Supposedly Hard Problems In Multivariate Cryptography

Charles Bouillaguet

Université de Versailles Saint-Quentin Versailles, France

> Séminaire CARAMEL 20 janvier 2012

The Hard Problem Underlying Multivariate Cryptography

RSA Encryption:

 $y = x^e \mod N$, with $x, y \in \mathbb{Z}/N\mathbb{Z}$

Multivariate Quadratic Encryption:

$$y_{1} = x_{1}^{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2}x_{4} + x_{3}^{2} + x_{3}x_{4} + 1$$

$$y_{2} = x_{1}^{2} + x_{1}x_{2} + x_{1}x_{3} + x_{2}^{2} + x_{2}x_{4} + x_{3}^{2} + x_{4}^{2} + 1$$

$$y_{3} = x_{1}x_{2} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4} + x_{3}^{2} + x_{3}x_{4} + x_{4}^{2}$$

$$y_{4} = x_{1}x_{2} + x_{1}x_{3} + x_{2}^{2} + x_{2}x_{3} + x_{3}x_{4}$$

with $x, y \in (\mathbb{F}_{q})^{n}$

Rationale

Solving MQ Polynomial Systems is NP-hard over any field

A trapdoor must be embedded in the equations

A Common Construction: Obfuscation

- 1 Non-linear function $\psi: (\mathbb{F}_q)^n o (\mathbb{F}_q)^n$
 - easily invertible, sometimes public (as in SFLASH)
- 2 Express it as multivariate polynomials over $(\mathbb{F}_q)^n$
- **3 Obfuscate** ψ : compose with secret matrices *S* and *T*
- **4 PK** = $T \circ \psi \circ S$ (the obfuscated representation of ψ)

A trapdoor must be embedded in the equations

A Common Construction: Obfuscation

- 1 Non-linear function $\psi : (\mathbb{F}_q)^n \to (\mathbb{F}_q)^n$
 - easily invertible, sometimes public (as in SFLASH)
- 2 Express it as multivariate polynomials over $(\mathbb{F}_q)^n$
- **3 Obfuscate** ψ : compose with secret matrices *S* and *T*
- **4 PK** = $T \circ \psi \circ S$ (the obfuscated representation of ψ)

A trapdoor must be embedded in the equations

A Common Construction: Obfuscation

- 1 Non-linear function $\psi: (\mathbb{F}_q)^n o (\mathbb{F}_q)^n$
 - easily invertible, sometimes public (as in SFLASH)
- 2 Express it as multivariate polynomials over $(\mathbb{F}_q)^n$
- **3 Obfuscate** ψ : compose with secret matrices *S* and *T*
- **4 PK** = $T \circ \psi \circ S$ (the obfuscated representation of ψ)

Is it Secure?

- Public-key must be one-way
 - Even though ψ is not
 - Hardness of (a special case of) MQ
- 2 Retrieving S and T must be (very) hard
 - Hardness of Polynomial Linear Equivalence

- Public-key must be one-way
 - Even though ψ is not
 - Hardness of (a special case of) MQ
- 2 Retrieving S and T must be (very) hard
 - Hardness of Polynomial Linear Equivalence

1 C*

$$\psi({\sf X})={\sf X}^{1+q^{ heta}}$$
 over ${\mathbb F}_{q^n}$, but quadratic over $ig({\mathbb F}_qig)^n$

- 2 SFLASH (truncated C*)
- 3 Hidden Matrix

$$\psi(M) = M^2, \qquad M = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$$

- **4** Tractable Rational Maps Signatures
- **5** Multivariate Quadratic Quasigroups
- 6 ℓ -IC signatures

1 C*

$$\psi({\sf X})={\sf X}^{1+q^ heta}$$
 over ${\mathbb F}_{q^n}$, but quadratic over $ig({\mathbb F}_qig)^n$

2 SFLASH (truncated C*)

3 Hidden Matrix

$$\psi(M) = M^2, \qquad M = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$$

- **4** Tractable Rational Maps Signatures
- **5** Multivariate Quadratic Quasigroups
- 6 ℓ-IC signatures

