Variations on the Knapsack Generator

Florette Martinez

ENS-PSL

March 11th

PRNG

PRNG

PRNG

Table of Contents

1 Definition of the Knapsack Generator

2 Attacks on the Knapsack Generator

Table of Contents

1 Definition of the Knapsack Generator

2 Attacks on the Knapsack Generator

3 Generalized Knapsack Generator

Knapsack Problem

Optimization Problem

 $\leq C$

images made by surang from www.flaticon.com

Knapsack Problem

Optimization Problem

 $\leq C$

 $\omega_3, p_3 \qquad \omega_4, p_4$

Goal: Finding bits *u_i*

$$\sum_{i=1}^4 u_i \omega_i \leq C$$
 and $\sum_{i=1}^4 u_i p_i$ maximal

images made by surang from www.flaticon.com

Subset Sum Problem (SSP)

Guessing Problem

images made by surang from www.flaticon.com

Subset Sum Problem (SSP)

Guessing Problem

Goal: Finding bits *u_i*

$$\sum_{i=1}^4 u_i \omega_i = C$$

images made by surang from www.flaticon.com

Formalization

Parameters:

- an integer n
- a vector of weights $\boldsymbol{\omega} = (\omega_0, \dots, \omega_{n-1})$
- a target C
- a modulo M

The goal is finding \mathbf{u} such that

$$\langle \mathbf{u}, \boldsymbol{\omega}
angle = C \mod M$$

Formalization

Parameters:

- an integer n
- a vector of weights $\boldsymbol{\omega} = (\omega_0, \dots, \omega_{n-1})$
- a target C
- a modulo M

The goal is finding **u** such that

$$\langle \mathbf{u}, \boldsymbol{\omega} \rangle = C \mod M$$

The closer *M* is to 2^n , the harder the problem is. For now $M = 2^n$

$$\mathbf{u} \longrightarrow \overline{\langle \cdot, \boldsymbol{\omega} \rangle \mod M} \longrightarrow s_0, s_1, s_2, \dots$$

$$\mathbf{u} \longrightarrow \overline{\langle ., \boldsymbol{\omega} \rangle \mod M} \longrightarrow s_0, \underline{s_1, s_2, \ldots}$$

¹Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE Intern. Symp. of Inform. Theory, vol. 46 (1985)

Public	Secret
$n ext{ and } \ell \in \mathbb{N}$	$\mathbf{u}\in\{0,1\}^n$
$f \in \mathbb{F}_2[X_1,\ldots,X_n]$	$oldsymbol{\omega} \in \{0,\ldots,2^n-1\}^n$

Public	Secret
n and $\ell \in \mathbb{N}$	$\mathbf{u}\in\{0,1\}^n$
$f \in \mathbb{F}_2[X_1,\ldots,X_n]$	$oldsymbol{\omega} \in \{0,\ldots,2^n-1\}^n$

PublicSecret
$$n$$
 and $\ell \in \mathbb{N}$ $\mathbf{u} \in \{0,1\}^n$ $f \in \mathbb{F}_2[X_1, \dots, X_n]$ $\boldsymbol{\omega} \in \{0, \dots, 2^n - 1\}^n$

Intermediate states	
$(u_i)_{i\geq n}$	$u_{n+i} = f(u_i, \ldots, u_{n+i-1})$
$(\mathbf{U}_i)_{0,,m-1}$	$\mathbf{U}_i = (u_i, \dots u_{n+i-1})$

PublicSecret
$$n$$
 and $\ell \in \mathbb{N}$ $\mathbf{u} \in \{0,1\}^n$ $f \in \mathbb{F}_2[X_1, \dots, X_n]$ $\boldsymbol{\omega} \in \{0, \dots, 2^n - 1\}^n$

Intermediate states	
$(u_i)_{i\geq n}$	$u_{n+i} = f(u_i, \ldots, u_{n+i-1})$
$(\mathbf{U}_i)_{0,,m-1}$	$\mathbf{U}_i = (u_i, \ldots u_{n+i-1})$
$\mathbf{v} = (v_0, \ldots, v_{m-1})$	$oldsymbol{v}_i = \langle oldsymbol{U}_i, \omega angle mod M$

Public	Secret
n and $\ell \in \mathbb{N}$	$\mathbf{u}\in\{0,1\}^n$
$f \in \mathbb{F}_2[X_1,\ldots,X_n]$	$oldsymbol{\omega} \in \{0,\ldots,2^n-1\}^n$

