Verifiable delay functions from elliptic curve cryptography

Simon Masson
Joint work with L. De Feo, C. Petit and A. Sanso

Thales — LORIA

July 4th, 2019

Definition
A verifiable delay function (VDF) is a function that
1. takes T steps to evaluate, even with unbounded parallelism

2. the output can be verified efficiently.

Definition
A verifiable delay function (VDF) is a function that

1. takes T steps to evaluate, even with unbounded parallelism
2. the output can be verified efficiently.

» Setup(\, T) — public parameters pp
» Eval(pp, x) — output y, proof 7 (requires T steps)
» Verify(pp, x, y, ™) —> yes or no.

Definition
A verifiable delay function (VDF) is a function that
1. takes T steps to evaluate, even with unbounded parallelism

2. the output can be verified efficiently.

» Setup(\, T) — public parameters pp

» Eval(pp, x) — output y, proof 7 (requires T steps)

» Verify(pp, x, y, ™) —> yes or no.

Uniqueness If Verify(pp, x, y, ™) = Verify(pp, x,y’, ') = yes, then y = y'.
Correctness The verification will always succeed if Eval has been computed honestly.
Soundness A lying evaluator will always fail the verification.

Sequentiality It is impossible to correctly evaluate the VDF in time less than
T — o(T), even when using poly(T) parallel processors.

Application. How to generate randomness in the real world ?

Application. How to generate randomness in the real world ?

Application. How to generate randomness in the real world ?

Faill from a physical value.

Application. How to generate randomness in the real world ?

Faill from a physical value.

4 133121211 27]

Application. How to generate randomness in the real world ?

Faill from a physical value.

Fail2 Distributed generation.

g &8 8 8 8

Application. How to generate randomness in the real world ?

Faill from a physical value.

Fail2 Distributed generation.

8H8»BOB®B®

ra®rp P re ® rqg P re seems random...

Application. How to generate randomness in the real world ?

Faill from a physical value.

Fail2 Distributed generation.

8H8®»BOB®B®

ra® rp P re ® rqg P re seems random... but Eve controls the randomness !

Application. How to generate randomness in the real world ?

Faill from a physical value.

Fail2 Distributed generation.

8H8®»BOB®B®

ra® rp P re ® rqg P re seems random... but Eve controls the randomness !

Idea: slow things down by adding delay.

» VDF without "delay”: public-key cryptography.

» VDF without "delay”: public-key cryptography.

Vx € (g), f(x) = logg(x)

Verification is easy: gf(*) x

You can parallelize to compute f(x).

» VDF without "delay”: public-key cryptography.

Vx € (g), f(x) = logg(x)

Verification is easy: gf(*) x
You can parallelize to compute f(x).

» VDF without " verifiability”: composition of hash functions.

» VDF without "delay”: public-key cryptography.

e g), F(x) = logg(x)
Verification is easy: gf(*) x
You can parallelize to compute f(x).

» VDF without " verifiability”: composition of hash functions.
f(x) = hT(x)

You need to recompute f(x) to verify.

» VDF without "delay”: public-key cryptography.

Vx € (g), f(x) = logg(x)

Verification is easy: gf(*) x

You can parallelize to compute f(x).

» VDF without " verifiability”: composition of hash functions.
f(x) = hT(x)

You need to recompute f(x) to verify.

» VDF without "no parallelization”: pre-image of a hash function.

VDF without "delay”: public-key cryptography.

Vx € (g), f(x) = logg(x)

Verification is easy: gf(*) x

You can parallelize to compute f(x).

VDF without " verifiability”: composition of hash functions.
f(x) = hT(x)

You need to recompute f(x) to verify.

VDF without "no parallelization”: pre-image of a hash function.

Verification is easy: h(f(x)) Zx
Computation is faster as long as you parallelize.

VDF based on RSA.
Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).

VDF based on RSA.

Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).

Evaluation. y = H(x)2" mod N, and 7 a proof.

VDF based on RSA.
Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).
2T

Evaluation. y = H(x)> mod N, and 7 a proof.

Verification. Proof of a correct exponentiation.

VDF based on RSA.
Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).

Evaluation. y = H(x)2" mod N, and 7 a proof.

Verification. Proof of a correct exponentiation.
Wesolowski proof.
» Verifier challenges with a small prime ¢

VDF based on RSA.
Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).

Evaluation. y = H(x)2" mod N, and 7 a proof.
Verification. Proof of a correct exponentiation.
Wesolowski proof.