1 C*

$$\psi({\sf X})={\sf X}^{1+q^ heta}$$
 over ${\mathbb F}_{q^n}$, but quadratic over $ig({\mathbb F}_qig)^n$

2 SFLASH (truncated C*)
3 Hidden Matrix

$$\psi(M) = M^2, \qquad M = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$$

- Tractable Rational Maps Signatures
- **5** Multivariate Quadratic Quasigroups
- 6 ℓ -IC signatures

1 C*

$$\psi({\sf X})={\sf X}^{1+q^ heta}$$
 over ${\mathbb F}_{q^n}$, but quadratic over $ig({\mathbb F}_qig)^n$

2 SFLASH (truncated C*)
3 Hidden Matrix

$$\psi(M) = M^2$$
, $M = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$

- **4** Tractable Rational Maps Signatures
- **5** Multivariate Quadratic Quasigroups
- 6 ℓ-IC signatures

1 C*

$$\psi({\sf X})={\sf X}^{1+q^ heta}$$
 over ${\mathbb F}_{q^n}$, but quadratic over $ig({\mathbb F}_qig)^n$

2 SFLASH (truncated C*)
3 Hidden Matrix

$$\psi(M) = M^2$$
, $M = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$

Tractable Rational Maps Signatures
 Multivariate Quadratic Quasigroups
 l-IC signatures

1 C*

$$\psi({\sf X})={\sf X}^{1+q^ heta}$$
 over ${\mathbb F}_{q^n}$, but quadratic over $ig({\mathbb F}_qig)^n$

- 2 SFLASH (truncated C*)
- **3** Hidden Matrix

$$\psi(M) = M^2$$
, $M = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$

- **4** Tractable Rational Maps Signatures
- 5 Multivariate Quadratic Quasigroups
- 6 ℓ-IC signatures

The Golden Age of Multivariate Cryptography : 1996–2007

The Golden Age of Multivariate Cryptography : 1996–2007

The Golden Age of Multivariate Cryptography : 1996–2007

1 C* [Broken in 1995 !]

$$\psi({\sf X})={\sf X}^{1+q^ heta}$$
 over ${\mathbb F}_{q^n}$, but quadratic over $ig({\mathbb F}_qig)^n$

2 SFLASH (truncated C*) [Broken in 2007 !]
3 Hidden Matrix [Broken in 2010!]

$$\psi(M) = M^2$$
, $M = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix}$

- 4 Tractable Rational Maps Signatures [Broken in 2004 !]
- 5 Multivariate Quadratic Quasigroups [Broken in 2009]
- 6 *l*-IC signatures [Broken in 2009]
- [7] ...[They are all broken]

Why this Fiasco ?

Problems with **MQ** : the case of HFE

- MQ equations much easier to solve than random ones w/ Gröbner Basis algorithms (subexponential)
- Problem : non-random MQ instances
 - consequence of the structure of the trapdoor
- Secure parameters exist though.

Problems with **PLE** : the case of SFLASH

- non-linear function $\psi(X) = X^{1+q^{\theta}}$ is special
- Ad Hoc algo. solve these particular PLE instances in PTIME
- Problem : non-random PLE instances
 - consequence of the structure of the trapdoor

Two Options

Option A

- Pick Your favorite multivariate scheme
- 2 Study the particular MQ and PLE instances it defines
- **3** Design special algorithms for the scheme
- $\rightarrow\,$ If you break schemes, you're a dangerous cryptanalyst !

Option B

- **1** Study MQ and PLE *in general* (random instances)
- 2 Design generic algorithms that always work
- 3 Necessarily less efficient than their specialized counterparts
- ightarrow Are you a harmless computer scientist ?

Two Options

Option A

- Pick Your favorite multivariate scheme
- 2 Study the particular MQ and PLE instances it defines
- 3 Design special algorithms for the scheme
- ightarrow If you break schemes, you're a dangerous cryptanalyst !

Option B

- **1** Study MQ and PLE *in general* (random instances)
- 2 Design generic algorithms that always work
- 3 Necessarily less efficient than their specialized counterparts
- ightarrow Are you a harmless computer scientist ?

