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Definition
A verifiable delay function (VDF) is a function that
1. takes T steps to evaluate, even with unbounded parallelism

2. the output can be verified efficiently.

» Setup(\, T) — public parameters pp

» Eval(pp, x) — output y, proof 7 (requires T steps)

» Verify(pp, x, y, ™) —> yes or no.

Uniqueness If Verify(pp, x, y, ™) = Verify(pp, x,y’, ') = yes, then y = y'.
Correctness The verification will always succeed if Eval has been computed honestly.
Soundness A lying evaluator will always fail the verification.

Sequentiality It is impossible to correctly evaluate the VDF in time less than
T — o(T), even when using poly(T) parallel processors.



Application. How to generate randomness in the real world ?



Application. How to generate randomness in the real world ?




Application. How to generate randomness in the real world ?

Faill from a physical value.




Application. How to generate randomness in the real world ?

Faill from a physical value.

4 133121211 27]



Application. How to generate randomness in the real world ?

Faill from a physical value.

Fail2 Distributed generation.

g &8 8 8 8



Application. How to generate randomness in the real world ?

Faill from a physical value.

Fail2 Distributed generation.

8H8»BOB®B®

ra®rp P re ® rqg P re seems random...



Application. How to generate randomness in the real world ?

Faill from a physical value.

Fail2 Distributed generation.

8H8®»BOB®B®

ra® rp P re ® rqg P re seems random... but Eve controls the randomness !



Application. How to generate randomness in the real world ?

Faill from a physical value.

Fail2 Distributed generation.

8H8®»BOB®B®

ra® rp P re ® rqg P re seems random... but Eve controls the randomness !

Idea: slow things down by adding delay.
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VDF without "delay”: public-key cryptography.

Vx € (g), f(x) = logg(x)

Verification is easy: gf(*) x

You can parallelize to compute f(x).

VDF without " verifiability”: composition of hash functions.
f(x) = hT(x)

You need to recompute f(x) to verify.

VDF without "no parallelization”: pre-image of a hash function.

Verification is easy: h(f(x)) Zx
Computation is faster as long as you parallelize.
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VDF based on RSA.
Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).
Evaluation. y = H(x)2" mod N, and 7 a proof.

Verification. Proof of a correct exponentiation.

Wesolowski proof.
» Verifier challenges with a small prime ¢
» Evaluator computes g, r such that 27 = g¢ 4 r and send ™ = H(x)9.
» Verifier checks y Lt H(x)".

Turned to non-interactive using Fiat-Shamir

7 is short

Verification is fast.

> If one knows the factorization of N, the evaluation can be computed using
H(x)2T = H(X)2T mod (V) mod N

Need a trusted setup to choose N.
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Choose w and compute /w. (y,7) and (wy, Ywm) are two correct outputs !

We need the assumption that computing a root is hard. This holds in a RSA
setup, as well as in another group of unknown order.

It works in class group: Let K = Q(v/—D) and Ok its ring of integers.
ClassGroup(D) = Ideals(Ok)/Principalldeals(Ok)

This group is finite and it is hard to compute #ClassGroup(D).

It is not post-quantum...
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Let E be an elliptic curve defined over IFp,.
Suppose that we have N a large prime integer and k a small integer such that

> N | #E(Fp)
> All the N-torsion points are defined over F .
The N-torsion points is a dimension 2 vector space G x G2 where G; C E(F,) and
Gy C E(Fpk).
Definition
A pairing on E is a bilinear non-degenerate application e : G; x G — IF:k

Application. The BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: s an integer
» Public key: Px = [s]P.
Sign Hash the message m into G> and the signature is o = [s]H(m).

Verify Check that e(P, o) = e(Pk, H(m)).
e(P,0) = e(P,[s|H(m)) = e([s]P, H(m)) = e(Pk, H(m)).
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Definition (Isogeny)

An isogeny between two elliptic curves E and E’ is an algebraic map ¢ such that
©(0g) = 0p.

