
Challenges in GPGPU architectures:
fixed-function units and regularity

Sylvain Collange

CARAMEL Seminar
December 9, 2010

 2

Context

Accelerate compute-intensive applications

HPC: computational fluid dynamics, seismic imaging, DNA
folding, phylogenetics…

Multimedia: 3D rendering, video, image processing…

Current constraints

Power consumption

Cost of moving and retaining data

 3

Focus on GPGPU

Graphics Processing Unit (GPU)

Video game industry: volume market

Low unit price, amortized R&D

Inexpensive, high-performance parallel processor

2002: General-Purpose computation on GPU (GPGPU)

2010: World's fastest computer

Tianhe-1A supercomputer

7168 GPUs (NVIDIA Tesla M2050)

2.57 Pflops

4.04 MW “only”

#1 in Top500, #11 in Green500
Credits: NVIDIA

 4

Outline of this talk

Introduction to GPU architecture

Balancing specialization and genericity

Current challenges

GPGPU using specialized units

Exploiting regularity

Limitations of current GPUs

Dynamic data deduplication

Static data deduplication

Conclusion

 5

Sequential processor

Example: scalar-vector multiplication: X ← a∙X

for i = 0 to n-1
X[i] ← a * X[i]

move i ← 0
loop:

load t ← X[i]
mul t ← a×t
store X[i] ← t
add i ← i+1
branch i<n? loop Sequential CPU

add i ← 18

store X[17]

mul

Fetch

Decode

Execute

L/S Unit

Source code

Machine code

Memory

 6

Sequential processor

Example: scalar-vector multiplication: X ← a∙X

for i = 0 to n-1
X[i] ← a * X[i]

move i ← 0
loop:

load t ← X[i]
mul t ← a×t
store X[i] ← t
add i ← i+1
branch i<n? loop Sequential CPU

add i ← 18

store X[17]

mul

Fetch

Decode

Execute

L/S Unit

Source code

Machine code

Obstacles to increasing sequential CPU performance
David Patterson (UCBerkeley):
“Power Wall + Memory Wall + ILP Wall = Brick Wall”

Memory

 7

Multi-core

Break computation into m independent threads

Run threads on independent cores

Benefit from data parallelism

for i = kn/m to (k+1)n/m-1
X[i] ← a * X[i]

Source code (thread k)

move i ← kn/m
loop:

load t ← X[i]
mul t ← a×t
store X[i] ← t
add i ← i+1
branch i<(k+1)n/m? loop

Machine code Multi-core CPU

IF
ID

EX

LSU

IF

ID

EX

LSU

add i ← 18

store X[17]

mul

IF
ID

EX

LSU

IF

ID

EX

LSU

add i ← 50

store X[49]

mul

M
em

ory

 8

Regularity

Similarity in behavior between threads

IrregularRegular

Instruction
regularity

Control
regularity

Memory
regularity

mul mul mul mul mul add store load
add add add add

T
im

e

Thread
1 2 3 4

load mul addsub

1 2 3 4

switch(i) {
 case 2:...
 case 17:...
 case 21:...
}

i=21 i=4 i=2i=17i=17 i=17 i=17i=17

load
X[8]

load
X[0]

load
X[11]

load
X[3]

load
X[8]

load
X[9]

load
X[10]

load
X[11]

X Memory

 9

SIMD

Single Instruction Multiple Data

Benefit from regularity

Challenging to program (semi-regular apps?)

for i = 0 to n-1 step 4
X[i..i+3] ← a * X[i..i+3]

Source code

loop:
vload T ← X[i]
vmul T ← a×T
vstore X[i] ← T
add i ← i+4
branch i<n? loop

Machine code

SIMD CPU

add i ← 20

vstore X[16..19

vmul

IF

ID

EX

LSU

M
em

ory

 10

SIMT

Vectorization at runtime

Group of synchronized threads: warp

For n threads:
X[tid] ← a * X[tid]

Source code

SIMT GPU

(16-19) store

(16) mul

IF

ID

EX

LSU(16)

M
em

ory

load t ← X[tid]
mul t ← a×t
store X[tid] ← t

Machine code

(17) mul (18) mul (19) mul

(17) (18) (19)