I'm not completely harmless

Solving Multivariate Quadratic Equations

Problem: Find $(\mathbf{x}_1, \ldots, \mathbf{x}_n) \in (\mathbb{F}_q)^n$ such that

$$\begin{pmatrix} 1 &= x_1^2 + x_1x_3 + x_2x_3 + x_2x_4 + x_3^2 + x_3x_4 \\ 0 &= x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_4 + x_3^2 + x_4^2 \\ 0 &= x_1x_2 + x_1x_4 + x_2x_3 + x_2x_4 + x_3^2 + x_3x_4 + x_4^2 \\ 1 &= x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3x_4$$

- Exhaustive search costs $\rightarrow \mathcal{O}(q^n)$
- Gröbner basis $\rightarrow \mathcal{O}(\alpha^n)$

Conclusion

► Gröbner bases should be faster on large fields (not F₂)

Complexity of Gröbner Basis Computation

How slow are Gröbner basis computation anyway ?

 \rightarrow difficult to say anything sensible on the subject

- Complexity $\mathcal{O}(\alpha^n)$ over any field \mathbb{F}_q
- $\alpha = 16$ in simplified versions of the F₅ algorithm
- suggests that q = 16 is the cutoff point

Improving GB's with exhaustive search

- Combinations of GB and exhaustive search are claimed to run in time O (2^{0.8n}) over 𝔽₂
- But constant factors are large...
- ...and it is slower than exhaustive search until $n \ge 200$
- ► **Conclusion** : over **F**₂, **exhaustive search** is the way to go!

Exhaustive Search for MQ over \mathbb{F}_2

Let
$$V = (\mathbb{F}_2)^n$$
, and $f \colon V \to V$ be a quadratic map.

$$f(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} \cdot \mathbf{x}_i \mathbf{x}_j + \sum_{i=1}^{n} b_i \cdot \mathbf{x}_i + c$$

Naive Exhaustive Search

- 1: for *i* from 1 to 2^n do
- 2: $\mathbf{x} \leftarrow V[i]$
- 3: $\mathbf{y} \leftarrow f(\mathbf{x})$
- 4: **if y** = 0 **then** Report **x** as solution

5: **end for**

• Evaluating f costs
$$\frac{n(n+3)}{2}$$
 XORs

• Full exhaustive search = $\mathcal{O}\left(n^2 \cdot 2^n\right)$

Exhaustive Search for MQ over \mathbb{F}_2 : Improvement #1

Idea

Suppose I know $\mathbf{y} = f(\mathbf{x})$

$$\begin{cases} y_1 = x_1^2 + x_1x_3 + x_2x_3 + x_2x_4 + x_3^2 + x_3x_4 \\ y_2 = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_4 + x_3^2 + x_4^2 \\ y_3 = x_1x_2 + x_1x_4 + x_2x_3 + x_2x_4 + x_3^2 + x_3x_4 + x_4^2 \\ y_4 = x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3x_4 \end{cases}$$

To "flip" \mathbf{x}_2 , only recompute $\leq n$ terms per polynomial

 $\frac{\partial f}{\partial \mathbf{x}_2}(\mathbf{y}) = f(\mathbf{y}) + f(\mathbf{y} + \mathbf{x}_2) \text{ is affine} \rightarrow \text{evaluates in } \mathcal{O}(n) \text{ ops.}$

Introduction 00000000

The MQ Problem

Polynomial Equivalence Problems

A (Folklore) More Efficient Exaustive Search

i	GRAY(i)	$b_1(i)$
0	0000	0
1	0001	1
2	00 <mark>1</mark> 1	0
3	001 <mark>0</mark>	2
4	0 <mark>1</mark> 10	0
5	0111	1
6	01 <mark>0</mark> 1	0
7	010 <mark>0</mark>	3
8	<mark>1</mark> 100	0
9	110 <mark>1</mark>	1
10	11 <mark>1</mark> 1	0
11	111 <mark>0</mark>	2
12	1 <mark>0</mark> 10	0
13	1011	1
14	10 <mark>0</mark> 1	0

Improved Exhaustive Search

```
1: \mathbf{x} \leftarrow \mathbf{0}
```

```
2: \mathbf{y} \leftarrow f(\mathbf{0})
```

