Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Seminar CARAMBA, Nancy December 7th, 2023

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Cryptanalysis of MiMC

Conclusions 00

Toy example of Zero-Knowledge Proof

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Cryptanalysis of MiMC

Conclusions 00

Toy example of Zero-Knowledge Proof

Unsolved Sudoku

Solved Sudoku

Conclusions 00

Toy example of Zero-Knowledge Proof

Unsolved Sudoku

Grid cutting

Cryptanalysis of MiMC

Conclusions 00

Toy example of Zero-Knowledge Proof

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Rows checking

Conclusions 00

Toy example of Zero-Knowledge Proof

	2		5		1		9	
8			2		З			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Columns checking

Cryptanalysis of MiMC

Conclusions 00

Toy example of Zero-Knowledge Proof

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

Squares checking

Conclusions 00

A need for new primitives

Protocols requiring new primitives:

- * MPC: Multiparty Computation
- * **FHE**: Fully Homomorphic Encryption
- * ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Conclusions 00

A need for new primitives

Protocols requiring new primitives:

- * MPC: Multiparty Computation
- * **FHE**: Fully Homomorphic Encryption
- * ZK: Systems of Zero-Knowledge proofs Example: SNARKs, STARKs, Bulletproofs

Problem: Designing new symmetric primitives And analyse their security!

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Conclusions 00

Block ciphers

 \star input: *n*-bit block

 $x \in \mathbb{F}_2^n$

 \star parameter: *k*-bit key

 $\kappa \in \mathbb{F}_2^k$

★ output: *n*-bit block

 $y = E_{\kappa}(x) \in \mathbb{F}_2^n$

 \star symmetry: *E* and *E*⁻¹ use the same κ

(a) Block cipher

(b) Random permutation

Conclusion: 00

Block ciphers

 \star input: *n*-bit block

 $x \in \mathbb{F}_2^n$

 \star parameter: *k*-bit key

 $\kappa \in \mathbb{F}_2^k$

★ output: *n*-bit block

 $y = E_{\kappa}(x) \in \mathbb{F}_2^n$

 \star symmetry: *E* and *E*⁻¹ use the same κ

A block cipher is a family of 2^k permutations of \mathbb{F}_2^n .

(a) Block cipher

(b) Random permutation

Iterated constructions

How to build an efficient block cipher?

By iterating a round function.

Conclusions 00

Comparison with the traditional case

Comparison with the traditional case

Traditional case

$$y \leftarrow E(x)$$

* Optimized for: implementation in software/hardware

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

 Optimized for: integration within advanced protocols

Conclusions 00

Comparison with the traditional case

Traditional case

$$y \leftarrow E(x)$$

- Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4, 8$
 - Ex: Field of AES: \mathbb{F}_{2^n} where n = 8

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

* Optimized for: integration within advanced protocols

* Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$

Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d805

53bda402fffe5bfefffffff00000001

Conclusions 00

Comparison with the traditional case

Traditional case

 $y \leftarrow E(x)$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4, 8$
- * Operations: logical gates/CPU instructions

Arithmetization-oriented

 $y \leftarrow E(x)$ and y == E(x)

 Optimized for: integration within advanced protocols

* Alphabet size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$

 Operations: large finite-field arithmetic

Conclusions 00

Comparison with the traditional case

Overview of the contributions

Design

Cryptanalysis

Overview of the contributions

Design

Cryptanalysis and design of Arithmetization-Oriented primitives

Overview of the contributions

Design

Overview of the contributions

Design

New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode, Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov, Willems, CRYPTO 2023

Cryptanalysis

Algebraic attacks against some arithmetization-oriented primitives, Bariant, Bouvier, Leurent, Perrin, ToSC, 2022

On the algebraic degree of iterated power functions, Bouvier, Canteaut, Perrin, DCC, 2023

Coefficient Grouping for Complex Affine Layers, Lui, Grassi, Bouvier, Meier, Isobe, CRYPTO 2023

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Overview of the contributions

Design

New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode, Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov, Willems, CRYPTO 2023

Cryptanalysis

On the algebraic degree of iterated power functions, Bouvier, Canteaut, Perrin, DCC, 2023

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Cryptanalysis of MiMC

Conclusions 00

Design of Anemoi

- * Link between CCZ-equivalence and Arithmetization-Orientation
- * A new S-Box: the Flystel
- * A new family of ZK-friendly hash functions: Anemoi