Intermediate states	
$(u_i)_{i\geq n}$	$u_{n+i} = f(u_i, \ldots, u_{n+i-1})$
$(\mathbf{U}_i)_{0,,m-1}$	$\mathbf{U}_i = (u_i, \ldots u_{n+i-1})$
$\mathbf{v} = (v_0, \ldots, v_{m-1})$	$oldsymbol{v}_i = \langle oldsymbol{U}_i, \omega angle mod M$
$\mathbf{s} = (s_0, \ldots, s_{m-1})$	$s_i = v_i / / 2^\ell$
$\boldsymbol{\delta} = (\delta_0, \dots, \delta_{m-1})$	$v_i = 2^\ell s_i + \delta_i, \ \boldsymbol{\delta} _{\infty} \leq 2^\ell$

Table of Contents

1 Definition of the Knapsack Generator

2 Attacks on the Knapsack Generator

3 Generalized Knapsack Generator

The main flaw

The main flaw

The secret is unbalanced.

The secret is unbalanced.

For a secret of \sim 1024 bits, the seed (u) is only made of 32 bits.

Layout

Layout

```
ApproxWeights(\mathbf{u}, \mathbf{s}(short)):
???
Return(\omega')
```

Check Consistency $(\mathbf{u}', \boldsymbol{\omega}', \mathbf{s}(long))$: $\mathbf{s}' = PRNG(\mathbf{u}', \boldsymbol{\omega}')$ Return Boolean $(\mathbf{s}' \text{ is close to } \mathbf{s})$

Layout

```
ApproxWeights(\mathbf{u}, \mathbf{s}(short)):
???
Return(\omega')
```

Check Consistency $(\mathbf{u}', \boldsymbol{\omega}', \mathbf{s}(\textit{long}))$: $\mathbf{s}' = PRNG(\mathbf{u}', \boldsymbol{\omega}')$ Return Boolean $(\mathbf{s}' \text{ is close to } \mathbf{s})$

```
Full Attack(s):

For \mathbf{u}' \in \{0, 1\}^n:

\omega' = \operatorname{ApproxWeights}(\mathbf{u}', \mathbf{s}(short))

If Check Consistency(\mathbf{u}', \omega', \mathbf{s}(long)) = \operatorname{True}

Return (\mathbf{u}', \omega')

End If

End For
```

Norms

• If
$$\mathbf{v} = (v_0, \dots, v_{n-1}), \|\mathbf{v}\|_{\infty} = \max_{i \in \{0, \dots, n-1\}} |v_i|$$

• If M is a matrix, $\|M\|_{\infty} = \max_{\|\mathbf{v}\|_{\infty} = 1} \|\mathbf{v}M\|_{\infty}$
Hence

$$\|\mathbf{v}M\|_{\infty} \leq \|\mathbf{v}\|_{\infty}\|M\|_{\infty}$$

$$U = \begin{pmatrix} \mathbf{U}_0 \\ \mathbf{U}_1 \\ \dots \\ \mathbf{U}_{m-1} \end{pmatrix}$$

 $^{^2 {\}sf Knellwolf}, {\sf S.}, \&$ Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

$$U = \begin{pmatrix} \mathbf{U}_0 \\ \mathbf{U}_1 \\ \dots \\ \mathbf{U}_{m-1} \end{pmatrix}$$

 $\boldsymbol{\omega} \boldsymbol{U} = \mathbf{v} \mod \boldsymbol{M}$ $= 2^{\ell} \mathbf{s} + \boldsymbol{\delta} \mod \boldsymbol{M}$

 $^{^2 {\}sf Knellwolf}, {\sf S.}, \&$ Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

$$U = \begin{pmatrix} \mathbf{U}_0 \\ \mathbf{U}_1 \\ \dots \\ \mathbf{U}_{m-1} \end{pmatrix}$$

 $\boldsymbol{\omega} \boldsymbol{U} = \mathbf{v} \mod \boldsymbol{M}$ $= 2^{\ell} \mathbf{s} + \boldsymbol{\delta} \mod \boldsymbol{M}$

T such that $UT = I_n \mod M$

 $^{^2 {\}sf Knellwolf}, {\sf S.}, \&$ Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

Т

 $^{^2 {\}sf Knellwolf}, {\sf S.}, \&$ Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011
Attack of Knellwolf and Meier²

