Evaluating theta functions in uniform quasi-linear time

in any dimension

Jean Kieffer
CARAMBA seminar, January 25, 2024

Joint work with Noam D. Elkies

1/26

Plan of the talk

1. Introduction: evaluating theta functions
2. The “naive” algorithm

3. The duplication formula

4. The final algorithm

2/26

The Riemann theta function

Parameters:
e g > 1: the dimension (sometimes called genus)
o 7 € Hg, the Siegel upper half-space: this means 7 € Matg g (C) is symmetric and
Im(7) is positive definite (y Im(7)y > 0 for all nonzero y € R#).
o zc (8.

Define the Riemann theta function:

0(z,7) = Z E(nTrn+2n"2z).
nezsg
where E(x) := exp(mix). This sum converges quickly (terms get small as n — o).

If g =1, this is the Jacobi theta function

0(z,7) = Z E(rn* 4 2nz).
neZ 3/26

Theta functions with characteristics

More generally, for all theta characteristics a, b € {0,1}8, define:

uplzr) = D2 E(aTrntanT(2+8).
nEZngg

Before, we had a = b = 0.

Remark

Up to an exponential factor, 6, (z,7) is simply 6o o(z + 75 + g,T). The reason for

this notation will become clear on the next slide.

4/26

Why theta functions?

Theta functions are closely connected to elliptic curves and abelian varieties over C.

1. If 7 is fixed and z varies, then (-, 7) is (roughly) periodic with respect to the
lattice L = 78 4+ 775 C C8.
The quotient A = C&/L is an abelian variety of dimension g, and theta functions
with characteristics are coordinate functions on A. For instance, take A to be the
Jacobian of any algebraic curve.

2. Fixing z = 0 and letting 7 vary, the theta constants 6, (0, -) are modular forms.
They can be used as invariants to identify an abelian variety, a curve, etc.

These properties (periodicity, modular forms) are also generally helpful when
manipulating theta functions, as we will see.

5/26

Evaluating theta functions

Algorithmic problem

Given (z,7) € C8 x Hg, and a precision N > 0, compute the complex numbers
0..6(z,7) for all a,b € {0,1}# at precision N up to an error of at most 2~V

In applications, N can be in the millions.
Typical use case

Consider an elliptic curve in the form E = C/A, where A C C is a rank 2 lattice. Say
E is defined over Q. Weierstrass equation ?
1. Write A =Z + 7Z.

2. Evaluate 0, ,(0,7) for a,b € {0,1} (4 values). The j-invariant j(E) € C has an
expression in terms of theta: compute it.

3. Recognize j(E) € Q provided N is big enough, can then write an equation for E. .

Theorem (in progress, joint with Noam D. Elkies)

There exists an algorithm which, given g > 1, N > 0, and given 7 € H, and z € C&
that are suitably reduced, evaluates 6, (z, 7) to precision N in quasi-linear time
0(2°) M(N) log N) uniformly in 7 and z.

Based on the duplication formula. Implemented in FLINT 3.1.

7/26

https://flintlib.org/doc/acb_theta.html

Brief history of previous work

e The naive algorithm (see Deconinck et al., 2002) consists in summing up enough
terms in the theta series

Oap(z,7) = Z E(n"rn+2n"(z +%)).
neZe+3
Useful at low precisions, but not quasi-linear. Optimized in the g = 1 case by
Enge—Hart—Johansson (2018).

e Dupont (2006), Labrande-Thomé (2010): quasi-linear algorithm based on a clever
use of Newton's method. Heuristic, mainly tested for g < 2. Does not beat the
naive algorithm for g = 1 in the feasible range.

e In some cases (g < 2) one can prove that the Newton approach works and yields a
uniform algorithm (JK, 2022). Still not known to work for all 7 as soon as g > 3.

8/26

Brief list of available implementations

Implementations based on the naive algorithm:
e Theta.jl by Agostini-Chua (2020), low precision only.
e Magma's Theta, arbitrary g and precisions, extremely slow.
e RiemannTheta, Sage package by Nils Bruin, arbitrary g and precisions, less slow.

e acb_modular (FLINT) by Enge-Hart—Johansson (2018). g = 1 only, uses interval
arithmetic, fast.

Often also support theta functions with characteristics, derivatives.
Implementations based on Newton's method exist, but are not easily accessible.

New implementation: acb_theta in FLINT 3.1. Any g, fast, quasi-linear, uniform,
uses interval arithmetic, supports characteristics and derivatives, extensively tested.