Cryptanalysis of MiMC

Conclusions 00

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

Cryptanalysis of MiMC

Conclusions 00

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Cryptanalysis of MiMC

Conclusions 00

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs? "It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

 $y = (ax + b)^3(cx + d) + ex$

$t_0 = a \cdot x$	$t_3 = t_2 \times t_1$	$t_6 = t_3 \times t_5$
$t_1=t_0+b$	$t_4 = c \cdot x$	$t_7 = e \cdot x$
$t_2 = t_1 imes t_1$	$t_5 = t_4 + d$	$t_8 = t_6 + t_7$

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Cryptanalysis of MiMC

Conclusions 00

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs? "It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

 $y = (ax + b)^3(cx + d) + ex$

$t_0 = a \cdot x$	$t_3 = t_2 \times t_1$	$t_6 = t_3 \times t_5$
$t_1 = t_0 + b$	$t_4 = c \cdot x$	$t_7 = e \cdot x$
$t_2 = t_1 imes t_1$	$t_5 = t_4 + d$	$t_8 = t_6 + t_7$

3 constraints

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Design of Anemoi

Conclusions 00

Our approach

Need: verification using few multiplications.

Cryptanalysis of MiMC

Our approach

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]

 \rightsquigarrow *E*: low degree

y == E(x)

 \rightsquigarrow *E*: low degree

Cryptanalysis of MiMC

Our approach

Need: verification using few multiplications.

- * First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]
 - $y \leftarrow E(x)$ $\rightarrow E$: low degree y == E(x) $\rightarrow E$: low degree
- * First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]
 - $y \leftarrow E(x)$ $\rightarrow E$: high degree $x == E^{-1}(y)$ $\rightarrow E^{-1}$: low degree

Our approach

Need: verification using few multiplications.

- * First approach: evaluation using few multiplications, e.g. POSEIDON [Grassi et al., USENIX21]
 - $y \leftarrow E(x) \longrightarrow E$: low degree v == E(x) \rightarrow *E*: low degree
- * First breakthrough: using inversion, e.g. Rescue [Aly et al., ToSC20]
 - $y \leftarrow E(x) \longrightarrow E$: high degree $x == E^{-1}(y) \longrightarrow E^{-1}$: low degree
- * **Our approach:** using $(u, v) = \mathcal{L}(x, y)$, where \mathcal{L} is linear

 $y \leftarrow F(x) \longrightarrow F$: high degree

$$v == G(u)$$

 \sim G: low degree

Conclusions 00

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{ (x, F(x)), x \in \mathbb{F}_{q} \} \text{ and } \Gamma_{F^{-1}} = \{ (y, F^{-1}(y)), y \in \mathbb{F}_{q} \}$$

Noting that

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(\boldsymbol{F}^{-1}(\boldsymbol{y}), \boldsymbol{y} \right), \boldsymbol{y} \in \mathbb{F}_{\boldsymbol{q}} \right\} ,$$

then, we have:

$$\Gamma_{\boldsymbol{F}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\boldsymbol{F}^{-1}} \ .$$

Cryptanalysis and design of Arithmetization-Oriented primitives

Conclusions 00

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_{q}\} \text{ and } \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_{q}\}$$

Noting that

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(\boldsymbol{F}^{-1}(\boldsymbol{y}), \boldsymbol{y} \right), \boldsymbol{y} \in \mathbb{F}_{\boldsymbol{q}} \right\} ,$$

then, we have:

$$\Gamma_{\mathbf{F}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\mathbf{F}^{-1}} \, .$$

Definition [Carlet, Charpin and Zinoviev, DCC98] $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if $\Gamma_F = \mathcal{L}(\Gamma_G) + c$, where \mathcal{L} is linear.

Cryptanalysis of MiMC

Conclusions 00

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 \star Differential properties are the same: $\delta_{\it F}~=~\delta_{\it G}$.

Differential uniformity

Maximum value of the DDT

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}|$$

Cryptanalysis of MiMC

Conclusions 00

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

 $\star\,$ Differential properties are the same: $\delta_{\it F}\,=\,\delta_{\it G}$.

Differential uniformity

Maximum value of the DDT

$$\delta_{F} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_{q}^{m}, F(x+a) - F(x) = b\}|$$

 $\star\,$ Linear properties are the same: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.