 $U = \begin{pmatrix} \mathbf{U}_0 \\ \mathbf{U}_1 \\ \dots \\ \mathbf{U}_n \end{pmatrix}$ $\omega U = \mathbf{v} \mod M$ $=2^{\ell}\mathbf{s}+\boldsymbol{\delta} \mod M$ $\boldsymbol{\omega} = \mathbf{v} T \mod M$ $= 2^{\ell} \mathbf{s} T + \boldsymbol{\delta} T \mod M$ T such that $UT = I_n \mod M$ $\omega - 2^{\ell} \mathbf{s} T = \boldsymbol{\delta} T \mod M$ Goal : Construct small \hat{T} such that $\|\boldsymbol{\delta}\hat{T}\|_{\infty} < M$

²Knellwolf, S., & Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

$$M = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \text{ and}$$
$$\mathcal{L} = \{ \alpha M \mid \alpha \in \mathbb{Z}^2 \}$$

$$\mathbf{x}' = \lfloor \beta \rceil M = (-3, -1)$$

$$egin{aligned} & \mathcal{M} = \begin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix} ext{ and } \ & \mathcal{L} = \{ lpha \mathcal{M} \mid lpha \in \mathbb{Z}^2 \} \end{aligned}$$

 β such that x= βM , $\beta = (-0.45, -1.55)$

 β such that x= βM , $\beta = (-0.45, -1.55)$

$$\mathbf{x}' = \lfloor \beta \rceil M = (-2, 2)$$

I have $\mathbf{v} = \boldsymbol{\omega} U \mod M$ and $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$ with $\boldsymbol{\delta}$ small

I have $\mathbf{v} = \boldsymbol{\omega} U \mod M$ and $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$ with $\boldsymbol{\delta}$ small

I have $\mathbf{v} = \boldsymbol{\omega} U \mod M$ and $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$ with $\boldsymbol{\delta}$ small

Failed, this is not $\boldsymbol{v},$ we call it \boldsymbol{v}'

I have $\mathbf{v} = \boldsymbol{\omega} U \mod M$ and $\mathbf{v} = 2^{\ell} \mathbf{s} + \boldsymbol{\delta}$ with $\boldsymbol{\delta}$ small

Failed, this is not $\boldsymbol{v},$ we call it \boldsymbol{v}'

We compute ω' as

 $\omega' U = \mathbf{v}' \mod M$

Why is ω' close to ω ?

$$(oldsymbol{\omega}-oldsymbol{\omega}')U=oldsymbol{v}-oldsymbol{v}' egin{array}{c} \mathsf{mod} & M \end{array}$$

$$(\boldsymbol{\omega}-\boldsymbol{\omega}')U=\mathbf{v}-\mathbf{v}' mode{} \operatorname{mod} M \quad \Leftrightarrow (\boldsymbol{\omega}-\boldsymbol{\omega}')=(\mathbf{v}-\mathbf{v}')\hat{\mathcal{T}} mode{} \operatorname{mod} M$$

$$\begin{aligned} (\boldsymbol{\omega} - \boldsymbol{\omega}')\boldsymbol{U} &= \boldsymbol{\mathsf{v}} - \boldsymbol{\mathsf{v}}' \bmod \boldsymbol{M} \quad \Leftrightarrow (\boldsymbol{\omega} - \boldsymbol{\omega}') = (\boldsymbol{\mathsf{v}} - \boldsymbol{\mathsf{v}}')\hat{\boldsymbol{T}} \bmod \boldsymbol{M} \\ &\Rightarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \|\hat{\boldsymbol{T}}\|_{\infty} \|\boldsymbol{\mathsf{v}} - \boldsymbol{\mathsf{v}}'\|_{\infty} \end{aligned}$$

$$(\omega - \omega')U = \mathbf{v} - \mathbf{v}' \mod M \quad \Leftrightarrow (\omega - \omega') = (\mathbf{v} - \mathbf{v}')\hat{T} \mod M$$

 $\Rightarrow \|\omega - \omega'\|_{\infty} \le \|\hat{T}\|_{\infty} \|\mathbf{v} - \mathbf{v}'\|_{\infty}$

