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Bilinear pairings

e(P + R,Q) = e(P,Q) · e(R,Q) and e(P,Q + S) = e(P,Q) · e(P,S)

.
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Introduction

Pairing-Based Cryptography (PBC) enables many elegant solutions to

cryptographic problems:

• Implicit certification schemes (IBE, CLPKC, etc.)

• Short signatures (in group elements, BLS, BBS)

• More efficient key agreements (Joux’s 3DH, NIKDS)

• Low-depth homomorphic encryption (BGN and variants)

• Zero-knowledge proof systems (LegoSNARK and Sonic)

• Isogeny-based cryptography (key compression and VDFs)

Not dead: Pairings are not only interesting solely for research, but

actually deployed in practice!
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Classic: IBE in Voltage’s SecureMail

Implemented with supersingular curve over large characteristic [BF01].

Figure 1: Source: http://www.securemailworks.com/SecureMail.asp
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Modern applications



IBE in Cloudflare’s Geo Key Manager

Figure 2:

https://blog.cloudflare.com/geo-key-manager-how-it-works/
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IBE in Cloudflare’s Geo Key Manager

Implemented using a 256-bit Barreto-Naehrig curve [BN05]

Figure 3:

https://blog.cloudflare.com/geo-key-manager-how-it-works/
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Remote attestation in Intel SGX

Remote attestation scheme employs a pairing-based anonymous group

signature by Brickell and Li (EPID) [BL12].

Enhanced Privacy ID anonymous group signatures
Signatures verified to 
belong to the group, hiding 
the member that signed 

Issuer, holds the 
"master key", can grant 
access to the group

Members sign an 
enclave's measurement 
anonymously

Group = CPUs of same 
type, same SGX version

Verifier ensures that an 
enclave does run on a 
trusted SGX platform

Figure 4: Slides from BlackHat 2016 talk by Aumasson and Merino [AM16]. 7



Remote attestation in Intel SGX

Implemented using a 256-bit Barreto-Naehrig curve [BN05].

EPID implementation
Not in microcode, too complex

Not in SGX libs, but in the QE and PVE binaries

Undocumented implementation details:

● Scheme from https://eprint.iacr.org/2009/095 
● Barretto-Naehrig curve, optimal Ate pairing
● Code allegedly based on https://eprint.iacr.org/2010/354 

Pubkey and parameters provided by Intel Attestation Service (IAS)

Figure 5: Slides from BlackHat 2016 talk by Aumasson and Merino [AM16].
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Zcash cryptocurrency

zk-SNARKs by Ben-Sasson et al. [BCG+14] for privacy-preserving

cryptocurrencies, also recently adopted by Ethereum.
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Background



Pairing groups

Let G1 = 〈P〉 and G2 = 〈Q〉 be additive groups and GT be a

multiplicative group such that |G1| = |G2| = |GT | = prime r .

A general pairing

e : G1 ×G2 → GT

• G1 is typically a subgroup of E (Fp).

• G2 is typically a subgroup of E (Fpk ).

• GT is a multiplicative subgroup of F∗pk .

Hence pairing-based cryptography involves arithmetic in Fpk , for

embedding degree k , the main tool used to balance security.
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Pairing operations

A general pairing

e : G1 ×G2 → GT

Cryptographic schemes require multiple operations in pairing groups:

1. Exponentiation, membership testing, compression in G1, G2

and GT .

2. Hashing strings to G1, G2.

3. Efficient maps between G1 and G2.

4. Efficient pairing computation.
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Curve families

At some point, pairing-based cryptography had an explosion of

parameter choices to choose from:

BN curves: k = 12, ρ ≈ 1

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x + 1, t(x) = 6z2 + 1

BLS12 curves: k = 12, ρ ≈ 1.5

p(x) = (x − 1)2(x4 − x2 + 1)/3 + x ,

r(x) = x4 − x2 + 1, t(x) = x + 1

KSS18 curves: k = 18, ρ ≈ 4/3

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21

r(x) = (x6 + 37x3 + 343)/343, t(x) = (x4 + 16z + 7)/7

BLS24 curves: k = 24, ρ ≈ 1.25

p(x) = (x − 1)2(x8 − x4 + 1)/3 + x ,

r(x) = x8 − x4 + 1, t(x) = x + 1
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Barreto-Naehrig curves

Let x ∈ Z such that p(x) and r(x) are prime:

• p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

• r(x) = 36x4 + 36x3 + 18x2 + 6x + 1

Then E : y2 = x3 + b, b ∈ Fp is a curve of order r and embedding

degree k = 12 [BN05] and E ′ its twist of degree d = 6.