Linearity

Maximum value of the LAT

$$\mathcal{W}_{F} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_{2^{n}}^{m}} (-1)^{a \cdot x + b \cdot F(x)} \right|$$

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Cryptanalysis of MiMC 00000000000000000000 Conclusions 00

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$
Cryptanalysis of MiMC 00000000000000000000 Conclusions 00

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is **not preserved**.

Example

in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

if $F(x) = x^5$ then $F^{-1}(x) = x^{5^{-1}}$ where

 ${\bf 5}^{-1}={\tt 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332cccccccd}$

Conclusions 00

Advantages of CCZ-equivalence

If $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent**. Then

* Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$ and $(u, v) = \mathcal{L}(x, y)$

$$y == F(x)? \iff v == G(u)?$$

* The degree is **not preserved**.

Example

in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

if $F(x) = x^5$ then $F^{-1}(x) = x^{5^{-1}}$ where

 ${\bf 5}^{-1}={\tt 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332cccccccd}$

 Cryptanalysis of MiMC

Conclusion: 00

The Flystel

$$\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \mathsf{Flystel}$$

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

V

Open Flystel \mathcal{H} .

x

Closed Flystel \mathcal{V} .

 Cryptanalysis of MiMC

Conclusion: 00

The Flystel

$$\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \mathsf{Flystel}$$

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

Open Flystel \mathcal{H} .

Closed Flystel \mathcal{V} .

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}}) \quad \text{s.t.} \quad ((x, y), (u, v)) = \mathcal{L}(((v, y), (x, u)))$$

 Cryptanalysis of MiMC 0000000000000000000 Conclusion: 00

Advantage of CCZ-equivalence

★ High-Degree Evaluation.

 $\textit{Open Flystel } \mathcal{H}.$

Example
$f E: x \mapsto x^5$ in \mathbb{F}_p where
p = 0x73eda 753299 d $7d483339$ d 80809 a $1d80553bda402fffe5bfeffffffff00000001$
then $E^{-1}: x \mapsto x^{5^{-1}}$ where
$5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002$
217f0e679998f19933333332ccccccd

 Cryptanalysis of MiMC 0000000000000000000 Conclusions 00

Advantage of CCZ-equivalence

- ★ High-Degree Evaluation.
- ★ Low-Degree Verification.

$$(u, v) == \mathcal{H}(x, y) \Leftrightarrow (x, u) == \mathcal{V}(y, v)$$

Open Flystel \mathcal{H} .

Closed Flystel \mathcal{V} .

 Cryptanalysis of MiMC 00000000000000000000 Conclusions 00

Flystel in \mathbb{F}_{2^n} , *n* odd

$$Q_{\gamma}(x) = \gamma + \beta x^3$$
, $Q_{\delta}(x) = \delta + \beta x^3$, and $E(x) = x^3$

Open Flystel₂.

Closed Flystel₂.

 Cryptanalysis of MiMC

Conclusions 00

Properties of Flystel in \mathbb{F}_{2^n} , *n* odd

Degenerated Butterfly.

Introduced by [Perrin et al. 2016].

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

- * Differential properties
 - $\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$
- \star Linear properties
- $\mathcal{W}_{\mathcal{H}}=\mathcal{W}_{\mathcal{V}}=2^{n+1}$
- * Algebraic degree
 - * Open Flystel₂: $\deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $\deg_{\mathcal{V}} = 2$

Design of Anemoi

Cryptanalysis of MiMC 0000000000000000000 Conclusions 00

Flystel in \mathbb{F}_p

 $Q_{\gamma}(x) = \gamma + \beta x^2$, $Q_{\delta}(x) = \delta + \beta x^2$, and $E(x) = x^d$

Open Flystel_p.

Closed Flystel_p.

 Cryptanalysis of MiMC 00000000000000000000 Conclusions 00

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a
eq 0, b} |\{x \in \mathbb{F}_{
ho}^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \leq d-1$$

 Cryptanalysis of MiMC

Conclusions 00

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x + a) - \mathcal{H}(x) = b\}| \leq d - 1$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

Design of Anemoi

Cryptanalysis of MiMC

Conclusions 00

Properties of Flystel in \mathbb{F}_p

* Differential properties

Flystel_p has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \leq d-1$$

Solving the open problem of finding an APN (Almost-Perfect Non-linear) permutation over \mathbb{F}_p^2

* Linear properties

Conjecture:

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_p^2} \exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p}\right) \right| \le p \log p ?$$

Cryptanalysis and design of Arithmetization-Oriented primitives

Cryptanalysis of MiMC

Conclusions 00

The SPN Structure

The internal state of Anemoi and its basic operations.