In KW case: $\| oldsymbol{\omega} - 2^\ell \mathbf{s} \hat{\mathcal{T}} \|_\infty \simeq \| \hat{\mathcal{T}} \|_\infty \| oldsymbol{\delta} \|_\infty$

$$(\boldsymbol{\omega} - \boldsymbol{\omega}')U = \mathbf{v} - \mathbf{v}' \mod M \quad \Leftrightarrow (\boldsymbol{\omega} - \boldsymbol{\omega}') = (\mathbf{v} - \mathbf{v}')\hat{T} \mod M$$
$$\Rightarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \|\hat{T}\|_{\infty} \|\mathbf{v} - \mathbf{v}'\|_{\infty}$$

In KW case: $\|\boldsymbol{\omega} - 2^{\ell} \mathbf{s} \hat{\mathcal{T}}\|_{\infty} \simeq \|\hat{\mathcal{T}}\|_{\infty} \|\boldsymbol{\delta}\|_{\infty}$ But in our case $\|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \ll \|\hat{\mathcal{T}}\|_{\infty} \|\mathbf{v} - \mathbf{v}'\|_{\infty}$, precisely $\|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \le \|\mathbf{v} - \mathbf{v}'\|_{\infty}$

I already have
$$\|\mathbf{v} - \mathbf{v}'\|_{\infty} \leq 2^{\ell+1} \Leftarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \frac{2^{\ell+1}}{\|\boldsymbol{U}\|_{\infty}}$$
 (1)

I already have
$$\|\mathbf{v} - \mathbf{v}'\|_{\infty} \leq 2^{\ell+1} \Leftarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \frac{2^{\ell+1}}{\|\boldsymbol{U}\|_{\infty}}$$
 (1)

I already have
$$\|\mathbf{v} - \mathbf{v}'\|_{\infty} \leq 2^{\ell+1} \Leftarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \frac{2^{\ell+1}}{\|\boldsymbol{U}\|_{\infty}}$$
 (1)

If I call $\mathcal{L} = \{ \alpha U \mod M \mid \alpha \in \mathbb{Z}^n \}$, then

$$(\mathbf{v} - \mathbf{v}') \in \mathcal{A} = \mathcal{L} \cap B_{m,\infty}(2^{\ell+1})$$
 $(\boldsymbol{\omega} - \boldsymbol{\omega}') \in \mathcal{B} = \mathbb{Z}^n \cap B_{n,\infty}\left(rac{2^{\ell+1}}{\|U\|_{\infty}}
ight)$

I already have
$$\|\mathbf{v} - \mathbf{v}'\|_{\infty} \leq 2^{\ell+1} \Leftarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \frac{2^{\ell+1}}{\|\boldsymbol{U}\|_{\infty}}$$
 (1)

If I call $\mathcal{L} = \{ \alpha U \mod M \mid \alpha \in \mathbb{Z}^n \}$, then

$$(\mathbf{v} - \mathbf{v}') \in \mathcal{A} = \mathcal{L} \cap B_{m,\infty}(2^{\ell+1})$$
 $(\mathbf{\omega} - \mathbf{\omega}') \in \mathcal{B} = \mathbb{Z}^n \cap B_{n,\infty}\left(rac{2^{\ell+1}}{\|U\|_{\infty}}
ight)$

By (1), $\mathcal{B} imes U \subseteq \mathcal{A}$

I already have
$$\|\mathbf{v} - \mathbf{v}'\|_{\infty} \leq 2^{\ell+1} \Leftarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \frac{2^{\ell+1}}{\|\boldsymbol{U}\|_{\infty}}$$
 (1)

If I call $\mathcal{L} = \{ \alpha U \mod M \mid \alpha \in \mathbb{Z}^n \}$, then

$$(\mathbf{v} - \mathbf{v}') \in \mathcal{A} = \mathcal{L} \cap B_{m,\infty}(2^{\ell+1})$$

 $(\boldsymbol{\omega} - \boldsymbol{\omega}') \in \mathcal{B} = \mathbb{Z}^n \cap B_{n,\infty}\left(rac{2^{\ell+1}}{\|U\|_\infty}
ight)$

By (1), $\mathcal{B} imes U \subseteq \mathcal{A}$ and I want $\mathcal{A} \subseteq \mathcal{B} imes U$

I already have
$$\|\mathbf{v} - \mathbf{v}'\|_{\infty} \leq 2^{\ell+1} \Leftarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \frac{2^{\ell+1}}{\|\boldsymbol{U}\|_{\infty}}$$
 (1)