For curve BN-254, fix x = −(262 + 255 + 1) and b = 2, the towering can

be:

• Fp2 = Fp[i ]/(i2 − β), where β = −1

• Fp4 = Fp2 [s]/(s2 − ε), where ξ = 1 + i

• Fp6 = Fp2 [v ]/(v3 − ξ), where ξ = 1 + i

• Fp12 = Fp4 [v ]/(t3 − s) or Fp6 [w ]/(w2 − v)

Until recently: BN curves were king at the 128-bit security level and got

even close to standardization (IETF RFC). 13



Barreto-Naehrig curves

Instantiating pairings over BN curves had many performance features:

1. Implementation-friendly parameters, with fast towering and

compact generators [GJNB11].

2. Prime-order group G1, facilitating membership testing.

3. Twist of maximum degree, reducing size of G2.

4. Gallant-Lambert-Vanstone [GLV01] endomorphism in G1.

5. Galbraith-Scott homomorphism [GS08] in G2, GT .

6. Compressed squarings for exponentiation in GT .

Alfred Menezes, 2007

“These curves should not exist, they are too good to be

true.”
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Updating the security of pairings

Recent results have undermined the security of pairings in some contexts:

1. Pairings over small char, due to many advances in the DLP,

including a quasi-polynomial algorithm by Barbulescu et

al. [BGJT14]. Impact: Pairings may not be that viable in

resource-constrained devices anymore.

2. Smooth embedding degree, affected by Kim-Barbulescu attack on

medium-prime case [KB16]. Impact: Security of BN-254 degraded

to around 100 bits.

3. Miller inversion problem, shown to be easy for supersingular

curves with k = 2 [Sat19]. Impact: These curves may be not just

inefficient, but dangerous.
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Curve families

And now we are somewhat back to that situation again. Recently

proposed parameters, from the most conservative:

1. Elliptic curves with embedding degree k = 1 (large base

field) [CMR17]

2. Symmetric pairings with prime embedding degree k = 2, 3 (still

large base field) [Sco05, ZW13]

3. Elliptic curves with less smooth embedding degrees (ordinary with

k = 9, 13, 15, 21, 27) [CM18, BMG19]

4. Cocks-Pinch curves with moderate embedding degrees [GMT19]

5. Optimal TNFS-resistant families [FM18]

→ Adjusted field sizes and smooth embedding degrees such as

Barreto-Lynn-Scott (BLS) and Kachisa-Scott-Schaefer (KSS)

curves [BLS02, KSS08].
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What do we want?
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Implementation techniques



Arithmetic levels

Protocols

Low-level backend
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Software libraries

There are many different open-source software implementations of

pairings:

• PBC: on top of GMP, outdated.

• Panda: not as efficient anymore, but constant-time.

• Ate-pairing: CINVESTAV, previous state of the art.

• MIRACL: special support for constrained platforms.

• Apache Milagro: fast C and bindings to many languages.

• OpenPairing: OpenSSL patch, never merged.

• libsnark: BN-254 and ZKPs.

• pairing: BLS12-381 implementation from ZCash in Rust.

• mcl: BN and BLS12 over multiple fields by Shigeo Mitsunari.

→ RELIC: flexible and current state of the art, under heavy

development again.
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Finite field arithmetic

Target platform: Desktop processor.

1. An efficient 64-bit implementation of the base field arithmetic

typically employs:

• Montgomery representation.

• Wide multiplication instructions MUL and MULX.

