

Implement all the pairings in software!

CARAMBA Seminar

Diego F. Aranha

Department of Engineering – Aarhus University

.

$$e(P+R,Q) = e(P,Q) \cdot e(R,Q)$$
 and $e(P,Q+S) = e(P,Q) \cdot e(P,S)$

Pairing-Based Cryptography (PBC) enables many elegant solutions to cryptographic problems:

- Implicit certification schemes (IBE, CLPKC, etc.)
- Short signatures (in group elements, BLS, BBS)
- More efficient key agreements (Joux's 3DH, NIKDS)
- Low-depth homomorphic encryption (BGN and variants)
- Zero-knowledge proof systems (LegoSNARK and Sonic)
- Isogeny-based cryptography (key compression and VDFs)

Not dead: Pairings are not only interesting **solely** for research, but actually deployed in practice!

Classic: IBE in Voltage's SecureMail

Implemented with supersingular curve over large characteristic [BF01].

Figure 1: Source: http://www.securemailworks.com/SecureMail.asp

Modern applications

IBE in Cloudflare's Geo Key Manager

Figure 2:

https://blog.cloudflare.com/geo-key-manager-how-it-works/

IBE in Cloudflare's Geo Key Manager

Implemented using a 256-bit Barreto-Naehrig curve [BN05]

Figure 3:

https://blog.cloudflare.com/geo-key-manager-how-it-works/

Remote attestation scheme employs a pairing-based anonymous group signature by Brickell and Li (EPID) [BL12].

Enhanced Privacy ID anonymous group signatures

Signatures verified to belong to the group, **hiding** the member that signed

Issuer, holds the "master key", can grant access to the group

Figure 4: Slides from BlackHat 2016 talk by Aumasson and Merino [AM16].

Remote attestation in Intel SGX

Implemented using a 256-bit Barreto-Naehrig curve [BN05].

EPID implementation

Not in microcode, too complex

Not in SGX libs, but in the QE and PVE binaries

Undocumented implementation details:

- Scheme from <u>https://eprint.iacr.org/2009/095</u>
- Barretto-Naehrig curve, optimal Ate pairing
- Code allegedly based on https://eprint.iacr.org/2010/354

Pubkey and parameters provided by Intel Attestation Service (IAS)

epid_random_func epidMember_create epidMember_createCompressed epidMember_registerBaseName epidMember_registerBaseName epidMember_isPirVkeyValid epidMember_isPirVkeyValid epidMember_checkSigRLHeader epidMember_checkSigRLHeader epidMember_signMessage deletEPID2Params mexPED2ParamsFormOctStr

Figure 5: Slides from BlackHat 2016 talk by Aumasson and Merino [AM16].

zk-SNARKs by Ben-Sasson et al. [BCG⁺14] for privacy-preserving cryptocurrencies, also recently adopted by Ethereum.

Background

Pairing groups

Let $\mathbb{G}_1 = \langle P \rangle$ and $\mathbb{G}_2 = \langle Q \rangle$ be additive groups and \mathbb{G}_T be a multiplicative group such that $|\mathbb{G}_1| = |\mathbb{G}_2| = |\mathbb{G}_T| = \text{prime } r$.

A general pairing

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- \mathbb{G}_1 is typically a subgroup of $E(\mathbb{F}_p)$.
- \mathbb{G}_2 is typically a subgroup of $E(\mathbb{F}_{p^k})$.
- \mathbb{G}_T is a multiplicative subgroup of $\mathbb{F}_{p^k}^*$.

Hence pairing-based cryptography involves arithmetic in \mathbb{F}_{p^k} , for **embedding degree** k, the main tool used to balance security.

A general pairing

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

Cryptographic schemes require multiple operations in pairing groups:

- 1. Exponentiation, membership testing, compression in $\mathbb{G}_1,\ \mathbb{G}_2$ and $\mathbb{G}_{\mathcal{T}}.$
- 2. Hashing strings to \mathbb{G}_1 , \mathbb{G}_2 .
- 3. Efficient maps between \mathbb{G}_1 and \mathbb{G}_2 .
- 4. Efficient pairing computation.