» Verifier challenges with a small prime ¢
» Evaluator computes g, r such that 27 = g¢ 4 r and send ™ = H(x)9.

VDF based on RSA.
Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).

Evaluation. y = H(x)2" mod N, and 7 a proof.

Verification. Proof of a correct exponentiation.
Wesolowski proof.
» Verifier challenges with a small prime ¢
» Evaluator computes g, r such that 27 = g¢ 4 r and send ™ = H(x)9.

» Verifier checks y Lt H(x)".

VDF based on RSA.
Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).
Evaluation. y = H(x)2" mod N, and 7 a proof.
Verification. Proof of a correct exponentiation.
Wesolowski proof.
» Verifier challenges with a small prime ¢
» Evaluator computes g, r such that 27 = g¢ 4 r and send ™ = H(x)9.
» Verifier checks y Lt H(x)".
Turned to non-interactive using Fiat-Shamir

7 is short
Verification is fast.

VDF based on RSA.
Setup. N is a RSA modulus, public parameters: (Z/NZ,H : {0,1}* — Z/NZ).
Evaluation. y = H(x)2" mod N, and 7 a proof.

Verification. Proof of a correct exponentiation.

Wesolowski proof.
» Verifier challenges with a small prime ¢
» Evaluator computes g, r such that 27 = g¢ 4 r and send ™ = H(x)9.
» Verifier checks y Lt H(x)".

Turned to non-interactive using Fiat-Shamir

7 is short

Verification is fast.

> If one knows the factorization of N, the evaluation can be computed using
H(x)2T = H(X)2T mod (V) mod N

Need a trusted setup to choose N.

» If one can compute a root modN, the VDF is unsound:
Choose w and compute /w. (y,7) and (wy, Ywm) are two correct outputs !

» If one can compute a root modN, the VDF is unsound:
Choose w and compute /w. (y,7) and (wy, Ywm) are two correct outputs !
» We need the assumption that computing a root is hard. This holds in a RSA
setup, as well as in another group of unknown order.

» If one can compute a root modN, the VDF is unsound:
Choose w and compute /w. (y,7) and (wy, Ywm) are two correct outputs !

» We need the assumption that computing a root is hard. This holds in a RSA
setup, as well as in another group of unknown order.

» It works in class group: Let K = Q(v/—D) and Ok its ring of integers.
ClassGroup(D) = Ideals(Ok)/Principalldeals(Ok)

This group is finite and it is hard to compute #ClassGroup(D).

If one can compute a root modN, the VDF is unsound:
Choose w and compute /w. (y,7) and (wy, Ywm) are two correct outputs !

We need the assumption that computing a root is hard. This holds in a RSA
setup, as well as in another group of unknown order.

It works in class group: Let K = Q(v/—D) and Ok its ring of integers.
ClassGroup(D) = Ideals(Ok)/Principalldeals(Ok)

This group is finite and it is hard to compute #ClassGroup(D).

It is not post-quantum...

Let E be an elliptic curve defined over IFp,.
Suppose that we have N a large prime integer and k a small integer such that

> N | #E(Fp)

> All the N-torsion points are defined over F .

Let E be an elliptic curve defined over IFp,.
Suppose that we have N a large prime integer and k a small integer such that

> N | #E(Fp)
> All the N-torsion points are defined over F .

The N-torsion points is a dimension 2 vector space G x G2 where G; C E(F,) and
Gy C E(Fpk).

Let E be an elliptic curve defined over IFp,.
Suppose that we have N a large prime integer and k a small integer such that

> N | #E(Fp)
> All the N-torsion points are defined over F .
The N-torsion points is a dimension 2 vector space G x G2 where G; C E(F,) and
Gy C E(Fpk).
Definition
A pairing on E is a bilinear non-degenerate application e : G; x G — IF:k

Let E be an elliptic curve defined over IFp,.
Suppose that we have N a large prime integer and k a small integer such that

> N | #E(Fp)
> All the N-torsion points are defined over F .
The N-torsion points is a dimension 2 vector space G x G2 where G; C E(F,) and
Gy C E(Fpk).
Definition
A pairing on E is a bilinear non-degenerate application e : G; x G — IF:k

Application. The BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

Let E be an elliptic curve defined over IFp,.
Suppose that we have N a large prime integer and k a small integer such that

> N | #E(Fp)
> All the N-torsion points are defined over F .
The N-torsion points is a dimension 2 vector space G x G2 where G; C E(F,) and
Gy C E(Fpk).
Definition
A pairing on E is a bilinear non-degenerate application e : G; x G — IF:k

Application. The BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: s an integer
» Public key: Px = [s]P.