• Lazy reduction:

(a · b) mod p + (c · d) mod p = (a · b + c · d) mod p

2. Techniques for extension field arithmetic:

• Small quadratic/cubic non-residues and change of representation.

• Fastest formulas available in the literature (asymmetric squarings

due to [CH07].

• General lazy reduction: k reductions for Fpk arithmetic [AKL+11].

20



Operations in G1 and G2

Scalar multiplications in G1 and G2 follow standard techniques, such as

projective coordinates and signed recodings.

Scalars can be decomposed using the GLV method when endomorphism

ψ is available: ` ≡ `0 + λ`1 (mod r)→ [`]P = [`0]P + [`1]ψ(P).

Hashing to G1 and G2 involves hashing to point and multiplying by

cofactor represented in base p [SBC+09, FKR11]. More recent

approaches are indifferentiable from random oracles [WB19, FT12].
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Operations in GT

Pairing result is an element of the cyclotomic subgroup Gφk
(Fpk/d ).

Given C (g), efficient to compute C (g2) as shown by Karabina in [Kar13].

Idea: g |u|=2a−2b+1 can now be computed in three steps:

1. Compute C (g2i ) for 1 ≤ i ≤ a and store C (g2b) and C (g2a)

2. Compute D(C (g2a)) = g2a and D(C (g2b)) = g2b

3. Compute g |x| = g2a · (g2b)
k/2
· g

Remark 1: Montgomery’s simultaneous inversion allows simultaneous

decompression.

Remark 2: For dense exponent, plain cyclotomic squarings can be used

instead [GS10]. Signed recodings can be used because inversion is

conjugation, and base-(t − 1) expansions due to gp = g t−1.
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Pairing computation

Algorithm 1 Tate pairing [BKLS02].

Input: r =
∑log2 r

i=0 ri2
i ,P,Q.

Output: er (P,Q).

1: T ← P

2: f ← 1

3: for i = blog2(r)c − 1 downto 0 do

4: T ← 2T

5: f ← f 2 · lT ,T (Q)

6: if ri = 1, i 6= 0 then

7: T ← T + P

8: f ← f · lT ,P(Q)

9: end if

10: end for

11: return f (q
k−1/r)
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Pairing computation

A pairing computation essentially consists in the Miller loop followed by

the final exponentiation.

1. An efficient implementation of the Miller loop requires:

• Low Hamming weight of the integer parameter.

• Efficient formulas for curve arithmetic (homogeneous coordinates).

• Curve arithmetic combined together with computation of the line

evaluations.

2. And the final exponentiation:

• For even k, split the final exponent as (pk − 1)/φk(p) · φk(p)/r .

• Easy part computed with Frobenius.

• Hard part computed with decomposition in base p and vectorial

addition chain.

• Compressed squarings in cyclotomic subgroup.
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Pairing computation

Other optimizations are possible:

1. Optimal ate construction to minimize integer parameter by

φ(k) [Ver10].

2. Fixed argument pairings precomputes Miller loop when argumets

are fixed [CS10].

3. Product of pairings to share final exponentiation when evaluating∏m
i=0 e(Pi ,Qi ).
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Subgroup security

A security property mandating that cofactors have only large prime

factors to prevent small subgroup attacks [BCM+15]. Started as

“GT -strong” notion of security [Sco13].

In general, subgroup membership testing is easy in G1 (validity or

scalar multiplication).

In G2, we can exploit n = p − t + 1 and check if [p]Q = [t − 1]Q.

Faster: protocols can be modified instead to multiply by cofactors.

In a subgroup-secure curve with prime φk(p)/r , membership testing in

GT is easy by checking if gφk (p) = 1.

Impact: subgroup-secure curves slightly penalize pairing computation but

save on membership tests.
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New results



Implementation

Characteristics of the implementation:

• Target platform: Intel Skylake 64-bit processors.

• Library: RELIC is an Efficient LIbrary for Cryptography

(github.com/relic-toolkit/relic)

• Compiler: GCC 8.3.0 with flags -O3 -fomit-frame-point

-funroll-loops

Comparison between two sets of parameters:

1. BN with increasing field sizes.

2. OTNFS8 vs BN-446 vs BLS12-455 curves.

27
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BN with increasing field sizes

Parameters: BN-254 curve, Subgroup-secure BN-382, new BN-446 curve.