A Substitution-Permutation Network with:

<i>x</i> ₀	 $x_{\ell-1}$
<i>y</i> 0	 $y_{\ell-1}$

(a) Internal state.

(c) The diffusion layer.

(d) The Pseudo-Hadamard Transform.

\uparrow	↑	\uparrow
${\cal H}$	\mathcal{H}	 \mathcal{H}
\downarrow	\downarrow	\downarrow

(e) The S-box layer.

 C^{i}

 D^{i}

 Cryptanalysis of MiMC 0000000000000000000 Conclusion: 00

 Cryptanalysis of MiMC 0000000000000000000 Conclusion: 00

Conclusions 00

Conclusions 00

Design of Anemoi

Cryptanalysis of MiMC 00000000000000000000 Conclusions 00

Number of rounds

$$\texttt{Anemoi}_{q,d,\ell} = \mathcal{M} \circ \mathsf{R}_{n_r-1} \circ \ldots \circ \mathsf{R}_0$$

 $\star\,$ Choosing the number of rounds

$$n_r \geq \max\left\{8, \underbrace{\min(5, 1+\ell)}_{\text{security margin}} + 2 + \min\left\{r \in \mathbb{N} \mid \binom{4\ell r + \kappa_d}{2\ell r}^2 \geq 2^s\right\}_{\text{to prevent algebraic attacks}}\right\}$$

$d(\kappa_d)$	3 (1)	5 (2)	7 (4)	11 (9)
$\ell = 1$	21	21	20	19
ℓ = 2	14	14	13	13
ℓ = 3	12	12	12	11
ℓ = 4	12	12	11	11

Number of rounds of Anemoi (s = 128).

Cryptanalysis and design of Arithmetization-Oriented primitives

Cryptanalysis of MiMC

Conclusions 00

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs? "It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

 $y = (ax + b)^3(cx + d) + ex$

$t_0 = a \cdot x$	$t_3 = t_2 \times t_1$	$t_6 = t_3 \times t_5$
$t_1 = t_0 + b$	$t_4 = c \cdot x$	$t_7 = e \cdot x$
$t_2 = t_1 imes t_1$	$t_5 = t_4 + d$	$t_8 = t_6 + t_7$

3 constraints

Cryptanalysis and design of Arithmetization-Oriented primitives

Cryptanalysis of MiMC 0000000000000000000 Conclusions 00

Some Benchmarks

	$m (= 2\ell)$	RP^1	$\operatorname{POSEIDON}^2$	$\mathrm{GRIFFIN}^{3}$	Anemoi			$m (= 2\ell)$	RP	Poseidon	GRIFFIN	Anemoi
	2	208	198	-	76			2	240	216	-	95
DICC	4	224	232	112	96	96	DICS	4	264	264	110	120
RICS	6	216	264	-	120		RICS	6	288	315	-	150
	8	256	296	176	160			8	384	363	162	200
	2	312	380	-	191			2	320	344	-	212
Dlank	4	560	832	260	316		Dlank	4	528	696	222	344
PIONK	6	756	1344	-	460		PIONK	6	768	1125	-	496
	8	1152	1920	574	648			8	1280	1609	492	696
	2	156	300	-	126			2	200	360	-	210
	4	168	348	168	168		4	220	440	220	280	
AIN	6	162	396	-	216		AIN	6	240	540	-	360
	8	192	456	264	288			8	320	640	360	480

(a) when d = 3.

(b) when d = 5.

Constraint comparison for standard arithmetization, without optimization (s = 128).