At some point, pairing-based cryptography had an **explosion** of parameter choices to choose from:

BN curves:
$$k = 12$$
, $\rho \approx 1$
 $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$
 $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$, $t(x) = 6z^2 + 1$
BLS12 curves: $k = 12$, $\rho \approx 1.5$
 $p(x) = (x - 1)^2(x^4 - x^2 + 1)/3 + x$,
 $r(x) = x^4 - x^2 + 1$, $t(x) = x + 1$
KSS18 curves: $k = 18$, $\rho \approx 4/3$
 $p(x) = (x^8 + 5x^7 + 7x^6 + 37x^5 + 188x^4 + 259x^3 + 343x^2 + 1763x + 2401)/21$
 $r(x) = (x^6 + 37x^3 + 343)/343$, $t(x) = (x^4 + 16z + 7)/7$
BLS24 curves: $k = 24$, $\rho \approx 1.25$
 $p(x) = (x - 1)^2(x^8 - x^4 + 1)/3 + x$,
 $r(x) = x^8 - x^4 + 1$, $t(x) = x + 1$

Barreto-Naehrig curves

Let $x \in \mathbb{Z}$ such that p(x) and r(x) are prime:

- $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$
- $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$

Then $E: y^2 = x^3 + b$, $b \in \mathbb{F}_p$ is a curve of order r and embedding degree k = 12 [BN05] and E' its twist of degree d = 6.

For curve BN-254, fix $x = -(2^{62} + 2^{55} + 1)$ and b = 2, the towering can be:

•
$$\mathbb{F}_{p^2} = \mathbb{F}_p[i]/(i^2 - \beta)$$
, where $\beta = -1$
• $\mathbb{F}_{p^4} = \mathbb{F}_{p^2}[s]/(s^2 - \epsilon)$, where $\xi = 1 + i$
• $\mathbb{F}_{p^6} = \mathbb{F}_{p^2}[v]/(v^3 - \xi)$, where $\xi = 1 + i$
• $\mathbb{F}_{p^{12}} = \mathbb{F}_{p^4}[v]/(t^3 - s)$ or $\mathbb{F}_{p^6}[w]/(w^2 - v)$

Until recently: BN curves were king at the 128-bit security level and got even close to standardization (IETF RFC).

Instantiating pairings over BN curves had many performance features:

- 1. Implementation-friendly parameters, with **fast towering** and compact generators [GJNB11].
- 2. Prime-order group \mathbb{G}_1 , facilitating membership testing.
- 3. Twist of maximum degree, reducing size of \mathbb{G}_2 .
- 4. Gallant-Lambert-Vanstone [GLV01] endomorphism in $\mathbb{G}_1.$
- 5. Galbraith-Scott homomorphism [GS08] in \mathbb{G}_2 , $\mathbb{G}_{\mathcal{T}}$.
- 6. Compressed squarings for **exponentiation** in $\mathbb{G}_{\mathcal{T}}$.

Instantiating pairings over BN curves had many performance features:

- 1. Implementation-friendly parameters, with **fast towering** and compact generators [GJNB11].
- 2. Prime-order group \mathbb{G}_1 , facilitating membership testing.
- 3. Twist of maximum degree, reducing size of \mathbb{G}_2 .
- 4. Gallant-Lambert-Vanstone [GLV01] endomorphism in $\mathbb{G}_1.$
- 5. Galbraith-Scott **homomorphism** [GS08] in \mathbb{G}_2 , \mathbb{G}_T .
- 6. Compressed squarings for **exponentiation** in $\mathbb{G}_{\mathcal{T}}$.

Alfred Menezes, 2007

"These curves should not exist, they are too good to be true."

Recent results have undermined the security of pairings in some contexts:

 Pairings over small char, due to many advances in the DLP, including a quasi-polynomial algorithm by Barbulescu et al. [BGJT14]. Impact: Pairings may not be that viable in resource-constrained devices anymore. Recent results have undermined the security of pairings in some contexts:

- Pairings over small char, due to many advances in the DLP, including a quasi-polynomial algorithm by Barbulescu et al. [BGJT14]. Impact: Pairings may not be that viable in resource-constrained devices anymore.
- Smooth embedding degree, affected by Kim-Barbulescu attack on medium-prime case [KB16]. Impact: Security of BN-254 degraded to around 100 bits.
- Miller inversion problem, shown to be easy for supersingular curves with k = 2 [Sat19]. Impact: These curves may be not just inefficient, but dangerous.

Curve families

And now we are somewhat **back** to that situation again. Recently proposed parameters, from the most conservative:

- Elliptic curves with embedding degree k = 1 (large base field) [CMR17]
- Symmetric pairings with prime embedding degree k = 2,3 (still large base field) [Sco05, ZW13]
- 3. Elliptic curves with **less smooth** embedding degrees (ordinary with k = 9, 13, 15, 21, 27) [CM18, BMG19]
- 4. Cocks-Pinch curves with moderate embedding degrees [GMT19]
- 5. Optimal TNFS-resistant families [FM18]
- → Adjusted field sizes and smooth embedding degrees such as Barreto-Lynn-Scott (BLS) and Kachisa-Scott-Schaefer (KSS) curves [BLS02, KSS08].