Let E be an elliptic curve defined over IFp,.
Suppose that we have N a large prime integer and k a small integer such that

> N | #E(Fp)
> All the N-torsion points are defined over F .
The N-torsion points is a dimension 2 vector space G x G2 where G; C E(F,) and
Gy C E(Fpk).
Definition
A pairing on E is a bilinear non-degenerate application e : G; x G — IF:k

Application. The BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: s an integer
» Public key: Px = [s]P.
Sign Hash the message m into G> and the signature is o = [s]H(m).
Verify Check that e(P, o) = e(Pk, H(m)).

Let E be an elliptic curve defined over IFp,.
Suppose that we have N a large prime integer and k a small integer such that

> N | #E(Fp)
> All the N-torsion points are defined over F .
The N-torsion points is a dimension 2 vector space G x G2 where G; C E(F,) and
Gy C E(Fpk).
Definition
A pairing on E is a bilinear non-degenerate application e : G; x G — IF:k

Application. The BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: s an integer
» Public key: Px = [s]P.
Sign Hash the message m into G> and the signature is o = [s]H(m).

Verify Check that e(P, o) = e(Pk, H(m)).
e(P,0) = e(P,[s|H(m)) = e([s]P, H(m)) = e(Pk, H(m)).

Definition (Isogeny)

An isogeny between two elliptic curves E and E’ is an algebraic map ¢ such that
©(0g) = 0p.

Definition (Isogeny)
An isogeny between two elliptic curves E and E’ is an algebraic map ¢ such that
(p(OE) = OE/.

Example (Frobenius)
For A, B € F),

T E:y’=x3+Ax+B — E(P) : y2 = x3 4 APx + BP
(xy) — (xP,yP)

Definition (Isogeny)
An isogeny between two elliptic curves E and E’ is an algebraic map ¢ such that
(p(OE) = OE/.

Example (Frobenius)
For A, B € F),

T E:y’=x3+Ax+B — E(P) : y2 = x3 4 APx + BP
(xy) — (X, yP)
Vélu’s formulas. For P € E(F,) of order £ coprime with p, we have formulas for
computing an isogeny ¢ of kernel (P). The degrees of the polynomials defining ¢ is
o(0).

Definition (Isogeny)
An isogeny between two elliptic curves E and E’ is an algebraic map ¢ such that
(p(OE) = OE/.

Example (Frobenius)
For A, B € F),

T E:y’=x3+Ax+B — E(P) : y2 = x3 4 APx + BP
(xy) — (X, yP)
Vélu’s formulas. For P € E(F,) of order £ coprime with p, we have formulas for
computing an isogeny ¢ of kernel (P). The degrees of the polynomials defining ¢ is
o(0).

In practice, Vélu's formulas are efficient for very small kernel.

Definition (Isogeny)

An isogeny between two elliptic curves E and E’ is an algebraic map ¢ such that
©(0g) = 0p.

Example (Frobenius)
For A, B € F),

Tp E:y>’=x3+Ax+B — E(P) cy? =x3 4+ APx + BP
(xy) — (xP,yP)
Vélu’s formulas. For P € E(F,) of order £ coprime with p, we have formulas for
computing an isogeny ¢ of kernel (P). The degrees of the polynomials defining ¢ is
o(0).
In practice, Vélu's formulas are efficient for very small kernel.
From ¢ : E — E’, there exists ¢ : E' — E such that p o $ = @ o p = [deg ¢].

Definition (Isogeny)

An isogeny between two elliptic curves E and E’ is an algebraic map ¢ such that
©(0g) = 0p.

Example (Frobenius)
For A, B € F),

Tp E:y>’=x3+Ax+B — E(P) cy? =x3 4+ APx + BP
(xy) — (xP,yP)
Vélu’s formulas. For P € E(F,) of order £ coprime with p, we have formulas for
computing an isogeny ¢ of kernel (P). The degrees of the polynomials defining ¢ is
o(0).
In practice, Vélu's formulas are efficient for very small kernel.
From ¢ : E — E’, there exists ¢ : E' — E such that p o $ = @ o p = [deg ¢].

e(p(P), o(Q)) = e(P, Q)ee(¥)

Two types of elliptic curves:

/"

Two types of elliptic curves:

Ordinary curves End(E) is an order in Q(v/—D).

Two types of elliptic curves:

Ordinary curves End(E) is an

order in Q(v/—D). Isogeny graph is a volcano.