(16-19) load

Single Instruction, Multiple Threads

 11

SIMD vs. SIMT

Static vs. dynamic

Similar contrast as VLIW vs. superscalar

SIMD SIMT

Instruction
regularity

Vectorization at
compile-time

Vectorization at
runtime

Control
regularity

Software-managed
Bit-masking,
predication

Hardware-managed
Stack, counters,

multiple PCs

Memory
regularity

Compiler selects:
vector load-store or

gather-scatter

Hardware-managed
Gather-scatter with

hardware coalescing

 12

Example GPU: NVIDIA GeForce GTX 580

SIMT: warps of 32 threads

16 SMs / chip

2×16 cores / SM, 48 warps / SM

1580 Gflop/s

Up to 24576 threads in flight

Time

C
ore 1

C
ore 2

C
ore 16

Warp 3

Warp 1

Warp 47

SM1 SM16

……
C

ore 17

C
ore 18

C
ore32

Warp 4

Warp 2

Warp 48

…

 13

Outline of this talk

Introduction to GPU architecture

Balancing specialization and genericity

Current challenges

GPGPU using specialized units

Exploiting regularity

Limitations of current GPUs

Dynamic data deduplication

Static data deduplication

Conclusion

 14

2005-2009: the road to unification?

Example: standardization of arithmetic units

2005: exotic “Cray-1-like” floating-point arithmetic

2007: minimal subset of IEEE 754

2010: full IEEE 754-2008 support

Other examples of unification

Memory access

Programming language facilities

GPU becoming a standard processor

Tim Sweeney (EPIC Games): “The End of the GPU Roadmap”

Intel Larrabee project

Multi-core, SIMD CPU for graphics
S. Collange, M. Daumas, D. Defour. État de l'intégration de la virgule flottante dans les
processeurs graphiques. RSTI – TSI 27/2008, p. 719 – 733. 2008

 15

2010: back to specialization

2009-12: Intel Larrabee canceled

…as a graphics product

Specialized units are still alive and well

Power efficiency advantage

Rise of the mobile market

Long-term direction

Heterogeneous multi-core

Application-specific accelerators

Relevance for HPC?

Right balance between specialization and genericity?

 16

Contributions of this part

Radiative transfer simulation in OpenGL

>50× speedup over CPU

Thanks to specialized units : rasterizer, blending,
transcendentals

Piecewise polynomial evaluation

+60% over Horner rule on GPU

Creative use of the texture filtering unit

Interval arithmetic library

120× speedup over CPU

Thanks to static rounding attributes
S. Collange, M. Daumas, D. Defour. Graphic processors to speed-up simulations for the design of high
performance solar receptors. ASAP18, 2007.
S. Collange, M. Daumas, D. Defour. Line-by-line spectroscopic simulations on graphics processing units.
Computer Physics Communications, 2008.
S. Collange, J. Flòrez, D. Defour. A GPU interval library based on Boost.Interval. RNC, 2008.
M. Arnold, S. Collange, D. Defour. Implementing LNS using filtering units of GPUs. ICASSP, 2010.
Interval code sample, NVIDIA CUDA SDK 3.2, 2010

 17

Beyond GPGPU programming

Limitations encountered

Software: drivers, compiler

No access to attribute interpolator in CUDA

Hardware: usage scenario not considered at design time

Accuracy limitations in blending units, texture filtering

Broaden application space without compromising (too
much) power advantage?

GPU vendors willing to include non-graphics features, unless
prohibitively expensive

We need to study GPU architecture

 18

Outline of this talk

Introduction to GPU architecture

Balancing specialization and genericity

Current challenges

GPGPU using specialized units

Exploiting regularity

Limitations of current GPUs

Dynamic data deduplication

Static data deduplication

Conclusion

 19

 Knowing our baseline

Design and run micro-benchmarks

Target NVIDIA Tesla architecture

Go far beyond published specifications

Understand design decisions

Run power studies

Energy measurements on micro-benchmarks

Understand power constraints

S. Collange, D. Defour, A. Tisserand. Power consumption of GPUs from a software perspective.
ICCS 2009.
S. Collange. Analyse de l’architecture GPU Tesla. Technical Report hal-00443875, Jan 2010.

 20

Barra

Functional instruction set simulator

Modeled after NVIDIA Tesla GPUs

Executes native CUDA binaries

Reproduces SIMT execution

Built within the Unisim framework

Unisim: ~60k shared lines of code

Barra: ~30k LOC

Fast, accurate

Produces low-level statistics

Allows experimenting with architecture changes

S. Collange, M. Daumas, D. Defour, D. Parello. Barra: a parallel functional simulator for GPGPU.
IEEE MASCOTS, 2010.

http://gpgpu.univ-perp.fr/index.php/Barra

 21

Primary constraint: power

Power measurements on NVIDIA GT200

Energy/op
(nJ)

Total power
(W)

