — E’ is its degree as a rational map. When ¢ is
separable, deg ¢ = # ker ¢.

o Every isogeny ¢: E — E' has a unique dual isogeny ¢: E' — E satisfying
¢ o ¢ = [degg].
@ The dual map is an involution on End(E): a4+ 5 =a + B O/zB = B&.

@ The trace of an endomorphism « is the integer t such that

a+a=I[t].

Every endomorphism satisfies its characteristic polynomial

x? — (tra)x + dega.

o E is supersingular if End’(E) = End(E) ® Q is a quaternion algebra.




A cheatsheet

Endomorphisms

Imaginary quadratic integers

Notation

Involution

Norm

Trace

o}
The dual map
dega = doa

tra=a+a

a+ bv—-D
complex conjugation
|a+ bv/—D|? = a* + Db?

2a




Examples, again

@ Let [n]: E — E be the multiplication-by-n map. We have

deg[n] = n?, tr[n] = 2n.
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Examples, again

Let [n]: E — E be the multiplication-by-n map. We have

deg[n] = n?, tr[n] = 2n.
@ Let m¢ be the Frobenius endomorphism of E/F,. Then

degmg=gq, trmg=q+1—#E(F,)

Hasse bound: |trmg| <2,/q
More generally, if & € End(E), then

disca = (tra)® —4dega <0 = |tra| < 2/dega.



Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/Fq and o € End(E), compute Tra == o + a € Z.




Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/Fq and o € End(E), compute Tra == o + a € Z.

Why? Ordinary case
Point counting! Also, tr mg reveals the structure of Z[rg] as an algebra.




Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/Fq and o € End(E), compute Tra == o + a € Z.

Why? Ordinary case
Point counting! Also, tr mg reveals the structure of Z[rg] as an algebra.

Why? Supersingular case
Four endomorphisms oy, az, a3, as span End(E) <= det(tr(a;q;)))ij = p°.
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Moreover, computing traces yields a multiplication table for the basis a1, ap, a3, aq.




Schoof’s algorithm

If we know
tp:=tra (mod /)

for primes £ such that [, ¢ > 4\/deg a then we can recover tr o with the CRT.




Schoof’s algorithm

If we know
tp:=tra (mod /)

for primes £ such that [, ¢ > 4\/deg a then we can recover tr o with the CRT.

Algorithm 2: Schoof’s algorithm
Input: Ordinary E/IF,
Output: tr(7g)
Set {=2and M =1,
while M < 4,/q do
Compute t; = trmg mod /;
Update M = M - ¢;
Update ¢ with the next prime after /;

Solve t = t; (mod ¢) for t € [-2,/q,2,/q] with CRT;
return t




Computing t; = tra mod /

Suppose (£, q) = 1. An endomorphism a € End(E) acts on E[{] = (Z/(Z)? as a
“matrix”
oy = a‘E[Z] € End(E[(]) = Mx(Z/?Z)



Computing t; = tra mod /

Suppose (£, q) = 1. An endomorphism a € End(E) acts on E[{] = (Z/(Z)? as a
“matrix”

oy = a‘E[Z] € End(E[(]) = Mx(Z/?Z)

Schoof’s method for computing t,

Compute t; by computing the characteristic polynomial of ay. We have
tra=Tr(ag) (mod ¢).
Rather than working with points in E[¢]: find 0 < ¢ < ¢ such that
oF + [deg aly = cay

by computing coordinate functions modulo the division polynomial v/,, the monic
polynomial vanishing precisely x(P) for P # 0 € E[(]




Computing trmg

Let E/F, be given by y? = f(x) and a = 7¢ and n = [log p].
The cost of computing ty is dominated by the cost of computing
7 = (xP mod 4y(x), (FP~Y/% mod ¢y(x))y)
Since deg 1y = (£ — 1)/2, can compute trtg (mod £) in O(n*log n) bit operations
(fast euclidean division, Kronecker substitution, fast euclidean algorithm, and

M(n) = O(nlog n) (Harvey—van der Hoeven)).

By the Prime Number Theorem: require t; for O(n/log n) primes ¢, resulting in a
O(n®) algorithm for computing tr 7.



Rational isogenies

Let E : y2 = f(x) be defined over F,. Every separable isogeny ¢: E — E’ has a
standard form!

d(x,y) = (”(X) C<U(X)>/y>, where v(x) =[] (x—x(P)).