Q>

18

Two types of elliptic curves:

Ordinary curves End(E) is an order in Q(+/—D). Isogeny graph is a volcano.

Two types of elliptic curves:
Ordinary curves End(E) is an order in Q(+/—D). Isogeny graph is a volcano.

Supersingular curves End(E) is a maximal order in the quaternion algebra Qp .
Isogeny graph is expander.

. @

Two types of elliptic curves:
Ordinary curves End(E) is an order in Q(+/—D). Isogeny graph is a volcano.

Supersingular curves End(E) is a maximal order in the quaternion algebra Qp .
Isogeny graph is expander. Supersingular curves are defined over .

. @

VDF over [, supersingular curves.

Ny~

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.

ePcFE

/\.
\

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.

AR
N

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.

[PRN
N

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.

p(P)cE'e ———e
0/ ePcE

</

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For Q € E’, compute @$(Q) (the backtrack walk).

QeF
o(P)e E'le ———— o
N

J ePcE

</

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For Q € E’, compute @$(Q) (the backtrack walk).

QeF
o(P)e E'le ———— o
N

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For Q € E’, compute @$(Q) (the backtrack walk).

@(P) c E/.CaeiE.

od

L ePcE

</

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For Q € E’, compute @$(Q) (the backtrack walk).

cE
P eIl .
P3 %. o1
./ ePcE,HQ)€EE

</

VDF over [, supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For Q € E’, compute @$(Q) (the backtrack walk).
Verification Check that e(P, $(Q)) = e(¢(P), Q).

QO(P) c E/.CaeiE.

N

ePcE PQ)eE

VDF over [, supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q € E’, compute @$(Q) (the backtrack walk).
Verification Check that e(P, $(Q)) = e(¢(P), Q).

QeF

©(P) € E'e

/PR

\

N

%

Not post-quantum, but also no proof needed!

ePcE PQ)eE

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F,.

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F.

Setup Choose a curve E on the crater.
Choose P € E(F,)[N].

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F.
Setup Choose a curve E on the crater.
Choose P € E(F,)[N].
Choose a direction for the isogeny and
compute ¢(P) € E'(Fp)[N].

[PcEe
\ /
.\ /0

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F,.
Setup Choose a curve E on the crater.
Choose P € E(F,)[N].
Choose a direction for the isogeny and
compute ¢(P) € E'(Fp)[N].
Evaluation Compute $(Q) for a given
Q € E'(F2)[N].

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F,.

Setup Choose a curve E on the crater.
Choose P € E(F,)[N].
Choose a direction for the isogeny and
compute ¢(P) € E'(Fp)[N].
Evaluation Compute $(Q) for a given
Q € E'(F2)[N].

Verification Check that e(P, $(Q)) = e(p(P), Q) # 1.

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F,.

Setup Choose a curve E on the crater.
Choose P € E(F,)[N].
Choose a direction for the isogeny and
compute ¢(P) € E'(Fp)[N].
Evaluation Compute $(Q) for a given
Q € E'(F2)[N].

Verification Check that e(P, $(Q)) = e(p(P), Q) # 1.

Similarity with the class group VDF:

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F,.

Setup Choose a curve E on the crater.
Choose P € E(F,)[N].
Choose a direction for the isogeny and
compute ¢(P) € E'(Fp)[N].
Evaluation Compute $(Q) for a given
Q € E'(F2)[N].
Verification Check that e(P, $(Q)) = e(p(P), Q) # 1.

Similarity with the class group VDF:

E 5 E £ E

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F.

Setup Choose a curve E on the crater.

Choose P € E(F,)[N] EAUEN
oose P € :
Choose a directiopn for the isogeny and Qep(P) € E ¢
compute ¢(P) € E'(Fp)[N]. ./ P c Ee3(Q)
Evaluation Compute $(Q) for a given \ /
Q € E'(F2)[N]. ° o
Verification Check that e(P, $(Q)) = e(p(P), Q) # 1. ~ e o -

Similarity with the class group VDF:

E 5 B & g
End(Ey) -5 End(E) -5 End(Es)

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F,.

Setup Choose a curve E on the crater.

Choose P € E(F,)[N] EAUEN
oose P € :
Choose a directiopn for the isogeny and Qep(P) € £ ¢
compute ¢(P) € E'(Fp)[N]. ./ P c Ee3(Q)
Evaluation Compute $(Q) for a given \ /
Q € E'(F2)[N]. ° o
Verification Check that e(P, $(Q)) = e(p(P), Q) # 1. ~ e o -

Similarity with the class group VDF:

of
E]_ g—> E3
I

End(E;) - End(E») -2 End(Es)

VDF over I, supersingular curves.