3: for *i* from 0 to $2^n - 1$ do

$$4: \qquad k \leftarrow b_1(i+1)$$

5: $\mathbf{z} \leftarrow \text{DotProduct}(\mathbf{x}, D_k)$

$$\mathsf{y} \leftarrow \mathsf{y} \oplus \mathsf{z}$$

8:
$$\mathbf{x} \leftarrow \mathbf{x} \oplus e_k$$

9: end for

6: 7:

- DOTPRODUCT costs n XORs
- Full exhaustive search = $\mathcal{O}(n \cdot 2^n)$

The MQ Problem

Polynomial Equivalence Problems

Exhaustive Search for MQ over \mathbb{F}_2 : Improvement #2

i	GRAY(i)	$b_1(i)$
0	0000	0
1	0001	1
2	001 <mark>1</mark>	0
3	0010	2
4	011 <mark>0</mark>	0
5	0111	1
6	0101	0
7	0100	3
8	110 <mark>0</mark>	0
9	1101	1
10	111 <mark>1</mark>	0
11	1110	2
12	101 <mark>0</mark>	0
13	1011	1
14	10 <mark>01</mark>	0

Theorem

If i and j are consecutive integers s.t. $b_1(i) = b_1(j)$, then GRAY(i) and GRAY(j)differ in two bits.

The MQ Problem

Polynomial Equivalence Problems

Exhaustive Search for MQ over \mathbb{F}_2 : Improvement #2

i	GRAY(i)	$b_1(i)$
0	0000	0
1	0001	1
2	001 <mark>1</mark>	0
3	0010	2
4	011 <mark>0</mark>	0
5	0111	1
6	0101	0
7	0100	3
8	110 <mark>0</mark>	0
9	1101	1
10	1111	0
11	1110	2
12	101 <mark>0</mark>	0
13	1011	1
14	10 <mark>01</mark>	0

Theorem

If i and j are consecutive integers s.t. $b_1(i) = b_1(j)$, then GRAY(i) and GRAY(j)differ in two bits.

 $\mathbf{z} \leftarrow \mathsf{DOTPRODUCT}(\mathbf{x}, D_k)$

 $\mathbf{z} \leftarrow \mathsf{DotProduct}(\mathbf{x} + 2 \mathsf{ bits}, D_k)$

The MQ Problem

Polynomial Equivalence Problems

Exhaustive Search for MQ over \mathbb{F}_2 : Improvement #2

i	GRAY(i)	$b_1(i)$
0	0000	0
1	0001	1
2	001 <mark>1</mark>	0
3	0010	2
4	011 <mark>0</mark>	0
5	0111	1
6	0101	0
7	0100	3
8	110 <mark>0</mark>	0
9	1101	1
10	1111	0
11	1110	2
12	101 <mark>0</mark>	0
13	1011	1
14	10 <mark>01</mark>	0

Theorem

If i and j are consecutive integers s.t. $b_1(i) = b_1(j)$, then GRAY(i) and GRAY(j)differ in two bits.

 $\mathbf{z}_k \leftarrow \mathsf{DotProduct}\left(\mathbf{x}, D_k\right)$

 $\mathbf{z}_k \leftarrow \mathbf{z}_k + \mathsf{DOTPRODUCT}\left(2 \text{ bits}, D_k\right)$

A New, Even More Efficient Exaustive Search

Even More Improved Exhaustive Search

- 1: $\mathbf{x} \leftarrow 0$ 2: $\mathbf{y} \leftarrow f(0)$ 3: initialize the $\mathbf{z}[i]$ 4: for *i* from 0 to $2^n - 1$ do 5: $k_1 \leftarrow b_1(i+1)$ 6: $k_2 \leftarrow b_2(i+1)$ 7: $\mathbf{z}[k_1] \leftarrow \mathbf{z}[k_1] \oplus D_{k_1}[k_2]$ 8: $\mathbf{y} \leftarrow \mathbf{y} \oplus \mathbf{z}[k_1]$ 9: if $\mathbf{y} = 0$ then Report GRAY(*i*) as solution 10: end for
 - Each iteration costs 2 XORs
 - Full exhaustive search = $\mathcal{O}(2^n)$