Instruction control 1.8 18

Multiply-add on
32-element vector

3.6 36

Load 128B from DRAM 80 90

With the same amount of energy

Read 1 word from DRAM

Compute 44 flops

Need to keep memory traffic low

Standard solution: caches

 22

On-chip memory

Conventional wisdom

CPUs have huge amounts of cache

GPUs have almost none

Actual data

GPU Register files
+ caches

NVIDIA
GF100

3.9 MB

AMD
Cypress

5.8 MB

At this rate, will catch up with CPUs by 2012…

 23

The cost of SIMT: register wastage

Instructions

mov i ← 0
loop:

vload T ← X[i]
vmul T ← a×T
vstore X[i] ← T
add i ← i+16
branch i<n? loop

SIMD
mov i ← tid

loop:
load t ← X[i]
mul t ← a×t
store X[i] ← t
add i ← i+tnum
branch i<n? loop

SIMT

Registers

T
17a
0i

vectorscalar
51n

t
1717171717 17
0 1 2 3 4 15
5151515151 51

a
i
n

vload
vmul
vstore
add
branch

mul
store
add
branch

load

Thread
0 10 2 3 …

SIMDscalar

 24

SIMD vs. SIMT

SIMD SIMT

Instruction
regularity

Vectorization at
compile-time

Vectorization at
runtime

Control
regularity

Software-managed
Bit-masking,
predication

Hardware-managed
Stack, counters,

multiple PCs

Memory
regularity

Compiler selects:
vector load-store or

gather-scatter

Hardware-managed
Gather-scatter with

hardware coalescing
Data
regularity

Scalar registers,
scalar instructions

Duplicated registers,
duplicated ops

 25

Uniform and affine vectors

Uniform vector

In a warp, v[i] = c

Value does not depend on lane ID
5 5 5 5 5 5 5 5

8 9 101112131415

warp
(granularity)

thread

3 3 3 3 3 3 3 3

Affine vector

In a warp, v[i] = b + i s

Base b, stride s

Affine relation between value and
lane ID

Generic vector : anything else

0 2 4 6 8 101214

b=8

s=1

b=0

s=2

c=5 c=3

2 8 0 -4 4 4 5 8 2 3 7 1 0 3 3 4

 26

How many uniform / affine vectors?

Analysis by simulation with Barra

Applications from the CUDA SDK

Granularity 16 threads

49% of all reads from the register file are affine

32% of all instructions compute on affine vectors

This is what we have “in the wild”

How to capture it?

Inputs

Outputs

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Generic
Affine
Uniform

 27

Outline of this talk

Introduction to GPU architecture

Balancing specialization and genericity

Current challenges

GPGPU using specialized units

Exploiting regularity

Limitations of current GPUs

Dynamic data deduplication

Static data deduplication

Conclusion

 28

mov i ← tid A←A
loop:

load t ← X[i] K←U[A]
mul t ← a×t K←U×K
store X[i] ← t U[A]←K
add i ← i+tnum A←A+U
branch i<n? loop A<U?

loop:
load t ← X[i] K←U[A]
mul t ← a×t K←U×K
...

Instructions

t
17 X X X X X
0 1 X X X X

51 X X X X X

a
i
n

Thread
0 10 2 3 …

Tagging registers

K
U

U
A

Tag

TagsAssociate a tag to each
vector register

Uniform, Affine, unKnown

Propagate tags across
arithmetic instructions

2 lanes are enough to
encode uniform and affine
vectors

T
race

 29

Dynamic data deduplication: results

Detects

79% of affine input operands

75% of affine computations

Inputs total

Inputs detected

Outputs total

Outputs detected

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Unknown
Affine
Uniform

 30

New pipeline

New deduplication stage

In parallel with predication control stage

Split RF banks into scalar part and vector part

Fine-grained clock-gating on vector RF and SIMD
datapaths

DecodeFetch

De-
duplication

Tags

Read
operands

Scalar
RF

Vector RF

Execute

Branch /
Mask

...

Reg ID Reg ID + tag

 31

Power savings

DecodeFetch

De-
duplication

Tags

Read
operands

Scalar
RF

Vector RF

Execute

Branch /
Mask

...