¹*Rescue* [Aly et al., ToSC20]

²POSEIDON [Grassi et al., USENIX21]

³GRIFFIN [Grassi et al., CRYPTO23]

Conclusions 00

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- $\star\,$ Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:
 - * New S-box: Flystel
 - * New mode: Jive

Conclusions 00

Take-Away

Anemoi: A new family of ZK-friendly hash functions

- $\star\,$ Identify a link between AO and CCZ-equivalence
- * Contributions of fundamental interest:
 - * New S-box: Flystel
 - * New mode: Jive

Related works

- * AnemoiJive₃ with TurboPlonK [Liu et al., 2022]
- * Arion [Roy, Steiner and Trevisani, 2023]
- * APN permutations over prime fields [Budaghyan and Pal, 2023]

 Conclusions 00

Cryptanalysis of MIMC

- \star Study of the corresponding sparse univariate polynomials
- * Bounding the algebraic degree
- * Tracing maximum-weight exponents reaching the upper bound
- * Study of higher-order differential attacks

Cryptanalysis of MiMC •••••••••• Conclusions 00

The block cipher MiMC

- $\star\,$ Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- * Construction of MiMC₃ [Albrecht et al., AC16]:
 - ★ *n*-bit blocks (*n* odd ≈ 129): $x \in \mathbb{F}_{2^n}$
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

Cryptanalysis of MiMC ••••••••••

The block cipher MiMC

- $\star\,$ Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- * Construction of MiMC₃ [Albrecht et al., AC16]:
 - ★ *n*-bit blocks (*n* odd ≈ 129): $x \in \mathbb{F}_{2^n}$
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

 $r := \left\lceil n \log_3 2 \right\rceil$.

п	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.

Design of Anemoi

Cryptanalysis of MiMC

Conclusions 00

The block cipher MiMC

- $\star\,$ Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- \star Construction of MiMC₃ [Albrecht et al., AC16]:
 - ★ *n*-bit blocks (*n* odd ≈ 129): $x \in \mathbb{F}_{2^n}$
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

 $r := \left\lceil n \log_3 2 \right\rceil$.

n	129	255	769	1025
r	82	161	486	647

Number of rounds for MiMC.

Conclusions 00

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n]/((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}.$$

This is the Algebraic Normal Form (ANF) of f.

DefinitionAlgebraic degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$: $\deg^a(f) = \max \left\{ wt(u) : u \in \mathbb{F}_2^n, a_u \neq 0 \right\}$.

Conclusions 00

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n]/((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}.$$

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\mathsf{deg}^{\mathsf{a}}(f) = \mathsf{max}\left\{\mathsf{wt}({\color{black} u}): {\color{black} u} \in \mathbb{F}_2^{n}, {\color{black} a}_{\color{black} u}
eq 0
ight\}$$

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, with $F(x) = (f_1(x), \dots, f_m(x))$, then

$$\deg^{a}(F) = \max\{\deg^{a}(f_{i}), \ 1 \leq i \leq m\} \ .$$

Conclusions 00

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n]/((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$$

This is the **Algebraic Normal Form (ANF)** of *f*.