Operation BN-254 BN-382 BN-446

kP in G1 194 553 804

kQ in G2 434 1501 2269

gk in GT 681 2277 3786

H to G1
1 146 448 607

H to G2 234 746 1063

Test G1 0.415 0.691 0.905

Test G2 155 530 645

Test GT 260 725 2 1243

e(P,Q) (M+F) 570+392=962 1950+1291=3241 3196+1871=5067

Table 1: Timings from RELIC in 103 cycles in Skylake processor measured as

average of 104 executions (HT and TB disabled). Pairing computation is split

between Miller loop (M) and Final exponentiation (F).

1(*) Hashing through SWU.
2(*) Faster test in Gφk

(Fpk/d ).
28



Multiple curves at “new” 128-bit security

Parameters: new 446-bit BN curve, Jacobi Quartic over 511-bit

field [FM18], BLS12-455 by Mike Scott.

Operation BN-446 OTNFS8-511 BLS12-455

kP in G1 804 954 680

kQ in G2 2269 2870 1919

gk in GT 3786 - 2772

H to G1
3 607 - 1104

H to G2 1063 - 1709

Test G1 0.905 827 523

Test G2 645 1210 798

Test GT 1243 - 1037

e(P,Q) (M+F) 3196+1871=5067 3086+5704=8790 2379+2463=4842

Table 2: Timings from RELIC in 103 cycles in Skylake processor measured as

average of 104 executions (HT and TB disabled). Pairing computation is split

between Miller loop (M) and Final exponentiation (F).

3(*) Hashing through SWU.
29



History of pairing implementations

Implementation Curve (106 cycles)

MOV92 Supersingular Billions

HMS08 256-bit BN 10.0

NNS10 256-bit BN 4.38

BDM+10 256-bit BN 2.33

AKL+11 254-bit BN 1.56

M13 254-bit BN 1.16

ABLR13 254-bit BN 1.17

ECC17 254-bit BN 0.96

ECC17 (progressive) 381-bit BLS12 2.82

This work (conservative) 455-bit BLS12 4.84

Table 3: Speed records for pairing computation in the past decades.
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Conclusions

Adjusting the parameters for new attacks has impacted performance of

pairings substantially. There may be difficulties with standardization,

which usually lead to fragmentation.

Future research:

1. Vector instructions improve the asymptotically faster Residue

Number Systems (RNS)

2. Optimal towerings for newly-proposed families of curves

3. Faster exponentiation and hashing methods for alternative families

of curves

4. Support to verifiable finite field arithmetic (Evercrypt, Fiat-Crypto)

to better understand performance impact
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Questions?
D. F. Aranha

dfaranha@eng.au.dk

@dfaranha
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Faster explicit formulas for computing pairings over ordinary

curves.

In EUROCRYPT, volume 6632 of Lecture Notes in Computer

Science, pages 48–68. Springer, 2011.

Jean Philippe Aumasson and Luis Merino.

Sgx secure enclaves in practice: Security and crypto review.

BlackHat, 2016.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew

Green, Ian Miers, Eran Tromer, and Madars Virza.

Zerocash: Decentralized anonymous payments from bitcoin.

In IEEE Symposium on Security and Privacy, pages 459–474. IEEE

Computer Society, 2014.

32



References ii

Paulo S. L. M. Barreto, Craig Costello, Rafael Misoczki, Michael

Naehrig, Geovandro C. C. F. Pereira, and Gustavo Zanon.

Subgroup security in pairing-based cryptography.

In LATINCRYPT, volume 9230 of Lecture Notes in Computer

Science, pages 245–265. Springer, 2015.

Dan Boneh and Matthew K. Franklin.

Identity-based encryption from the weil pairing.

In CRYPTO, volume 2139 of Lecture Notes in Computer Science,

pages 213–229. Springer, 2001.

33



References iii

Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel

Thomé.
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