Use that one!
9/26

https://github.com/chualynn/Theta.jl
https://magma.maths.usyd.edu.au/magma/handbook/text/260
https://github.com/nbruin/RiemannTheta
https://flintlib.org/doc/acb_modular.html
https://flintlib.org/doc/acb_theta.html

The “naive” algorithm

Convergence of the theta series

Recall:

boo(z,7) = > _ E(n"tn+2n"z).
neZze

Write Y = Im(7) and y = Im(z). Then:
’E(I‘ITTFI + 2nTz)‘ = exp(—nn" Yn—2mwnTy)
= Cexp(—|In—xol7)
where [|-||; is the Euclidean norm attached to 7Y, and C, xo depend only on 7 and z.
Useful consequence

For each N > 0, the lattice points n € Z¢ indexing terms whose absolute value is
> 27N are exactly the points in an ellipsoid ||n — xg||» < R with R = O(v/N).

10/26

The tail of the series

Proposition

Let 7 € Hg, let C be the Cholesky matrix attached to 7 Im(7) (meaning: C is
upper-triangular and 7Im(7) = CT C), and let 71, ...,7, be the diagonal coefficients
of C. For each R > 4, we have:

g

2
> ewlln—ol?) < 2R Tep(-RO T (1+2).

n€ZE, ||[n—xol|->R i—1 Vi

— taking R = O(v/N), the tail of the series is bounded by 2N.

A first step when evaluating is to obtain nicer ellipsoids (i.e. larger ;) by reducing the

arguments 7 and z.

11/26

Argument reduction

Easy reductions using periodicity:
e reduce 7 such that |[Re(7)| < 1 (changes nothing)
e reduce z such that z = v+ 7v with u,v € R& and |ul, |v| < %

— the center of the ellipsoid is not far away from 0.

We also want to reduce Im(7). This changes the shape of the ellipsoids.

good: large ;
L] L] L] L] L] L]

bad: one of the ~; is small

o [) () 0 0 0 0 0 ® () [S—]
] °] o . ° °] ° . °]
.

12/26

The symplectic group

The symplectic group szg(Z) consists of products of matrices of the form

lg S
g : S € Matgyz(Z) symmetric
0 I

(‘(j U‘ET), U € GLy(2)

o |/
Jg = &1,
—Ilg 0

Equivalently, all matrices M such that I\/ITJgM = Jg.

The group Spy,(Z) acts on C& x H,:

) 13/26

<O‘ B) (z.7) = (7 +8) 7z, (ar + By +8)7).

Theta as a modular form

Theorem (Mumford, Igusa)
Let M = () € Spyg(Z). Fix theta characteristics a, b. For every (z,7) € C& x H,:

02p(M - (2,7)) = exp(-+-) - C - \/det(y7 £ 0) - By (2,7)

where:
e a', b’ are other characteristics given by an explicit formula in terms of a, b, M,
e (is an 8th root of unity independent of z, 7,

e we must make a of 7 — det(y7 +) on H,.

Sort out the details — can act by Sp,,(Z) before computing theta functions.

14/26

A nicer imaginary part

We have
Im((on' + B)(yr + 5)71)) = (v7 4+ 68)" T Im(7)(yr + 6)7L.
Therefore:
. .) Uu o0
e Can use lattice reduction (LLL) by taking M = o U-T)

e Can increase det Im(7) whenever |det(y7 +)| < 1. In particular, use the usual
reduction for the action of SL»(Z) on H; on each diagonal coefficient.

Consequence

We can assume that Im(7) is LLL-reduced and its diagonal coefficients are > 1/3/2.

The ellipsoids we get in the naive algorithm are uniformly nice and round.

15/26

Naive algorithm: complexity

Result

Given reduced (z,7) € C& x Hg and N > 1, one can compute 6, ,(z, 7) for each
individual characteristic (a, b) to N bits of precision using the naive algorithm in
Og(N&/2 M(N)) binary operations, uniformly in 7 and z.

Important optimizations in practice (but not really new):
e Compute exponentials only once, get subsequent terms by multiplying/squaring.
e Compute smaller terms (far from the center of the ellipsoid) at smaller precisions.
e Use existing functions when possible: acb_modular_theta (g = 1), acb_dot.

In FLINT, we implement ellipsoids as a recursive type to make all this easier to write.

16/26

Towards a quasi-linear algorithm

The naive algorithm is not quasi-linear... except when Im(7) is large!

If 7 is reduced and each diagonal coefficient of Im(7) is Q(N), then the ellipsoid to
sum on contains O(1) points — complexity Og(M(N)log N).

The duplication formula relates theta values at 7 and 27.
Main idea

Use the duplication formula k ~ log, N times starting from theta values at 2¥7,
computed in quasi-linear time with the naive algorithm.

17/26

The duplication formula

A typical duplication formula

The duplication formula is also used in the Newton approach to computing theta
functions (Dupont, Labrande-Thomé).

We identify {0,1}€ and (Z/2Z)# (addition is xor).
Duplication formula

1 ,
025(0,27)° = — (—1)2"® 0,6/(0,7) O b+ (0, 7).
g
b e(Z/22)8

Note the particular role of 6y , compared to more general 6, .