Reg ID Reg ID + tag

Inactive for
24% of instructions

Inactive for
38% of operands

S. Collange, D. Defour, Y. Zhang. Dynamic detection of uniform and affine vectors in GPGPU
computations. Europar HPPC09, 2009

 32

SIMD vs. SIMT

SIMD SIMT

Instruction
regularity

Vectorization at
compile-time

Vectorization at
runtime

Control
regularity

Software-managed
Bit-masking,
predication

Hardware-managed
Stack, counters,

multiple PCs

Memory
regularity

Compiler selects:
vector load-store or

gather-scatter

Hardware-managed
Gather-scatter with

hardware coalescing
Data
regularity

Scalar registers,
scalar instructions

Data deduplication
at runtime

 33

Outline of this talk

Introduction to GPU architecture

Balancing specialization and genericity

Current challenges

GPGPU using specialized units

Exploiting regularity

Limitations of current GPUs

Dynamic data deduplication

Static data deduplication

Conclusion

 34

A scalarizing compiler?

Scalar-only Vector-only

Programming
models

Sequential
programming

SPMD
(CUDA, OpenCL)

Architectures
Model CPU
Scalar

Actual CPU
Scalar+SIMD

GPU
SIMT

Sc
al

ar
iz

in
g

co
m

pi
le

r

V
ectorizing

com
piler

T
raditional
com

piler

S
P

M
D

com
piler

 35

Still uniform and affine vectors

Scalar registers

Uniform vectors

Affine vectors with known
stride

Scalar operations

Uniform inputs,
uniform outputs

Uniform branches

Uniform conditions

Vector load/store (vs.
gather/scatter)

Affine aligned addresses

0 0 0 0 0 0 0 0if(c)
{
}
else
{
}

8 9 101112131415x=t[i];

t[8] t[15]
Memory

i

x

c

c=a+b 2 2 2 2 2 2 2 2a

3 3 3 3 3 3 3 3b

5 5 5 5 5 5 5 5c

+ + + + + + + +

 36

From SPMD to SIMD

Forward dataflow analysis

Statically propagate tags in dataflow graph

⊥, C(v), U, A(s), K

Propagate value v of constants, stride s of affine vectors, and
alignment

SPMD

phi i1 ← φ(i0,i2) A(1)←φ(A(1),⊥)
load t ← X[i1] K←U[A(1)]
mul t ← a×t K←U×K
store X[i1] ← t U[A(1)]←K
add i2 ← i1+tnum A(1)←A(1)+C(tnum)
branch i2<n? loop A(1)<C(n)?

mov i0 ← tid A(1)←A(1)

 37

From SPMD to SIMD

Forward dataflow analysis

Statically propagate tags in dataflow graph

⊥, C(v), U, A(s), K

Propagate value v of constants, stride s of affine vectors, and
alignment

phi i1 ← φ(i0,i2) A(1)←φ(A(1),A(1))
load t ← X[i1] K←U[A(1)]
mul t ← a×t K←U×K
store X[i1] ← t U[A(1)]←K
add i2 ← i1+tnum A(1)←A(1)+C(tnum)
branch i2<n? loop A(1)<C(n)?

mov i0 ← tid A(1)←A(1)

phi i1 ← φ(i0,i2)
vload t ← X[i1]
vmul t ← a×t
vstore X[i1] ← t
add i2 ← i1+tnum
branch i2<n? loop

mov i0 ← 0

SIMDSPMD

 38

Results: instructions, registers

Benchmarks: CUDA SDK, SGEMM, Rodinia, Parboil

Static operands

Inputs total

Inputs identified

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Unknown
Affine
Uniform

Registers

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Vector
Scalar

Split register allocation

 39

Results: memory, control

SIMD: identify at compile-time situations that
SIMT detects at runtime

Uniform branches

Uniform, unit-strided loads & stores

Scalar instructions, registers

Loads total

Loads identified

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Other
Unit-strided
Uniform

Branches total

Branches identified

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Divergent
Uniform

 40

Static vs. Dynamic data deduplication

Static deduplication Dynamic deduplication

Allows simpler hardware Preserves binary
compatibility

Governs register allocation
and instruction scheduling

Captures dynamic
behavior

Enables constant
propagation

Unaffected by (future)
software complexity

Applies to memory (call
stack…)

 41

Summary of contributions

Specialized units can be used for other applications

Make specialized units (more) configurable at reasonable cost

Introduced regularity: instruction, control, memory, data

Current GPGPU applications exhibit significant data
regularity

Both static and dynamic techniques can exploit it

Enables power savings

Less data storage and movement

 42

Perspectives

New computer architecture field:
SIMT microarchitecture

Improve flexibility on irregular applications

Improve efficiency on regular applications

Can we bridge the SIMD – SIMT gap?

Hints from compiler, keep microarchitecture freedom

Short-term: extend redundancy elimination to the
memory hierarchy

Data compression in caches, memory

Consider floating-point data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