Other Improvements

This generalizes to degree d

Evaluating each polynomial required d XORs

This generalizes to several polynomials

- Just enumerate them all in an SIMD fashion (very efficient)
- ightarrow In fact, enumerate 32 of them (good for registers)
- ightarrow Then test the others against their common zeroes

This is easily parallelizable

- optimization: Synchronize the parallel process
- ightarrow they fetch the same data at the same time

Efficient Implementation(s)

	(Inter Core 77	AMD	
# core	2 × 4	2 × 4	480
GHz	2.3	2.26	1.25
degree 2			
cycles/iteration	0.37	0.52	2.69
n = 48 ?	1h35	2h22	21 min
degree 3			
cycles/iteration	0.62	0.98	4.57
n = 48 ?	2h35	4h00	36 min
degree 4			
cycles/iteration	0.89	1.32	15.97
n = 48 ?	3h45	5h35	2h06min

What About 80-bit Security?

80-bit Security

- Not so long ago, it was considered a "decent" level
- ▶ 80 quadratic eq. in 80 𝔽₂-variables offer 80 bits of security

- world 3rd fastest computer
- Nat. Center for Comp. Sciences
- ▶ 224 256 × @ 2.6GHz
- Solves the problem in \approx 18 years

Better results possible with more ad hoc hardware

Summer Project

Outrageous Claim

As of today, my code is the fastest way to solve arbitrary systems of boolean equations over \mathbb{F}_2 , when this can be done in practice.

...but only I have it.

Intern Wanted

- Having it in SAGE would be great
- It's probably not so complicated
- but I can't find the time...

The Problem:

The Problem:

Complexity-Theoretic Status of PLE

Could PLE be Solvable in Deterministic Polynomial Time ?

Courtois-Goubin-Patarin, 1998 : Graph Isomorphism \leq PLE

- Transform instances of GI into PLE
- ▶ 99.999999% sure that PLE ∉ P

Is it **NP**-hard?

Courtois-Goubin-Patarin, 1998 + Faugère-Perret, 2006 : No !

ightarrow This does not mean that all instances are hard

Similarity With the Even-Mansour Cipher

PLE looks a lot like the Even-Mansour Cipher

- \blacktriangleright turn a single random permutation ψ into a block cipher
- $ightarrow \,$ XOR two secret keys before and after ψ

Provable Security

- Adversary queries the EM cipher (resp. psi) X times
- And queries ψ Y times
- Cannot tell EM apart from an ideal cipher if XY < 2ⁿ

The MQ Problem

Easy and Hard Cases

$$f(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} \cdot \mathbf{x}_i \mathbf{x}_j + \sum_{i=1}^{n} b_i \cdot \mathbf{x}_i + c$$

- Gröbner-based = $\mathcal{O}(n^9)$
- "Differential" = $\mathcal{O}(n^6)$
- Inversion-free To-n-Fro = $\mathcal{O}(n^3)$

$$f(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} \cdot \mathbf{x}_i \mathbf{x}_j$$

The Inhomogeneous Case

Strategy

build a matrix pencil equivalence problem:

$$T \times (\lambda \cdot A + \mu \cdot B) = (\lambda \cdot C + \mu \cdot D) \times S$$

Why is inhomogeneousness helpful ?

1 Slice ζ and ψ in homogeneous components

S and T act separately on the homogeneous components

$$T \circ \zeta^{(2)} = \psi^{(2)} \circ S \qquad \underbrace{T \cdot \zeta^{(1)} = \psi^{(1)} \cdot S}_{\text{linear equations}} \qquad \underbrace{T \cdot \zeta^{(0)} = \psi^{(0)}}_{T \text{ known on a point}}$$

The Inhomogeneous Case

Strategy

build a matrix pencil equivalence problem:

$$T \times (\lambda \cdot A + \mu \cdot B) = (\lambda \cdot C + \mu \cdot D) \times S$$

Why is inhomogeneousness helpful ?