Example (Frobenius)
For A, B € F),

Tp E:y>’=x3+Ax+B — E(P) cy? =x3 4+ APx + BP
(xy) — (xP,yP)
Vélu’s formulas. For P € E(F,) of order £ coprime with p, we have formulas for
computing an isogeny ¢ of kernel (P). The degrees of the polynomials defining ¢ is
o(0).
In practice, Vélu's formulas are efficient for very small kernel.
From ¢ : E — E’, there exists ¢ : E' — E such that p o $ = @ o p = [deg ¢].

e(p(P), o(Q)) = e(P, Q)ee(¥)
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Two types of elliptic curves:
Ordinary curves End(E) is an order in Q(+/—D). Isogeny graph is a volcano.

Supersingular curves End(E) is a maximal order in the quaternion algebra Qp .
Isogeny graph is expander. Supersingular curves are defined over .
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VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For Q € E’, compute @$(Q) (the backtrack walk).
Verification Check that e(P, $(Q)) = e(¢(P), Q).

QO(P) c E/.CaeiE.

N

ePcE PQ)eE




VDF over [, supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q € E’, compute @$(Q) (the backtrack walk).
Verification Check that e(P, $(Q)) = e(¢(P), Q).

QeF

©(P) € E'e

/PR

\

N

%

Not post-quantum, but also no proof needed!

ePcE PQ)eE
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Consider only the curves and isogenies defined over F,.

Setup Choose a curve E on the crater.

Choose P € E(F,)[N] EAUEN
oose P € :
Choose a directiopn for the isogeny and Qep(P) € £ ¢
compute ¢(P) € E'(Fp)[N]. ./ P c Ee3(Q)
Evaluation Compute $(Q) for a given \ /
Q € E'(F2)[N]. ° o
Verification Check that e(P, $(Q)) = e(p(P), Q) # 1. ~ e o -
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VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F,.

Setup Choose a curve E on the crater.
Choose P € E(F,)[N].
Choose a direction for the isogeny and
compute ¢(P) € E'(Fp)[N].
Evaluation Compute $(Q) for a given
Q € E'(F2)[N].
Verification Check that e(P, $(Q)) = e(p(P), Q) # 1.

Similarity with the class group VDF:

of
El g—> E3

End(;)) -5 End(B)
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Attacks on the VDF.
» DLP over the curves.
P and Q of order N with log,(N) ~ 256.

#E(Fp) =p+1
so we set p = hIN — 1 with h a cofactor.
» DLP over the finite field .

NFS over IF2: logy(p) ~ 1500. We need a cofactor of size log,(h) ~ 1250.
» Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

7 7

End(E) = O % O' = End(E')
1
E 5 F
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Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:
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Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:
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Complexity: O(T?). It can be turned into O(T log,(T)) with a recursive strategy.
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Post-quantum security.
» Our VDF is not post-quantum (discrete log problem).

» Our VDF over [F > is quantum-annoying: once the setup is done, a quantum
computer need to break the DLP for each evaluation of the VDF.

» Our VDF over [, is not quantum-annoying: once the setup is done, a quantum
computer can compute the class number CI(—D) and then find a faster isogeny
(similar to Wesolowski group-class VDF).
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Let E an elliptic curve and P € E(F,) a point of order N.
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» Public key: Px = ¢(P).
Sign Hash the message m into G2 and the signature is o = [s]H(m).
Verify Check that e(P, o) = e(Pk, H(m)).
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A generalization of the BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: ¢ an isogeny E — E’
» Public key: Px = ¢(P).
Sign Hash the message m into G2 (on E’) and the signature is o = $(H(m)).
Verify Check that e(P, o) = &(Pk, H(m)).
Patented by Broker, Charles, and Lauter in 2012 (different implementation, not
efficient).

We obtain an identification protocol where the secret can be sub-exponentially larger
than the proof. But it is not zero-knowledge.

Now looking for an accumulator... But we failed!



Thank you for your attention.