V(X) 7 V(X) 0#£P¢&ker ¢

We have degu = degv + 1 = deg 1.
¢ is Fg-rational <= ¢ € Fq and u/v € Fg(x) <= c € Fy, ker ¢ is Gal(Fq)-stable.

Write v = ged(f, v)g?. Then h(x) := gcd(f, v)g is the kernel polynomial of ¢. When
¢ is normalized (i.e. ¢ =1), ¢ is defined over Fq if and only if h(x) € Fq[x].

1Bostan—Morain-Salvy—Schost, 2008



Elkies' method for computing t; = tr mg mod /¢

For 50% of primes ¢ (asymptotically), ¢ is an Elkies’ primes for E, meaning E admits
a [Fg-rational (-isogeny ¢. Note ¢ is rational <= g fixes ker ¢ C E[{]. In this case,

TE | er o € End(ker ¢) = Z/0Z




Elkies' method for computing t; = tr mg mod /¢

For 50% of primes ¢ (asymptotically), ¢ is an Elkies’ primes for E, meaning E admits
a [Fg-rational (-isogeny ¢. Note ¢ is rational <= g fixes ker ¢ C E[{]. In this case,

TE\er € End(ker ¢) = Z/¢Z

By working modulo the kernel polynomial h(x) of ¢, find 0 < ¢ < ¢ such that
a2|ker¢> + [deg a”ker¢ = C(a‘kemz))
Then t; = c. This gives a speedup of a factor of £ = O(log p) in computing t, because
degtpy = (2 —1)/2, degh(x) = (¢ —1)/2.

Assuming heuristics “beyond” GRH, the SEA algorithm computes tr7g in
O(n*(log n)?) bit operations (n = log p).




Representing endomorphisms

Now assume o € End(E) is represented by a sequence of L many Fg-rational isogenies
¢; of degree at most d, each ¢; in standard form:

a=gdro---0pr.

.Q\@/_ 2 a
P el o \
‘ ‘pﬁm@:ﬁ‘@%%

18

Figure: G(313,2), The 2-isogeny graph in characteristic 313



Schoof's algorithm for supersingular endomorphisms

Assume a = ¢ o --- o ¢ is an endomorphism of E/IF,, each ¢; = (uj/vi, ysi/ti) in
standard form, £ an odd prime. Compute t; := tr @ mod £ by finding 0 < ¢ < £ such

that
a3 + [deg o]y = cay.
To compute ay = O“E[é]: let (a(x), b(x)y) = (x,y) and then for i = 1,..., L update
ui(a) si(a)
by) = b
(a, by) (v,-(a)’ 02) y>

where arithmetic takes place in Fq[x]/(1¢(x)).

Letting n = [log q] and assuming d = O(1) and L = O(n), we have a O(n*log n)
algorithm for computing t; and a O(n®) algorithm for tr cv.



Every prime is an Elkies prime for a supersingular elliptic curve

Suppose E /R is supersingular, where q = p? is a prime power, and let ¢: E — E' be
an isogeny. If j(E) # 0,1728,

F tal
ker ¢ is defined over 9 ? I_S even
F :ais odd.

q?




Every prime is an Elkies prime for a supersingular elliptic curve

Suppose E /R is supersingular, where q = p? is a prime power, and let ¢: E — E' be
an isogeny. If j(E) # 0,1728,

F tal
ker ¢ is defined over 9 ? I_S even
Fgp :aisodd.

Proof: Suppose g = p??. Then (Waterhouse 69) tr g = +2p? so mg = [+p?], so
Endg—(E) = Endg, (E).
If : E — E’ is an isogeny, then | = Hom(E’, E)¢ is a left ideal of End(E), and

ker ¢ = ﬂ ker av.

acl

All ker o are [Fg-rational, so ker ¢ is [Fg-rational.



The SEA algorithm for supersingular endomorphisms

Suppose E/FFq is supersingular. Then j(E) € F ..
o Assume E itself is defined over IF2, and j(E) # 0,1728.
@ In this case, g = [£p].



The SEA algorithm for supersingular endomorphisms

Suppose E/FFq is supersingular. Then j(E) € F ..
o Assume E itself is defined over IF2, and j(E) # 0,1728.
@ In this case, g = [£p].