1 Slice ζ and ψ in homogeneous components

2 S and T act separately on the homogeneous components

$$T \circ \zeta^{(2)} = \psi^{(2)} \circ S \qquad \underbrace{T \cdot \zeta^{(1)} = \psi^{(1)} \cdot S}_{\text{linear equations}} \qquad \underbrace{T \cdot \zeta^{(0)} = \psi^{(0)}}_{T \text{ known on a point}}$$

A Nice Tool for Multivariate Cryptanalysis

Switching to the Differential

1 Define the "**Differential**" (bilinear symmetric map):

$$\begin{array}{rcl} \mathsf{D}\psi: & \left(\mathbb{F}_{q}\right)^{n} \times \left(\mathbb{F}_{q}\right)^{n} & \to & \left(\mathbb{F}_{q}\right)^{n} \\ & (\mathbf{x}, \mathbf{y}) & \mapsto & \psi(\mathbf{x} + \mathbf{y}) - \psi(\mathbf{x}) - \psi(\mathbf{y}) + \psi(\mathbf{0}) \end{array}$$

2 Define the "Diffential in \mathbf{x}_0 " : $D_{\mathbf{x}_0}\psi(\mathbf{y}) = D\psi(\mathbf{x}_0, \mathbf{y})$.

3 $D_{\mathbf{x}_0}\psi$ is an endomorphism of $(\mathbb{F}_q)^n$ (i.e. a matrix).

$$T \circ \zeta = \psi \circ S \xrightarrow{\text{Differential}} T \times D_{\mathbf{x}_0} \zeta = D_{S \cdot \mathbf{x}_0} \psi \times S$$

Problem

We need to know the image of S on a point...

A Nice Tool for Multivariate Cryptanalysis

Switching to the Differential

1 Define the "**Differential**" (bilinear symmetric map):

$$\begin{array}{rcl} \mathsf{D}\psi: & \left(\mathbb{F}_{q}\right)^{n} \times \left(\mathbb{F}_{q}\right)^{n} & \to & \left(\mathbb{F}_{q}\right)^{n} \\ & (\mathbf{x}, \mathbf{y}) & \mapsto & \psi(\mathbf{x} + \mathbf{y}) - \psi(\mathbf{x}) - \psi(\mathbf{y}) + \psi(\mathbf{0}) \end{array}$$

2 Define the "Diffential in \mathbf{x}_0 " : $D_{\mathbf{x}_0}\psi(\mathbf{y}) = D\psi(\mathbf{x}_0, \mathbf{y})$.

3 $D_{\mathbf{x}_0}\psi$ is an endomorphism of $(\mathbb{F}_q)^n$ (i.e. a matrix).

$$T \circ \zeta = \psi \circ S \xrightarrow{\text{Differential}} T \times D_{\mathbf{x}_0} \zeta = D_{S \cdot \mathbf{x}_0} \psi \times S$$

Problem

We need to know the image of S on a point...

The MQ Problem

Polynomial Equivalence Problems

Combining our Forces

$$\underbrace{T \cdot \zeta^{(1)} = \psi^{(1)} \cdot S}_{T \cdot \zeta^{(0)} = \psi^{(0)}}$$

linear equations T known on a point

Transfer relation from T to S

1 Assume that there are \mathbf{x}_0 and \mathbf{y}_0 such that

$$\zeta^{(1)} \cdot {f x}_0 = \zeta^{(0)} \qquad \psi^{(1)} \cdot {f y}_0 = \psi^{(0)}$$

2 Then:

$$\begin{split} & \mathcal{T} \cdot \zeta^{(0)} = \psi^{(0)} & \qquad \mathcal{T} \text{ known on a point} \\ & \left[\mathcal{T} \times \zeta^{(1)} \right] \cdot \mathbf{x}_0 = \psi^{(0)} \\ & \left[\psi^{(1)} \times \mathcal{S} \right] \cdot \mathbf{x}_0 = \psi^{(0)} & \qquad \text{linear equations} \\ & \mathcal{S} \cdot \mathbf{x}_0 = \mathbf{y}_0 \end{split}$$

And the Pencil is Here

$$\mathbf{T} \times \left(\lambda \cdot \boldsymbol{\zeta}^{(1)} + \boldsymbol{\mu} \cdot \mathbf{D}_{\mathbf{x}_0} \boldsymbol{\zeta} \right) = \left(\lambda \cdot \boldsymbol{\psi}^{(1)} + \boldsymbol{\mu} \cdot \mathbf{D}_{\mathbf{y}_0} \boldsymbol{\psi} \right) \times \mathbf{S}$$

Necessary Conditions

1
$$\zeta^{(0)} \neq 0$$

2 $\exists \mathbf{x}_0 \text{ s.t. } \zeta^{(1)} \cdot \mathbf{x}_0 = \zeta^{(0)}$

Random instances meet them with macroscopic prob. $(\geq 1/4)$

Why go through this hassle?