Implementation techniques

There are many different open-source software implementations of pairings:

- **PBC**: on top of GMP, **outdated**.
- Panda: not as efficient anymore, but constant-time.
- Ate-pairing: CINVESTAV, previous state of the art.
- MIRACL: special support for constrained platforms.
- Apache Milagro: fast C and bindings to many languages.
- **OpenPairing**: OpenSSL patch, never merged.
- libsnark: BN-254 and ZKPs.
- pairing: BLS12-381 implementation from ZCash in Rust.
- mcl: BN and BLS12 over multiple fields by Shigeo Mitsunari.

There are many different open-source software implementations of pairings:

- **PBC**: on top of GMP, **outdated**.
- Panda: not as efficient anymore, but constant-time.
- Ate-pairing: CINVESTAV, previous state of the art.
- MIRACL: special support for constrained platforms.
- Apache Milagro: fast C and bindings to many languages.
- **OpenPairing**: OpenSSL patch, never merged.
- libsnark: BN-254 and ZKPs.
- pairing: BLS12-381 implementation from ZCash in Rust.
- mcl: BN and BLS12 over multiple fields by Shigeo Mitsunari.
- \rightarrow **RELIC**: flexible and **current** state of the art, under **heavy** development again.

Target platform: Desktop processor.

- 1. An efficient 64-bit implementation of the base field arithmetic typically employs:
 - Montgomery representation.
 - Wide multiplication instructions MUL and MULX.
 - Lazy reduction:

 $(a \cdot b) \mod p + (c \cdot d) \mod p = (a \cdot b + c \cdot d) \mod p$

- 2. Techniques for extension field arithmetic:
 - Small quadratic/cubic non-residues and change of representation.
 - Fastest formulas available in the literature (asymmetric squarings due to [CH07].
 - **General** lazy reduction: k reductions for \mathbb{F}_{p^k} arithmetic [AKL⁺11].

Scalar multiplications in \mathbb{G}_1 and \mathbb{G}_2 follow standard techniques, such as projective coordinates and signed recodings.

Scalars can be decomposed using the GLV method when **endomorphism** ψ is available: $\ell \equiv \ell_0 + \lambda \ell_1 \pmod{r} \rightarrow [\ell]P = [\ell_0]P + [\ell_1]\psi(P)$.

Hashing to \mathbb{G}_1 and \mathbb{G}_2 involves hashing to point and multiplying by **cofactor** represented in base *p* [SBC⁺09, FKR11]. More recent approaches are **indifferentiable** from random oracles [WB19, FT12].

Operations in \mathbb{G}_T

Pairing result is an element of the **cyclotomic subgroup** $\mathbb{G}_{\phi_k}(\mathbb{F}_{p^{k/d}})$.

Given C(g), efficient to compute $C(g^2)$ as shown by Karabina in [Kar13].

Idea: $g^{|u|=2^a-2^b+1}$ can now be computed in three steps:

- 1. Compute $C(g^{2^i})$ for $1 \le i \le a$ and store $C(g^{2^b})$ and $C(g^{2^a})$
- 2. Compute $D(C(g^{2^{s}})) = g^{2^{s}}$ and $D(C(g^{2^{b}})) = g^{2^{b}}$
- 3. Compute $g^{|x|} = g^{2^a} \cdot (g^{2^b})^{k/2} \cdot g$

Remark 1: Montgomery's simultaneous inversion allows **simultaneous decompression**.

Remark 2: For dense exponent, plain cyclotomic squarings can be used instead [GS10]. Signed recodings can be used because inversion is conjugation, and base-(t-1) expansions due to $g^p = g^{t-1}$.

Pairing computation

Algorithm 1 Tate pairing [BKLS02]. **Input:** $r = \sum_{i=0}^{\log_2 r} r_i 2^i, P, Q.$ **Output:** $e_r(P, Q)$. 1. $T \leftarrow P$ 2: $f \leftarrow 1$ 3: for $i = |\log_2(r)| - 1$ downto 0 do 4 $T \leftarrow 2T$ 5: $f \leftarrow f^2 \cdot I_T \tau(Q)$ 6: **if** $r_i = 1, i \neq 0$ **then** 7: $T \leftarrow T + P$ 8: $f \leftarrow f \cdot I_{T,P}(Q)$ 9. end if 10: end for 11: return $f^{(q^k-1/r)}$

A pairing computation essentially consists in the **Miller loop** followed by the **final exponentiation**.