Consider only the curves and isogenies defined over F,.

Setup Choose a curve E on the crater.
Choose P € E(F,)[N].
Choose a direction for the isogeny and
compute ¢(P) € E'(Fp)[N].
Evaluation Compute $(Q) for a given
Q € E'(F2)[N].
Verification Check that e(P, $(Q)) = e(p(P), Q) # 1.

Similarity with the class group VDF:

of
El g—> E3

End(;)) -5 End(B)

Attacks on the VDF.
» DLP over the curves.
P and Q of order N with log,(N) ~ 256.

HE(F,) = p+1

so we set p = hIN — 1 with h a cofactor.

Attacks on the VDF.
» DLP over the curves.
P and Q of order N with log,(N) ~ 256.

#E(Fp) =p+1
so we set p = hIN — 1 with h a cofactor.

» DLP over the finite field .
NFS over IF2: logy(p) ~ 1500. We need a cofactor of size log,(h) ~ 1250.

Attacks on the VDF.
» DLP over the curves.
P and Q of order N with log,(N) ~ 256.

#E(Fp) =p+1
so we set p = hIN — 1 with h a cofactor.
» DLP over the finite field .

NFS over IF2: logy(p) ~ 1500. We need a cofactor of size log,(h) ~ 1250.
» Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

E % F

Attacks on the VDF.
» DLP over the curves.
P and Q of order N with log,(N) ~ 256.

HE(F,) = p+1

so we set p = hIN — 1 with h a cofactor.
» DLP over the finite field .

NFS over IF2: logy(p) ~ 1500. We need a cofactor of size log,(h) ~ 1250.
» Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

E % F

End(E)=0 -1 O =End(E)

Attacks on the VDF.
» DLP over the curves.
P and Q of order N with log,(N) ~ 256.

#E(Fp) =p+1
so we set p = hIN — 1 with h a cofactor.
» DLP over the finite field .

NFS over IF2: logy(p) ~ 1500. We need a cofactor of size log,(h) ~ 1250.
» Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:
E 2 F
))
End(E) = O % O’ = End(E")

Attacks on the VDF.
» DLP over the curves.
P and Q of order N with log,(N) ~ 256.

#E(Fp) =p+1
so we set p = hIN — 1 with h a cofactor.
» DLP over the finite field .

NFS over IF2: logy(p) ~ 1500. We need a cofactor of size log,(h) ~ 1250.
» Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

7 7

End(E) = O % O' = End(E')
1
E 5 F

Random endomorphism ring curves.

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

» Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism
ring.

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

» Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism
ring.
Use a trusted setup to avoid isogeny shortcut:

AN

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

» Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism
ring.
Use a trusted setup to avoid isogeny shortcut:

AN

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

» Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism
ring.
Use a trusted setup to avoid isogeny shortcut:

AN

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

» Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism
ring.
Use a trusted setup to avoid isogeny shortcut:

AN

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

» Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism
ring.
Use a trusted setup to avoid isogeny shortcut:

AN

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

» Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism
ring.
Use a trusted setup to avoid isogeny shortcut:

AN

Random endomorphism ring curves.

» Ordinary curves. Pairing friendly — small discrimnant — known End(E).

» Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism
ring.
Use a trusted setup to avoid isogeny shortcut:

AN

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

deg(p) =27

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

deg(p) =27

21l
21

[
21|
21

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

o1 deg =271

21l
21

[
21|
21

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

o1 deg =271

IR
2 Bl

| |
Il
21

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

1 ©2 deg =272

IR
2 Bl

| |
Il
21

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

1 ©2 deg =272

Al @l ol

a0 @ Al
[[[
i N

CIC

2|

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

¥1 ¥2 ¥3 Y4

Al @l ol {
a0 @ Al

[[[

i N
CIC
2|

Efficient isogeny.
Suppose we have a point P of order 27 defined over Fp.
It defines an isogeny of degree 27:

o Y1 o P2 . ¥3 pa 0 PT YT
A1 @ @ | |

CTE T]

i N
-]
2

Complexity: O(T?). It can be turned into O(T log,(T)) with a recursive strategy.