If I call $\mathcal{L} = \{ \alpha U \mod M \mid \alpha \in \mathbb{Z}^n \}$, then

$$(\mathbf{v} - \mathbf{v}') \in \mathcal{A} = \mathcal{L} \cap B_{m,\infty}(2^{\ell+1})$$

 $(\boldsymbol{\omega} - \boldsymbol{\omega}') \in \mathcal{B} = \mathbb{Z}^n \cap B_{n,\infty}\left(rac{2^{\ell+1}}{\|U\|_{\infty}}
ight)$

By (1), $\mathcal{B} \times U \subseteq \mathcal{A}$ and I want $\mathcal{A} \subseteq \mathcal{B} \times U$ We will show that $|\mathcal{B}| \ge |\mathcal{A}|$

I already have
$$\|\mathbf{v} - \mathbf{v}'\|_{\infty} \leq 2^{\ell+1} \Leftarrow \|\boldsymbol{\omega} - \boldsymbol{\omega}'\|_{\infty} \leq \frac{2^{\ell+1}}{\|\boldsymbol{U}\|_{\infty}}$$
 (1)

If I call $\mathcal{L} = \{ \alpha U \mod M \mid \alpha \in \mathbb{Z}^n \}$, then

$$(\mathbf{v} - \mathbf{v}') \in \mathcal{A} = \mathcal{L} \cap B_{m,\infty}(2^{\ell+1})$$

 $(\boldsymbol{\omega} - \boldsymbol{\omega}') \in \mathcal{B} = \mathbb{Z}^n \cap B_{n,\infty}\left(rac{2^{\ell+1}}{\|U\|_{\infty}}
ight)$

By (1), $\mathcal{B} \times U \subseteq \mathcal{A}$ and I want $\mathcal{A} \subseteq \mathcal{B} \times U$ We will show that $|\mathcal{B}| \ge |\mathcal{A}|$

$$|\mathcal{B}| = (2\lfloor \frac{2^{\ell+1}}{\|U\|_{\infty}} \rfloor - 1)^n$$

End of the attack

$$egin{aligned} |\mathcal{B}| &= (2\lfloorrac{2^{\ell+1}}{\|U\|_{\infty}}
floor-1)^n \ |\mathcal{A}| &\simeq rac{2^n(2^{\ell+1}-1)^n}{2^{n-m}} \end{aligned}$$

For n = 32 and m = 40 we obtain $|\mathcal{B}| \ge |\mathcal{A}|$ for $\ell \le 14$.

End of the attack

$$egin{aligned} |\mathcal{B}| &= (2\lfloorrac{2^{\ell+1}}{\|U\|_\infty}
floor-1)^n \ |\mathcal{A}| &\simeq rac{2^n(2^{\ell+1}-1)^n}{2^{n-m}} \end{aligned}$$

For n = 32 and m = 40 we obtain $|\mathcal{B}| \ge |\mathcal{A}|$ for $\ell \le 14$.

l	5	10	15	20	25
$\log_2(\ oldsymbol{\omega}-2^\ell \hat{T}\ _\infty)$	9.9	14.9	19.8	24.7	X
$\log_2(\ oldsymbol{\omega}-oldsymbol{\omega}'\ _\infty)$	3.6	8.7	13.6	18.7	X

Table of Contents

1 Definition of the Knapsack Generator

2 Attacks on the Knapsack Generator

3 Generalized Knapsack Generator

Knapsack Generator by Rueppel and Massey

Generalized Knapsack Generator by Von zur Gathen and Shparlinski³

³von zur Gathen, J., & Shparlinski, I. E. . Predicting subset sum pseudorandom generators. In Selected Areas in Cryptography: 11th International Workshop, SAC 2004.
Formalization of the Generalized Knapsack Generator

Public	Secret			
n and $\ell \in \mathbb{N}$	$\mathbf{u} = (u_0, \dots, u_{n-1}) \in \{0, 1\}^n$			
$f \in \mathbb{F}_2[X_1,\ldots,X_n]$	$oldsymbol{\omega} = (P_0, \dots, P_{n-1}) \in \mathcal{E}^n$			
${\mathcal E}$ elliptic curve over ${\mathbb F}_p$				

