We Are on the Same Side Alternative Sieving Strategies for the Number Field Sieve

Ambroise Fleury

Sorbonne Université, LIP6, Paris

February 15, 2024 - Séminaire LORIA

Factorization
RSA Cryptosystem
Factoring a large number

Number Field Sieve (NFS)
CADO-NFS
Relations

Hybrid version
Batch factoring
Contribution
RSA-250 relations
Results

Factorization
RSA Cryptosystem
Factoring a large number

Number Field Sieve (NFS)
 CADO-NFS
 Relations

Hybrid version
Batch factoring
Contribution
RSA-250 relations
Results

RSA Cryptosystem

Private key

- Used for decryption
- Generated from two random prime numbers p and q

Public key

- Used for encryption
- Product $N=p q$

Factorization

- RSA security is linked to the hardness of integer factorization
- Finding p and q from N breaks RSA

Generic factorization method

Finding a square

- $x^{2}=y^{2} \bmod N$
- $x \neq y \bmod N$

Then...

- $N=x^{2}-y^{2} \bmod N$
- $N=(x+y)(x-y) \bmod N$
- $\operatorname{gcd}(x \pm y, N)$ gives a factor of N

Finding a congruence of squares?

Dixon's factorization method

Build a square

- Generate many y_{i} such that
- $y_{i}=x_{i}^{2} \bmod N$
- y_{i} is smooth (=only small divisors)
- it is called a relation
- Build $Y^{2} \bmod N$ as a product of y_{i} 's

1. Relation collection

- Generate many y_{i}
- Find many relations

2. Linear algebra

- Combine the relations
- $Y^{2}=X^{2} \bmod N$

From factoring a large number...
...to factoring many small numbers

Relations

What relations look like

factor base	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 7}$
6468	2^{2}	3		7^{2}	11		
10210200	2^{3}	3	5^{2}	7	11	13	17
1449175			5^{2}	7^{3}		13^{2}	
79560	2^{3}	3^{2}	5			13	17
4004	2^{2}			7	11	13	
175032	2^{3}	3^{2}			11	13	17

Next step is to combine them into a square How? Combine lines to get even exponents

Factorization

RSA Cryptosystem
Factoring a large number

Number Field Sieve (NFS)
CADO-NFS
Relations

Hybrid version
Batch factoring
Contribution
RSA-250 relations
Results

CADO-NFS

- Implementation of the NFS
- Open source: https://gitlab.inria.fr/cado-nfs/cado-nfs
- Can also compute discrete logarithms
- 2019 : Factorization record RSA-240 (240 digits)
- 2020 : Factorization record RSA-250 (current record)
- Computing time is dominated by relation collection

	relation collection	linear alebra
RSA-240	800 CPU years	83 CPU years
RSA-250	2450 CPU years	250 CPU years

Relations in the NFS

Two sides

- Pairs (a, b) of coprime and "small" integers
- Two polynomials $F_{i}(a, b)=f_{i}(a / b) b^{d}$
- We call norms the evaluation of a polynomial with a pair (a, b)
- norm $_{0}=F_{0}(a, b)$
- norm $_{1}=F_{1}(a, b)$

Chosen f polynomials for RSA-250 record

$f_{0}=185112968818638292881913 X$

- 3256571715934047438664355774734330386901
$f_{1}=86130508464000 X^{6}$
- 81583513076429048837733781438376984122961112000
$-66689953322631501408 X^{5}$
- 1721614429538740120011760034829385792019395X
$-52733221034966333966198 X^{4}$
$-3113627253613202265126907420550648326 X^{2}$
$+46262124564021437136744523465879 X^{3}$

Relation collection

Special-q's

Force a specific factor \mathfrak{q} on one side

- Pick a side (algebraic)
- Pick a special-q (prime or composite)
- Get (a, b) pairs from the special-q
- Factor norms!

Factoring norms

2 methods:

- Sieving to find small and medium factors
- Elliptic-curve factorization (ECM) to find large factors

Figure: Method used to recover factors of different sizes

Step 1 : sieving

- special-q sieving on one specific side (algebraic)
- Regular sieving on the other side (rational)

Step 2 : filtering

Keep only promising pairs

- Sieving factored enough for both norms
- Non-factored part is below a certain bound
- More likely to give a relation

General diagram

Filtered norm

Promising norm

Step 3 : ECM

Promising bound

If the bound deciding wether or not a pair is sent to ECM is...