Then E/F 2 has all of its (-isogenies defined over I .
@ Every prime is an Elkies prime for supersingular E!
@ But a € End(E) need not fix ker ¢

@ Compute tra mod /¢ by finding ¢ such that the characteristic equation

a2‘ker¢ + [deg a”kerqS = C(a}kerd))

holds in Hom(ker ¢, E[(])



The SEA algorithm for supersingular endomorphisms

Assume

® a=¢po---0¢y is an endomorphism of E/F .,

e each ¢; = (uj/vj,ysi/t;) in standard form,

@ ( an odd prime, and h(x) € F4[x] is the kernel polynomial of an /-isogeny ¢.
Goal: Compute 0 < ¢ < £ such that

az‘kerqﬁ + [dega”ker¢> - C(a’keni))'



The SEA algorithm for supersingular endomorphisms

Assume

® a=¢po---0¢y is an endomorphism of E/F .,

e each ¢; = (uj/vj,ysi/t;) in standard form,

@ ( an odd prime, and h(x) € F4[x] is the kernel polynomial of an /-isogeny ¢.
Goal: Compute 0 < ¢ < £ such that

az‘kerqﬁ + [dega”ker¢> - C(a’keni))'

To compute af, .- let (a(x), b(x)y) = (x,y) and then for i =1,..., L update

i(a) si(a)
v(a) t(a) by)

where arithmetic takes place in Fq[x]/(h(x)).

o
(%))

(a, by) = (



Theorem (M.—Panny—Sotékova-Wills)

Let = ¢y o--- 0 ¢1 be an endomorphism of a supersingular elliptic curve E defined
over Fgq, let n = [log p|, and let £ = O(n) be an odd prime. Let d = max{deg ¢;}.

Then t; == tra (mod ¥) can be computed in an expected O(n3(log n)3 + dLn? log n)
bit operations.

The time complexity simplifies to O(n3(log n)3) when d = O(1) and L = O(n).

e Work projectively, so we only need O(1) inversions in Fq[x]/(h(x))
o Complexity estimate uses fast euclidean division, Kronecker substitution,
M(n) = O(nlog n) (HvdH2019).

@ Where's GRH?? Kunzweiler-Robert (ANTS 2024) give an unconditional algorithm
to compute (X, Y) in time O(¢3(log ¢)3)!




Theorem (M.—Panny—Sotakova-Wills)

Let o« = ¢ o--- 0 ¢1 be a separable endomorphism of a supersingular elliptic curve E
defined over Fq with j(E) # 0,1728. Let n = [log q|. Assume that Llogd = O(n).
Then tra can be computed with O(n*(log n)? + dLn®) bit operations. When d = O(1)
and L = O(n), the complexity is O(n*(log n)?).




Beyond the SEA algorithm: computing t; for ¢|#E(F )

Since we assume E/IF ;> is supersingular and j(E) # 0,1728, we know
#E(F,2) = (p£1)% To compute t; = tra mod £ for £|#E(F ):

O find P # 0 € E[/](F,2)

@ Compute (a + a)(P)

© solve a small discrete log: ty is the solution to

cP = (a+ a)(P).



Beyond the SEA algorithm: computing t,

Let we be an invariant differential for E. Then a*wg = cowg for some ¢, € Fp2, and
the map

End(E) — F,»

o Cy

is a homomorphism of rings, and (when E is supersingular)

tra = Tr]sz/]Fp Co (mod p).




Beyond the SEA algorithm: computing t,

Let we be an invariant differential for E. Then a*wg = cowg for some ¢, € Fp2, and
the map

End(E) — F,»

o Cy

is a homomorphism of rings, and (when E is supersingular)

tra = Tr]sz/]Fp Co (mod p).

We can “read off” ¢, from «: for separable «, we have

- (8 o (89))




Implemented in sagemath. To demonstrate the asymptotic speedups offered:

@ For each b € [16,...,32], repeat 5 times:
© Compute random b-bit prime p, pseudorandom supersingular E/F ., and
endomorphism « € End(E) of degree ~ p*
® Compute tr v using Schoof (i.e. get t; with division polynomials), SEA (i.e get t;
with kernel polynomials), SEA 4+ “mod p", SEA + “mod p" + “points”
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Thank you! Questions?