Formalization of the Generalized Knapsack Generator

Public	Secret				
$n ext{ and } \ell \in \mathbb{N}$	$\mathbf{u} = (u_0, \dots, u_{n-1}) \in \{0, 1\}^n$				
$f \in \mathbb{F}_2[X_1,\ldots,X_n]$	$\omega = (P_0, \dots, P_{n-1}) \in \mathcal{E}^n$				
\mathcal{E} elliptic curve over \mathbb{F}_p					

m is the number of outputs

Intermediate states	
$(u_i)_{i\geq n}$	$u_{n+i} = f(u_i, \ldots, u_{n+i-1})$
Q_j	$Q_j = \sum_{i=0}^{n-1} u_{i+j} P_i$
Si	$s_i = x_{Q_i}//2^\ell$
δ_i	$x_{Q_i} = 2^\ell s_i + \delta_i, \ \delta_i \le 2^\ell$

$$(x, y)$$
 such that $y^2 = x^3 + ax + b \mod p$

For x_0 :

$$(x, y)$$
 such that $y^2 = x^3 + ax + b \mod p$

For x_0 :

• there is no *P* such that $x_P = x_0$

$$(x, y)$$
 such that $y^2 = x^3 + ax + b \mod p$

For x_0 :

- there is no *P* such that $x_P = x_0$
- there exists *P* such that $x_P = x_{-P} = x_0$

$$(x, y)$$
 such that $y^2 = x^3 + ax + b \mod p$

For x_0 :

- there is no *P* such that $x_P = x_0$
- there exists *P* such that $x_P = x_{-P} = x_0$

For
$$P = (x_P, y_P)$$
, $Q = (x_Q, y_Q)$
• $s = \frac{y_P - y_Q}{x_P - x_Q}$
• $x_R = s^2 - x_P - x_Q$
• $y_R = y_P - s(x_P - x_R)$
• $P + Q = -R$

• If $P' + Q' = \pm (P + Q)$, $\mathbb{P}_{P',Q'}(|x_{P+Q} - x_{P'+Q'}| < 2^{\ell}) = 1$

• If
$$P' + Q' = \pm (P + Q)$$
, $\mathbb{P}_{P',Q'}(|x_{P+Q} - x_{P'+Q'}| < 2^{\ell}) = 1$

• If
$$P' + Q' \neq \pm (P + Q)$$
, $\mathbb{P}_{P',Q'}(|x_{P+Q} - x_{P'+Q'}| < 2^{\epsilon})$
= $\mathbb{P}_R(|x_{P+Q} - x_R| < 2^{\ell}) = \frac{2^{\ell}}{|\mathcal{E}|}$

$$(P_0 \quad P_1 \quad \dots \quad P_{n-1}) \times \begin{pmatrix} u_0 & u_1 & \dots & u_{n-1} \\ u_1 & u_2 & \dots & u_n \\ & \ddots & & \\ u_{n-1} & u_n & \dots & u_{2n-2} \end{pmatrix} = \begin{pmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_{n-1} \end{pmatrix}$$

$$(P_0 \quad P_1 \quad \dots \quad P_{n-1}) \times \begin{pmatrix} u_0 & u_1 & \dots & u_{n-1} \\ u_1 & u_2 & \dots & u_n \\ & \ddots & & \\ u_{n-1} & u_n & \dots & u_{2n-2} \end{pmatrix} = \begin{pmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_{n-1} \end{pmatrix}$$

Naive attack : Guess **u** and δ : $\mathcal{O}(2^n \times 2^{n\ell})$ operations

$$(P_0 \quad P_1 \quad \dots \quad P_{n-1}) \times \begin{pmatrix} u_{i_1} & u_{i_1+1} & \dots & u_{i_1+n-1} \\ u_{i_2} & u_{i_2+1} & \dots & u_{i_2+n-1} \\ & \ddots & & \\ u_{i_n} & u_{i_n+1} & \dots & u_{i_n+n-1} \end{pmatrix} = \begin{pmatrix} Q_{i_1} \\ Q_{i_2} \\ \vdots \\ Q_{i_n} \end{pmatrix}$$

$$(P_0 \quad P_1 \quad \dots \quad P_{n-1}) \times \begin{pmatrix} u_{i_1} & u_{i_1+1} & \dots & u_{i_1+n-1} \\ u_{i_2} & u_{i_2+1} & \dots & u_{i_2+n-1} \\ & \ddots & & \\ u_{i_n} & u_{i_n+1} & \dots & u_{i_n+n-1} \end{pmatrix} = \begin{pmatrix} Q_{i_1} \\ Q_{i_2} \\ \vdots \\ Q_{i_n} \end{pmatrix}$$

I want to go here in less than: $\mathcal{O}(2^n \times 2^{n\ell})$ operations

Two steps:

- Finding n/2 "good triplets" i, j, k such that $\mathbf{U}_i + \mathbf{U}_j = \mathbf{U}_k$ (in \mathbb{Z} !)
- For each triplet, retrieving Q_i, Q_j by bruteforce.