- 1. An efficient implementation of the Miller loop requires:
 - Low Hamming weight of the integer parameter.
 - Efficient formulas for curve arithmetic (homogeneous coordinates).
 - Curve arithmetic combined together with computation of the **line** evaluations.
- 2. And the final exponentiation:
 - For even k, split the final exponent as $(p^k 1)/\phi_k(p) \cdot \phi_k(p)/r$.
 - Easy part computed with Frobenius.
 - Hard part computed with decomposition in base *p* and **vectorial** addition chain.
 - Compressed squarings in cyclotomic subgroup.

Other optimizations are possible:

- 1. **Optimal ate construction** to minimize integer parameter by $\phi(k)$ [Ver10].
- 2. Fixed argument pairings precomputes Miller loop when argumets are fixed [CS10].
- 3. Product of pairings to share final exponentiation when evaluating $\prod_{i=0}^{m} e(P_i, Q_i)$.

A security property mandating that cofactors have only large prime factors to prevent small subgroup attacks [BCM⁺15]. Started as " \mathbb{G}_{T} -strong" notion of security [Sco13].

In general, subgroup membership testing is easy in \mathbb{G}_1 (validity or scalar multiplication).

In \mathbb{G}_2 , we can exploit n = p - t + 1 and check if [p]Q = [t - 1]Q.

A security property mandating that cofactors have only large prime factors to prevent small subgroup attacks [BCM⁺15]. Started as " \mathbb{G}_{T} -strong" notion of security [Sco13].

In general, subgroup membership testing is easy in \mathbb{G}_1 (validity or scalar multiplication).

In \mathbb{G}_2 , we can exploit n = p - t + 1 and check if [p]Q = [t - 1]Q.

Faster: protocols can be modified instead to multiply by cofactors.

In a subgroup-secure curve with prime $\phi_k(p)/r$, membership testing in \mathbb{G}_T is easy by checking if $g^{\phi_k(p)} = 1$.

Impact: subgroup-secure curves slightly penalize pairing computation but save on membership tests.

New results

Characteristics of the implementation:

- Target platform: Intel Skylake 64-bit processors.
- Library: RELIC is an Efficient LIbrary for Cryptography (github.com/relic-toolkit/relic)
- Compiler: GCC 8.3.0 with flags -O3 -fomit-frame-point -funroll-loops

Characteristics of the implementation:

- Target platform: Intel Skylake 64-bit processors.
- Library: RELIC is an Efficient LIbrary for Cryptography (github.com/relic-toolkit/relic)
- Compiler: GCC 8.3.0 with flags -O3 -fomit-frame-point -funroll-loops

Comparison between two sets of parameters:

- 1. BN with increasing field sizes.
- 2. OTNFS8 vs BN-446 vs BLS12-455 curves.

BN with increasing field sizes

Parameters: BN-254 curve, Subgroup-secure BN-382, new BN-446 curve.

Operation	BN-254	BN-382	BN-446
kP in \mathbb{G}_1	194	553	804
kQ in \mathbb{G}_2	434	1501	2269
g^k in \mathbb{G}_T	681	2277	3786
H to \mathbb{G}_1^1	146	448	607
H to \mathbb{G}_2	234	746	1063
Test \mathbb{G}_1	0.415	0.691	0.905
Test \mathbb{G}_2	155	530	645
Test \mathbb{G}_T	260	725 ²	1243
e(P,Q) (M+F)	570+392=962	1950+1291= <mark>3241</mark>	3196+1871= <mark>5067</mark>

Table 1: Timings from RELIC in 10^3 cycles in Skylake processor measured as average of 10^4 executions (HT and TB disabled). Pairing computation is split between Miller loop (M) and Final exponentiation (F).

¹(*) Hashing through SWU.

²(*) Faster test in $\mathbb{G}_{\phi_k}(\mathbb{F}_{p^{k/d}})$.

Parameters: new 446-bit BN curve, Jacobi Quartic over 511-bit field [FM18], BLS12-455 by Mike Scott.