Pencil \rightarrow *S* and *T* live in a subspace of dimension \approx *n*

And the Pencil is Here

$$\mathbf{T} \times \left(\lambda \cdot \boldsymbol{\zeta}^{(1)} + \boldsymbol{\mu} \cdot \mathbf{D}_{\mathbf{x}_0} \boldsymbol{\zeta} \right) = \left(\lambda \cdot \boldsymbol{\psi}^{(1)} + \boldsymbol{\mu} \cdot \mathbf{D}_{\mathbf{y}_0} \boldsymbol{\psi} \right) \times \mathbf{S}$$

Necessary Conditions

1
$$\zeta^{(0)} \neq 0$$

2 $\exists \mathbf{x}_0 \text{ s.t. } \zeta^{(1)} \cdot \mathbf{x}_0 = \zeta^{(0)}$

Random instances meet them with macroscopic prob. $(\geq 1/4)$

Why go through this hassle?

Pencil \rightarrow *S* and *T* live in a subspace of dimension \approx *n*

The MQ Problem

Concluding step

$$T = \sum_{i=1}^{n} T_i \cdot X_i \qquad S = \sum_{i=1}^{n} S_i \cdot X_i$$

Identify coefficient-wise

$$T\circ \zeta = \psi\circ S$$

- n equalities between quadratic polynomials
- $\approx n^2$ monomials in each polynomial
- $\rightarrow \approx n^3$ quadratic equations in X_1, \ldots, X_n
 - Gauss-reduce the quadratic equations in time $\mathcal{O}\left(n^{6}
 ight)$
 - Find the values of all the monomials, including the X_i

The MQ Problem

Dehomogenization

Finding the Image of S on One Point

Efficient Algorithms available...

... Once the image of S is known on one point

- ► Exhaustive Search → *qⁿ* trials...
- Natural approach: birthday paradox

- Try pairs (x, y)
- Assume $y = S \cdot x$
- Dehomogenize
- Solution found?

Finding the Image of *S* on One Point

Efficient Algorithms available...

- ... Once the image of S is known on one point
- Exhaustive Search $\rightarrow q^n$ trials...
- Natural approach: birthday paradox

- ► Try pairs (x, y)
- Assume $y = S \cdot x$
- Dehomogenize
- Solution found?

The MQ Problem

Machinery

A Key Tool for Multivariate Cryptanalysis

Given a quadratic map $\phi: (\mathbb{F}_q)^n \to (\mathbb{F}_q)^n$, its differential is:

$$\begin{array}{rcl} \mathsf{D}\boldsymbol{\phi}: & \left(\mathbb{F}_{q}\right)^{n} \times \left(\mathbb{F}_{q}\right)^{n} & \to & \left(\mathbb{F}_{q}\right)^{n} \\ & (\mathbf{x}, \mathbf{y}) & \mapsto & \boldsymbol{\phi}(\mathbf{x} + \mathbf{y}) - \boldsymbol{\phi}(\mathbf{x}) - \boldsymbol{\phi}(\mathbf{y}) + \boldsymbol{\phi}(\mathbf{0}) \end{array}$$

 $D\phi$ is a symmetric bilinear map.