In practice, we cannot find a point of order 27 (it is too large).
We choose curves such that 2" | #E(F,) with n as large as possible.

https://github.com/isogenies-vdf/isogenies-vdf-sage

In practice, we cannot find a point of order 27 (it is too large).
We choose curves such that 2" | #E(F,) with n as large as possible.

2" 2" 2" 2"

https://github.com/isogenies-vdf/isogenies-vdf-sage

In practice, we cannot find a point of order 27 (it is too large).
We choose curves such that 2" | #E(F,) with n as large as possible.

2" 2" 2" 2"
[] [[[]
#E(Fp) =p+1
p=2"fN—-1

log,(p) = 1500

Proof-of-concept available on https://github.com /isogeny-vdf.

https://github.com/isogenies-vdf/isogenies-vdf-sage

In practice, we cannot find a point of order 27 (it is too large).
We choose curves such that 2" | #E(F,) with n as large as possible.

2" 2" 2" 2"
[J [] .. [] [J
#E(Fp) =p+1
p=2"fN—1

log,(p) = 1500
N 91244 l

Proof-of-concept available on https://github.com /isogeny-vdf.

https://github.com/isogenies-vdf/isogenies-vdf-sage

In practice, we cannot find a point of order 27 (it is too large).
We choose curves such that 2" | #E(F,) with n as large as possible.

2" 2" 2" 2"
[J [] .. [] [J
#E(Fp) =p+1
p=2"fN—1

log,(p) = 1500
N 21244 f

Proof-of-concept available on https://github.com /isogeny-vdf.

https://github.com/isogenies-vdf/isogenies-vdf-sage

In practice, we cannot find a point of order 27 (it is too large).
We choose curves such that 2" | #E(F,) with n as large as possible.

2" 2" 2" 2"
L] [[[]
#E(Fp) =p+1
p=2"fN-1

log,(p) = 1500
N 21244 f

21244 21244 21244 21244
[} [] LI [} [}

Proof-of-concept available on https://github.com /isogeny-vdf.

https://github.com/isogenies-vdf/isogenies-vdf-sage

Post-quantum security.

» Our VDF is not post-quantum (discrete log problem).

Post-quantum security.
» Our VDF is not post-quantum (discrete log problem).

» Our VDF over [F > is quantum-annoying: once the setup is done, a quantum
computer need to break the DLP for each evaluation of the VDF.

Post-quantum security.
» Our VDF is not post-quantum (discrete log problem).

» Our VDF over [F > is quantum-annoying: once the setup is done, a quantum
computer need to break the DLP for each evaluation of the VDF.

» Our VDF over [, is not quantum-annoying: once the setup is done, a quantum
computer can compute the class number CI(—D) and then find a faster isogeny
(similar to Wesolowski group-class VDF).

A generalization of the BLS signature.

A generalization of the BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: s an integer
» Public key: Px = ¢(P).
Sign Hash the message m into G2 and the signature is o = [s]H(m).
Verify Check that e(P, o) = e(Pk, H(m)).

A generalization of the BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: ¢ an isogeny E — E’
» Public key: Px = ¢(P).
Sign Hash the message m into G2 (on E’) and the signature is o = $(H(m)).
Verify Check that e(P, o) = &(Pk, H(m)).

A generalization of the BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: ¢ an isogeny E — E’
» Public key: Px = ¢(P).
Sign Hash the message m into G2 (on E’) and the signature is o = $(H(m)).
Verify Check that e(P, o) = &(Pk, H(m)).

Patented by Broker, Charles, and Lauter in 2012 (different implementation, not
efficient).

A generalization of the BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: ¢ an isogeny E — E’
» Public key: Px = ¢(P).
Sign Hash the message m into G2 (on E’) and the signature is o = $(H(m)).
Verify Check that e(P, o) = &(Pk, H(m)).
Patented by Broker, Charles, and Lauter in 2012 (different implementation, not
efficient).

We obtain an identification protocol where the secret can be sub-exponentially larger
than the proof. But it is not zero-knowledge.

A generalization of the BLS signature.
Let E an elliptic curve and P € E(F,) a point of order N.

» Secret key: ¢ an isogeny E — E’
» Public key: Px = ¢(P).
Sign Hash the message m into G2 (on E’) and the signature is o = $(H(m)).
Verify Check that e(P, o) = &(Pk, H(m)).
Patented by Broker, Charles, and Lauter in 2012 (different implementation, not
efficient).

We obtain an identification protocol where the secret can be sub-exponentially larger
than the proof. But it is not zero-knowledge.

Now looking for an accumulator... But we failed!

Thank you for your attention.