Operation	BN-446	OTNFS8-511	BLS12-455
kP in \mathbb{G}_1	804	954	680
kQ in \mathbb{G}_2	2269	2870	1919
g^k in \mathbb{G}_T	3786	-	2772
H to \mathbb{G}_1^3	607	-	1104
H to \mathbb{G}_2	1063	-	1709
Test \mathbb{G}_1	0.905	827	523
Test \mathbb{G}_2	645	1210	798
Test \mathbb{G}_T	1243	-	1037
e(P,Q) (M+F)	3196+1871= <mark>5067</mark>	3086+5704= <mark>8790</mark>	2379+2463= <mark>4842</mark>

Table 2: Timings from RELIC in 10^3 cycles in Skylake processor measured as average of 10^4 executions (HT and TB disabled). Pairing computation is split between Miller loop (M) and Final exponentiation (F).

³(*) Hashing through SWU.

Implementation	Curve	(10^6 cycles)
MOV92	Supersingular	Billions
HMS08	256-bit BN	10.0
NNS10	256-bit BN	4.38
BDM+10	256-bit BN	2.33
AKL+11	254-bit BN	1.56
M13	254-bit BN	1.16
ABLR13	254-bit BN	1.17
ECC17	254-bit BN	0.96
ECC17 (progressive)	381-bit BLS12	2.82
This work (conservative)	455-bit BLS12	4.84

Table 3: Speed records for pairing computation in the past decades.

Adjusting the parameters for new attacks has impacted performance of pairings **substantially**. There may be difficulties with standardization, which usually lead to **fragmentation**.

Future research:

- 1. Vector instructions improve the asymptotically faster **Residue Number Systems** (RNS)
- 2. Optimal towerings for newly-proposed families of curves
- 3. Faster exponentiation and hashing methods for alternative families of curves
- 4. Support to **verifiable** finite field arithmetic (Evercrypt, Fiat-Crypto) to better understand performance impact

Questions? D. F. Aranha dfaranha@eng.au.dk @dfaranha

References i

Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio López. Faster explicit formulas for computing pairings over ordinary curves.

In *EUROCRYPT*, volume 6632 of *Lecture Notes in Computer Science*, pages 48–68. Springer, 2011.

Jean Philippe Aumasson and Luis Merino. Sgx secure enclaves in practice: Security and crypto review.

BlackHat, 2016.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.

Zerocash: Decentralized anonymous payments from bitcoin. In *IEEE Symposium on Security and Privacy*, pages 459–474. IEEE Computer Society, 2014.

Paulo S. L. M. Barreto, Craig Costello, Rafael Misoczki, Michael Naehrig, Geovandro C. C. F. Pereira, and Gustavo Zanon.
Subgroup security in pairing-based cryptography.
In LATINCRYPT, volume 9230 of Lecture Notes in Computer Science, pages 245–265. Springer, 2015.

Dan Boneh and Matthew K. Franklin. **Identity-based encryption from the weil pairing.** In *CRYPTO*, volume 2139 of *Lecture Notes in Computer Science*, pages 213–229. Springer, 2001.

- Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé.
- A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic.

In *EUROCRYPT*, volume 8441 of *Lecture Notes in Computer Science*, pages 1–16. Springer, 2014.

- Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott.
 - **Efficient algorithms for pairing-based cryptosystems.** In *CRYPTO*, volume 2442 of *Lecture Notes in Computer Science*, pages 354–368. Springer, 2002.

References iv

- Ernie Brickell and Jiangtao Li.

Enhanced privacy ID: A direct anonymous attestation scheme with enhanced revocation capabilities.

IEEE Trans. Dependable Sec. Comput., 9(3):345–360, 2012.

Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott.
 Constructing elliptic curves with prescribed embedding degrees.

In *SCN*, volume 2576 of *Lecture Notes in Computer Science*, pages 257–267. Springer, 2002.

 Razvan Barbulescu, Nadia El Mrabet, and Loubna Ghammam.
 A taxonomy of pairings, their security, their complexity. Cryptology ePrint Archive, Report 2019/485, 2019. https://eprint.iacr.org/2019/485.

References v

- Paulo S. L. M. Barreto and Michael Naehrig.
- Pairing-friendly elliptic curves of prime order.
- In Selected Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science, pages 319–331. Springer, 2005.
- Jaewook Chung and M. Anwar Hasan.
 - Asymmetric squaring formulae.

In *IEEE Symposium on Computer Arithmetic*, pages 113–122. IEEE Computer Society, 2007.

Chitchanok Chuengsatiansup and Chloe Martindale. **Pairing-friendly twisted hessian curves.** In *INDOCRYPT*, volume 11356 of *Lecture Notes in Computer*

Science, pages 228-247. Springer, 2018.