I have 3 points Q_i, Q_j, Q_k that I do not know but I know:

- s_i, s_j, s_k the leading bits of xQ_i, xQ_j, xQ_k
- the relation $Q_i + Q_j = Q_k$

I have 3 points Q_i, Q_j, Q_k that I do not know but I know:

- s_i, s_j, s_k the leading bits of xQ_i, xQ_j, xQ_k
- the relation $Q_i + Q_j = Q_k$

$$A_i = \{R_i \mid x_{R_i}//2^{\ell} = s_i\}$$
 and $A_j = \{R_j \mid x_{R_j}//2^{\ell} = s_j\}$

I have 3 points Q_i, Q_j, Q_k that I do not know but I know:

- s_i, s_j, s_k the leading bits of xQ_i, xQ_j, xQ_k
- the relation $Q_i + Q_j = Q_k$

$$A_i = \{R_i \mid x_{R_i} / / 2^{\ell} = s_i\}$$
 and $A_j = \{R_j \mid x_{R_j} / / 2^{\ell} = s_j\}$

$$\mathbb{P}(\exists (R_i, R_j) \in A_1 imes A_2 \mid x_{R_i+R_j}//2^\ell = s_k \wedge (R_i, R_j)
eq \pm(Q_i, Q_j)) \ \simeq |A_i imes A_j| imes rac{2^\ell}{|\mathcal{E}|} \simeq rac{2^{3\ell}}{|\mathcal{E}|}$$

I have 3 points Q_i, Q_j, Q_k that I do not know but I know:

- s_i, s_j, s_k the leading bits of xQ_i, xQ_j, xQ_k
- the relation $Q_i + Q_j = Q_k$

$$A_i = \{R_i \mid x_{R_i}//2^{\ell} = s_i\}$$
 and $A_j = \{R_j \mid x_{R_j}//2^{\ell} = s_j\}$

$$\mathbb{P}(\exists (R_i, R_j) \in A_1 imes A_2 \mid x_{R_i+R_j}//2^\ell = s_k \wedge (R_i, R_j)
eq \pm(Q_i, Q_j))$$

 $\simeq |A_i imes A_j| imes rac{2^\ell}{|\mathcal{E}|} \simeq rac{2^{3\ell}}{|\mathcal{E}|}$

If ℓ small enough, I can bruteforce (Q_i, Q_j) and $(-Q_i, -Q_j)$ out of $A_i \times A_j$ in $\mathcal{O}(2^{2\ell})$ operations using s_k as a filter. They are not distinguishable.

$(U_i, U_j, U_k) \in \{0, 1\}^n$, if n = 1:

 $\mathbb{P}(\mathbf{U}_i + \mathbf{U}_j = \mathbf{U}_k) = 3/8$

 $(\mathbf{U}_i, \mathbf{U}_j, \mathbf{U}_k) \in \{0, 1\}^n$, if n = 1:

 $\mathbb{P}(\mathbf{U}_i + \mathbf{U}_j = \mathbf{U}_k) = 3/8$

If $n \geq 1$, $\mathbb{P}(\mathbf{U}_i + \mathbf{U}_j = \mathbf{U}_k) = (3/8)^n$

$(\mathbf{U}_i, \mathbf{U}_j, \mathbf{U}_k) \in \{0, 1\}^n$, if n = 1:

 $\mathbb{P}(\mathbf{U}_i + \mathbf{U}_j = \mathbf{U}_k) = 3/8$

If $n \ge 1$, $\mathbb{P}(\mathbf{U}_i + \mathbf{U}_j = \mathbf{U}_k) = (3/8)^n$ $\mathbf{U}_i \in A$, $\mathbf{U}_j \in B$, $\mathbf{U}_k \in C$, |A| = |B| = |C| = N $\mathbb{E}(\text{ good triplets }) = N^3 \left(\frac{3}{8}\right)^n$

$(\mathbf{U}_i, \mathbf{U}_j, \mathbf{U}_k) \in \{0, 1\}^n$, if n = 1:

 $\mathbb{P}(\mathbf{U}_i + \mathbf{U}_j = \mathbf{U}_k) = 3/8$

If
$$n \ge 1$$
, $\mathbb{P}(\mathbf{U}_i + \mathbf{U}_j = \mathbf{U}_k) = (3/8)^n$
 $\mathbf{U}_i \in A$, $\mathbf{U}_j \in B$, $\mathbf{U}_k \in C$, $|A| = |B| = |C| = N$
 $\mathbb{E}(\text{ good triplets }) = N^3 \left(\frac{3}{8}\right)^n$

For now $N \simeq \left(\frac{8}{3}\right)^{n/3}$

A Sub-Quadratic Algorithm

The good triplets have a bias as $w(\mathbf{U}_k) = w(\mathbf{U}_i) + w(\mathbf{U}_j)$.

A Sub-Quadratic Algorithm

The good triplets have a bias as $w(\mathbf{U}_k) = w(\mathbf{U}_i) + w(\mathbf{U}_j)$. Then we often have $w(\mathbf{U}_i) \simeq w(\mathbf{U}_j) \simeq n/3$ and $w(\mathbf{U}_k) \simeq 2n/3$

A Sub-Quadratic Algorithm

The good triplets have a bias as $w(\mathbf{U}_k) = w(\mathbf{U}_i) + w(\mathbf{U}_j)$. Then we often have $w(\mathbf{U}_i) \simeq w(\mathbf{U}_j) \simeq n/3$ and $w(\mathbf{U}_k) \simeq 2n/3$

1: function FINDTRIPLET(A, B, C, ϵ)

2:
$$A' \leftarrow \{\mathbf{U}_i \in A \mid w(\mathbf{U}_i) \leq n/3 + \epsilon\}$$

3:
$$B' \leftarrow \{\mathbf{U}_j \in B \mid w(\mathbf{U}_j) \leq n/3 + \epsilon\}$$

4: for all
$$\mathbf{U}_i, \mathbf{U}_j \in A' \times B'$$
 do

5: **if**
$$\mathbf{U}_i + \mathbf{U}_j \in C$$
 then

6: return
$$(\mathbf{U}_i, \mathbf{U}_j, \mathbf{U}_k)$$

7: return \perp

For $\epsilon = 1/6$, the algorithm succeed with overwhelming probability in time $\mathcal{O}(N^{1.654}) \simeq \mathcal{O}(2^{0.78n})$.

Conclusion

For all (u_0, \ldots, u_{n-1}) in $\{0, 1\}^n$:

- derive all the U_i and find n/2 good triplets in $\mathcal{O}(2^{0.78n})$
- for each good triplet derive (Q_i, Q_j) and $(-Q_i, -Q_j)$ in $\mathcal{O}(2^{2\ell})$
- derive the P_i 's for the $2^{n/2-1}$ possible signs combinations
- check consistency

Conclusion

For all (u_0, \ldots, u_{n-1}) in $\{0, 1\}^n$:

- derive all the U_i and find n/2 good triplets in $\mathcal{O}(2^{0.78n})$
- for each good triplet derive (Q_i, Q_j) and $(-Q_i, -Q_j)$ in $\mathcal{O}(2^{2\ell})$
- derive the P_i 's for the $2^{n/2-1}$ possible signs combinations
- check consistency

The complexity is

$$\mathcal{O}(2^n \times (2^{0.78n} + (n/2 \times 2^{2\ell}) + 2^{n/2-1}))$$

that is to say $\mathcal{O}(2^{1.78n})$ binary operations (with $\ell = \log_2(n)$).

Experimental results

When n = 16 and the initial sequence (u_0, \ldots, u_{n-1}) is known.

• When $|\mathcal{E}| = 65111$.

ℓ	1	2	3	4	5	6
т	1000	1000	1000	1000	1000	1885
time	6.9 <i>s</i>	5.3 <i>s</i>	5.6 <i>s</i>	5.02 <i>s</i>	5.7 <i>s</i>	26.7 <i>s</i>

• When $|\mathcal{E}| = 1099510687747$.

l	1	2	3	4	5	6	7	8	9
т	1885	1885	1885	1885	1885	1885	1885	1885	1750
time	2.1 <i>s</i>	2.1 <i>s</i>	2.08 <i>s</i>	2.5 <i>s</i>	2.6 <i>s</i>	2.1 <i>s</i>	3.5 <i>s</i>	8.3 <i>s</i>	26.7 <i>s</i>