For us, this goes in the wrong direction: we need to express theta values at 7 in terms
of theta values at 27.
18/26

A better formula

Cf. Koizumi, or Romain Cosset's thesis, or apply J; to the previous formula:

Better duplication formula

050,72 = 3 (=1)7"b0,(0,27) 04 0(0, 27).
a'e(Z/27)e

This time, the 28 “fundamental” theta values are the 6,0(0, 7). For now, we focus on
computing those and put z=0,b = 0.

To apply the duplication formula, we need to:
1. Make the 28 sums on the right (one for each a € {0,1}#8, with b =0). Do this in
O(28) operations with Hadamard transformations.
2. Extract square roots: get 6, 5(0,7) from 6,0(0, 7). 19/26

The root problem

Problems when extracting square roots:
1. We need to know what the correct sign is — need a low-precision approximation
of 0,0(0,7). Can compute it using the naive algorithm.
2. Taking square roots brings a precision loss, perhaps as much as half of the current
precision since V2N = 2-N/2,

Both problems get worse the closer 6,0(0, 7) gets to zero.

Dream scenario

There exists £ > 0 such that for all k > 0 and a € {0,1}£, we have |6,0(0,2"7)| > e.

This is however just false, since 6,0(0,2%7) = 0 as soon as a # 0.
—00

Need to quantify this to show that we're not killed by the naive algorithm and/or

precision losses. 20/26

The absolute value of theta

Recall our previous analysis: the term corresponding to n € Z& + 5 in the series
defining 0,0(0, 7) has absolute value exp(—||n||?).

Dream scenario 2
There exists € > 0 such that for each kK > 0, we have

102,0(0,2%7)| > ¢ exp(—2* Dist.(0, Z% + 3))
Here Dist, denotes the distance (between point and set) attached to the norm ||-||-.

In other words |0, 0(7)| is comparable to the absolute value of the largest term
appearing in the sum — no crazy cancellation occurs.

We expect this to be true (with a reasonable) for almost every 7.

21/26

The dream world

Assume Dream Scenario 2. Then each time we apply the duplication formula:
e Computing an approximation of 6,0(0,7) with the naive algorithm costs O(1).
e We lose O(1) bits of precision in square roots, provided that we think in terms of

shifted absolute precision.
Convention
By “computing 0370(072"7') to shifted absolute precision N, we mean computing it
to absolute precision N + [2% Dist,(0,Z& + 3)/ log(2)].
This accounts for the fact that |,0(0,2%7)| is known to be small. In Dream
Scenario 2, this is the same as relative precision.

e Small miracle: when summing in the duplication formula, we also lose only O(1)
bits of shifted absolute precision (parallelogram identity!)

e To initialize at 2¥ = O(N), we use the naive algorithm and win. S

The final algorithm

What? We're not done yet?

e For some special 7's, we might have unexpected vanishings of 0370(0,2"7'). Then
the previous algorithm does not work.

e We also want to compute 6,0(z, 7) for nonzero z.

Observation

Let t € R8 be any vector. If, at each step, we compute 0‘-,,70(2"v7 2k7) for all
a€{0,1}8 and all v € {0, t,2t,z,z + t,z + 2t}, then we can bootstrap using
variants of the duplication formula.

This requires us to take square roots of 6,0(25v,257)2 for v € {t,2t,z + t,z + 2t},
but not v = 0 and v = z (get those by division).

Introducing the real vector t changes nothing to ellipsoids and distances, but can

prevent unexpected cancellations. In practice, a random t does the trick. 23/

Theoretical result

Proposition (writeup in progress)
Fix g > 1 and m > 0. Then there exists £ > 0 such that for a proportion at least 1/2
of vectors t € [0, 1]8, the following holds:

For each reduced (z,7) € C8 x H,, for each a € {0,1}%, for each 0 < k < m, and
for each v € {t,2t}, we have

[620(2%v, 2k)| > exp(—2¥ Dist, (0, Z¢ + 2)),
102,0(2%(z + v), 27)| > e exp(—2¥ Dist,(x0, Z& + 2))

where xp denotes the center of the ellipsoid attached to z.

We can take ¢ to be (only) in mand g.

Choosing t at random, the precision losses are mild with a probability > 1/2. v 24/26

Further comments

e If one of the diagonal coefficients ~; is very large, the ellipsoids for |||~ are thick
in some directions while being very thin in other directions. We can leverage this
by writing 6,0(z,7) as a (short) sum of theta values in smaller dimensions.

This is more efficient than using the duplication formula in dimension g, and
ensures that all the absolute precisions we consider are in O(N).
(This helps with the Hadamard method to apply the duplication formula.)

e This algorithm overcomes FLINT's implementation of the naive algorithm for
g = 1 between 10000 and 50000 bits of precision.

e We compute derivatives of theta functions in quasi-linear time using finite

differences.

25/26

Thank you!

https://flintlib.org/doc/acb_theta.html

26/26

https://flintlib.org/doc/acb_theta.html

	The ``naive'' algorithm
	The duplication formula
	The final algorithm