References vi

- Sanjit Chatterjee, Alfred Menezes, and Francisco Rodríguez-Henríquez.
 On instantiating pairing-based protocols with elliptic curves of embedding degree one.
 IEEE Trans. Computers, 66(6):1061–1070, 2017.
 Craig Costello and Douglas Stebila.
 Fixed argument pairings.
 In LATINCRYPT, volume 6212 of Lecture Notes in Computer Science, pages 92–108. Springer, 2010.
- Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodríguez-Henríquez.

Faster hashing to ${\rm G}_2$.

In *Selected Areas in Cryptography*, volume 7118 of *Lecture Notes in Computer Science*, pages 412–430. Springer, 2011.

References vii

Georgios Fotiadis and Chloe Martindale.

Optimal tnfs-secure pairings on elliptic curves with even embedding degree.

Cryptology ePrint Archive, Report 2018/969, 2018. https://eprint.iacr.org/2018/969.

- Pierre-Alain Fougue and Mehdi Tibouchi. Indifferentiable hashing to barreto-naehrig curves. In LATINCRYPT, volume 7533 of Lecture Notes in Computer Science, pages 1–17. Springer, 2012.

📕 C. C. F. Pereira Geovandro, Marcos A. Simplício Jr., Michael Naehrig, and Paulo S. L. M. Barreto.

A family of implementation-friendly BN elliptic curves. Journal of Systems and Software, 84(8):1319–1326, 2011.

Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point multiplication on elliptic curves with efficient endomorphisms.

In *CRYPTO*, volume 2139 of *Lecture Notes in Computer Science*, pages 190–200. Springer, 2001.

Aurore Guillevic, Simon Masson, and Emmanuel Thom.
 Cocks-pinch curves of embedding degrees five to eight and optimal ate pairing computation.
 Cryptology ePrint Archive, Report 2019/431, 2019.
 https://eprint.iacr.org/2019/431.

References ix

Steven D. Galbraith and Michael Scott. Exponentiation in pairing-friendly groups using homomorphisms.

In *Pairing*, volume 5209 of *Lecture Notes in Computer Science*, pages 211–224. Springer, 2008.

Robert Granger and Michael Scott.

Faster squaring in the cyclotomic subgroup of sixth degree extensions.

In *Public Key Cryptography*, volume 6056 of *Lecture Notes in Computer Science*, pages 209–223. Springer, 2010.

🔋 Koray Karabina.

Squaring in cyclotomic subgroups.

Math. Comput., 82(281):555-579, 2013.

Taechan Kim and Razvan Barbulescu.

Extended tower number field sieve: A new complexity for the medium prime case.

In *CRYPTO (1)*, volume 9814 of *Lecture Notes in Computer Science*, pages 543–571. Springer, 2016.

Ezekiel J. Kachisa, Edward F. Schaefer, and Michael Scott. Constructing brezing-weng pairing-friendly elliptic curves using elements in the cyclotomic field.

In *Pairing*, volume 5209 of *Lecture Notes in Computer Science*, pages 126–135. Springer, 2008.

References xi

Takakazu Satoh.

Miller inversion is easy for the reduced tate pairing on trace zero supersingular curves.

Cryptology ePrint Archive, Report 2019/385, 2019. https://eprint.iacr.org/2019/385.

Michael Scott, Naomi Benger, Manuel Charlemagne, Luis
 J. Dominguez Perez, and Ezekiel J. Kachisa.
 Fast hashing to G₂ on pairing-friendly curves.

In *Pairing*, volume 5671 of *Lecture Notes in Computer Science*, pages 102–113. Springer, 2009.

Michael Scott.

Computing the tate pairing.

In *CT-RSA*, volume 3376 of *Lecture Notes in Computer Science*, pages 293–304. Springer, 2005.

References xii

Michael Scott.

Unbalancing pairing-based key exchange protocols.

IACR Cryptology ePrint Archive, 2013:688, 2013.

Frederik Vercauteren.

Optimal pairings.

IEEE Trans. Information Theory, 56(1):455-461, 2010.

Riad S. Wahby and Dan Boneh.

Fast and simple constant-time hashing to the bls12-381 elliptic curve.

Cryptology ePrint Archive, Report 2019/403, 2019. https://eprint.iacr.org/2019/403.

Xusheng Zhang and Kunpeng Wang. Fast symmetric pairing revisited.

In *Pairing*, volume 8365 of *Lecture Notes in Computer Science*, pages 131–148. Springer, 2013.