- Too high
- Many pairs of low quality
- Too much time in ECM
- Too low
- Few pairs of high quality will give too few relations
- Additional sieving needed

Factorization
RSA Cryptosystem
Factoring a large number

Number Field Sieve (NFS)
CADO-NFS
Relations

Hybrid version
Batch factoring
Contribution
RSA-250 relations
Results

Trying to improve the relation collection in CADO-NFS

Goal : almost as many promising pairs at a much lower cost

Small sieve

Subroutine of CADO-NFS sieving finding small primes $\left(<2^{17}\right)$

- Small factors are worth few bits
- Not decisive on promising pairs

Remove small sieve?

How to find smooth parts of integers [Bernstein 2004]

Input

- Integers n_{0}, \ldots, n_{i}
- Factor base $P=2 \times 3 \times \cdots \times p_{k}$

Output

- Smooth parts of each n_{i}, meaning the product of factors from the base found in each integer

Complexity

- P is b bits
- $O\left(b(\log b)^{2+O(1)}\right)$

Batch factoring

- P is the product of factors from the factor base
- Find factors from P in all n 's

Hybrid strategy

Pick an intermediate " batch promising" bound larger than the "ECM promising" bound, then :

1. Sieve only on medium primes
2. Remove non-promising pairs
3. Get small factors using batch factoring
4. Remove non-promising pairs
5. Get large factors using ECM
6. Relations!

Method for each prime factors interval

Path to ECM

General diagram

Filtered norm (after sieve)

Filtered norm
(after batch)

Promising norm

Batch factoring order

RSA-250 relations

- Around 8.4 e 9 relations were found
- 786 GB gzipped, 1.5 TB uncompressed

Average norm size

- 152 bits on the rational side
- 285 bits on the algebraic side

Example of an actual relation

308756823364,858059:
80f, bcd79, 2605774d, 2dadd6bb, 41647363, c29c8ab9:
$2,2,3,3, b, 13,13,1 d, 53,6 c 5$, eb9, 3afd, 33b5cd, 2d8f009, 2439f085,3b9add75,1b0218b0d,19daa7f693,1cdbf87c21

- $(a, b)=(308756823364,858059)$
- Rational norm factors: 2063, 773497, 637892429, 766367419, 1097102179, 3265039033
- Algebraic norm factors :
$2,2,3,3,11,19,19,29,83,1733,3769,15101,3388877$, 47771657, 607776901, 1000004981, 7249955597, 111042623123, 123949579297

Implementation in CADO-NFS

Parameters introduced

- batch_first_side : batch on this side first
$-\mathrm{mfbb}_{[0 \mid 1]}$ is the bound for sieve survivors
$-\operatorname{sbmp}_{[0 \mid 1]}$ is the biggest prime in the batch factor base

RSA-250's relations

- Data to target a specific number of relations
- Allow us to pick parameters
- Benchmark baseline

Benchmarks

- Massively parallel
- Pick a (random) special-q range
- Sampled sieved regions
- Compare hybrid and regular version
- time vs \#relations

Results

Results for a few example sieving areas picked randomly Multiple values of sbmp

Example A, with $\mathrm{mfbb} 0=89$ bits and $\mathrm{mfbb} 1=137$ bits

Version	\# relations	ratio	Time (s)	ratio	local speed-up
Original	390	-	8619	-	-
Hybrid	347	0.89	6940	0.81	1.10

Example B, with $\mathrm{mfbb0}=117$ bits and $\mathrm{mfbb} 1=167$ bits

Version	\# relations	ratio	Time (s)	ratio	local speed-up
Original	674	-	6942	-	-
Hybrid	606	0.90	5684	0.82	1.10

Results

Testing multiple values of sbmp (sieve lower bound)

Conclusion

Results

- Fewer relations are found
- Speedup counteracts this
- Better efficiency

To come

- Use CADO-NFS tasks to fill up batches
- How much more sieving is needed to counterbalance?
- Public integration in CADO-NFS (as an option?)
- Explore sieving only small primes