From any Quadratic Map ϕ We Define a Undirected Graph G_{ψ} :

• Vertices:
$$(\mathbb{F}_q)^n - \{0\}$$

• Edges:
$$\{\mathbf{x} \leftrightarrow \mathbf{y} \mid \mathrm{D}\phi(\mathbf{x}, \mathbf{y}) = \mathbf{0}\}$$

The MQ Problem

Machinery

The MQ Problem

Machinery

A Key Tool for Multivariate Cryptanalysis

Given a quadratic map $\phi: (\mathbb{F}_q)^n \to (\mathbb{F}_q)^n$, its differential is:

$$\begin{array}{rcl} \mathsf{D}\boldsymbol{\phi}: & \left(\mathbb{F}_{q}\right)^{n} \times \left(\mathbb{F}_{q}\right)^{n} & \rightarrow & \left(\mathbb{F}_{q}\right)^{n} \\ & (\mathbf{x}, \mathbf{y}) & \mapsto & \boldsymbol{\phi}(\mathbf{x} + \mathbf{y}) - \boldsymbol{\phi}(\mathbf{x}) - \boldsymbol{\phi}(\mathbf{y}) + \boldsymbol{\phi}(\mathbf{0}) \end{array}$$

 $D\phi$ is a symmetric bilinear map.

From any Quadratic Map ϕ We Define a Undirected Graph G_{ψ} :

• Vertices:
$$(\mathbb{F}_q)^n - \{0\}$$

• Edges:
$$\{\mathbf{x} \leftrightarrow \mathbf{y} \mid \mathrm{D}\phi(\mathbf{x}, \mathbf{y}) = \mathbf{0}\}$$

If $T \circ \zeta = \psi \circ S$, then...

S is a **Graph Isomorphism** that sends G_{ζ} to G_{ψ} .

"Topological Meet-in-the middle" Algorithm

- Sample random points **x** in G_{ζ} , store TOPOLOGY(**x**) \mapsto **x**
- ▶ Sample random points **y** in G_{ψ} , store TOPOLOGY(**y**) \mapsto **y**
- ▶ for all colliding pairs, assume y = S · x, dehomogenize, etc.

"Topological Meet-in-the middle" Algorithm

- Sample random points **x** in G_{ζ} , store TOPOLOGY(**x**) \mapsto **x**
- ▶ Sample random points **y** in G_{ψ} , store TOPOLOGY(**y**) \mapsto **y**
- ▶ for all colliding pairs, assume y = S · x, dehomogenize, etc.

Topological Hashing: Extracting Little Information

Problem

Deterministically extract topological information?

Simple Solution

 $\mathsf{TOPOLOGY}(\mathbf{x}) \ \approx \ \# \mathsf{adjacent} \ \mathsf{vertices}$

- Sample $q^{n/3}$ points in both G_{ζ} and G_{ϕ}
- Running time O (q^{2n/3}), success probability close to 1

Topological Hashing: Extracting Much More Information

Graphs are very sparse

- Tree-like (besides the small triangles)
- Kill the triangles \rightarrow actual tree (BFS, no backwards edges)
- The topology of trees is easy to encode

Topological Hashing: Extracting Much More Information

Complicated Solution

TOPOLOGY(\mathbf{x}) \approx Tree-encoding (depth $n \log n$)

► Sample *q*^{*n*/2} points with "deep" neighborhoods

Theorem

If the trees are random and independent, then $\mathcal{O}(1)$ collisions (prob. of "accidental" collision negligible, even with exponentially many trees)

• Running time $\mathcal{O}(q^{n/2})$, success probability close to 1

Conclusion

- 1 The **MQ** problem
 - Faster exhaustive search over \mathbb{F}_2
 - ► $\mathcal{O}\left(n^{2}\cdot2^{n}\right) \rightarrow \mathcal{O}\left(n\cdot2^{n}\right) \rightarrow \mathcal{O}\left(2^{n}\right)$
 - 80-bit challenge not strictly out of reach
- 2 The PLE problem
 - Faster polynomial algorithms for the inhomogeneous case
 - $\blacktriangleright \mathcal{O}\left(n^{9}\right) \rightarrow \mathcal{O}\left(n^{6}\right) \rightarrow \mathcal{O}\left(n^{3}\right)$
 - First working birthday algorithm for the homogeneous case
 - $\blacktriangleright \mathcal{O}\left(q^{3n}\right) \to \mathcal{O}\left(q^{n}\right) \to \mathcal{O}\left(q^{2n/3}\right) \to \mathcal{O}\left(q^{n/2}\right)$
 - Currently known to work over \mathbb{F}_2 , extension seems easy
 - The "obfuscation" technique is probably a bad idea

The MQ Problem

Thank You