Example: ANF of $x \mapsto x^3$ in $\mathbb{F}_{2^{11}}$

 $(x_0x_{10} + x_0 + x_1x_5 + x_1x_9 + x_2x_7 + x_2x_9 + x_2x_{10} + x_3x_4 + x_3x_5 + x_4x_8 + x_4x_9 + x_5x_{10} + x_6x_7 + x_6x_{10} + x_7x_8 + x_9x_{10}, \\ x_0x_1 + x_0x_6 + x_2x_5 + x_2x_8 + x_3x_6 + x_3x_9 + x_3x_{10} + x_4 + x_5x_8 + x_5x_9 + x_6x_9 + x_7x_8 + x_7x_9 + x_7 + x_{10}, \\ x_0x_1 + x_0x_2 + x_0x_{10} + x_1x_5 + x_1x_6 + x_1x_9 + x_2x_7 + x_3x_4 + x_3x_7 + x_4x_5 + x_4x_8 + x_4x_{10} + x_5x_{10} + x_6x_7 + x_6x_8 + x_6x_9 + x_7x_{10} + x_8 + x_9x_{10}, \\ x_0x_1 + x_0x_2 + x_0x_1 + x_1x_5 + x_1x_6 + x_1x_9 + x_2x_7 + x_3x_4 + x_3x_7 + x_4x_5 + x_4x_8 + x_4x_{10} + x_5x_{10} + x_6x_7 + x_6x_8 + x_6x_9 + x_7x_{10} + x_8 + x_9x_{10}, \\ x_0x_3 + x_0x_6 + x_0x_7 + x_1 + x_2x_5 + x_2x_6 + x_2x_8 + x_2x_{10} + x_3x_6 + x_3x_9 + x_4x_5 + x_4x_8 + x_4x_7 + x_4x_9 + x_5x_8 + x_5x_9 + x_7x_{10} + x_8 + x_9x_{10}, \\ x_0x_2 + x_0x_4 + x_1x_2 + x_1x_6 + x_1x_7 + x_2x_9 + x_2x_{10} + x_3x_5 + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_5 + x_4x_7 + x_4x_9 + x_5 + x_6x_8 + x_7x_9 + x_7x_9 + x_7 + x_8x_9 + x_8x_{10}, \\ x_0x_5 + x_0x_7 + x_0x_8 + x_1x_2 + x_1x_3 + x_2x_6 + x_2x_7 + x_2x_{10} + x_3x_6 + x_4x_7 + x_4x_9 + x_4x_7 + x_4x_9 + x_5 + x_5x_9 + x_7x_{10} + x_9, \\ x_0x_5 + x_0x_7 + x_0x_8 + x_1x_2 + x_1x_3 + x_2x_6 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_9 + x_7x_{10} + x_9, \\ x_0x_7 + x_0x_8 + x_1x_9 + x_1x_3 + x_1x_5 + x_2x_3 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_8 + x_4x_{10} + x_5x_6 + x_5x_9 + x_5x_{10} + x_6 + x_7x_9 + x_8x_9 + x_8x_{10}, \\ x_0x_1 + x_0x_8 + x_1x_6 + x_1x_8 + x_1x_9 + x_2x_3 + x_3x_7 + x_3x_9 + x_4x_9 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_9 + x_5x_{10} + x_6x_{10} + x_8x_9 + x_8x_{10}, \\ x_0x_1 + x_1x_7 + x_1x_8 + x_1x_9 + x_2x_3 + x_3x_7 + x_3x_8 + x_4x_9 + x_5x_6 + x_5x_9 + x_6x_{10} + x_8x_9 + x_8x_{10} + x_8x_9 + x_8x_{10}, \\ x_0x_1 + x_1x_7 + x_2x_5 + x_2x_8 + x_3x_9 + x_3x_7 + x_3x_8 + x_4x_9 + x_5x_6 + x_5x_9 + x_6x_{1} + x_8x_9 + x_8x_{10} + x_1x_9 + x_8x_{10} + x_8x_9 + x_8x_{10} + x_5x_8 + x_5x_{10} + x_6x_{10} + x_8x_{10} + x_8x_{10} + x_8x_{10} + x_8x_{10} + x_8x$

Cryptanalysis of MiMC

Conclusions 00

Algebraic degree - 2nd definition

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Proposition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

 $\deg^{a}(F) = \max\{\operatorname{wt}(i), \ 0 \leq i < 2^{n}, \text{ and } b_{i} \neq 0\}$

Cryptanalysis of MiMC

Conclusions 00

Algebraic degree - 2nd definition

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Proposition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\operatorname{wt}(i), \ 0 \leq i < 2^{n}, \ \text{and} \ b_{i} \neq 0\}$$

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg^a(F) \leq n-1$$

Cryptanalysis and design of Arithmetization-Oriented primitives

Cryptanalysis of MiMC

Conclusions 00

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Cryptanalysis of MiMC

Conclusions 00

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Conclusions 00

First Plateau

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \ldots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

 $\lceil r \log_2 3 \rceil$.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r}) \; .$$

Conclusions 00

First Plateau

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \ldots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

 $\lceil r \log_2 3 \rceil$.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r}) \; .$$

Example

* Round 1: $B_3^1 = 2$ $\mathcal{P}_{3,1}(x) = x^3$ $3 = [11]_2$

Conclusion: 00

First Plateau

Polynomial representing r rounds of MIMC₃:

$$\mathcal{P}_{3,r}(x) = F_r \circ \ldots F_1(x)$$
, where $F_i = (x + c_{i-1})^3$.

Upper bound [Eichlseder et al., AC20]:

 $\left\lceil r \log_2 3 \right\rceil$.

Aim: determine

$$B_3^r := \max_c \deg^a(\mathcal{P}_{3,r}) \; .$$

Example

\star Round 1:	$B_3^1 = 2$	* Round 2: $B_3^2 = 2$
	$\mathcal{P}_{3,1}(x) = x^3$	$\mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$
	$3 = [11]_2$	$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Cryptanalysis and design of Arithmetization-Oriented primitives
Conclusions 00

Observed degree

Definition

There is a **plateau** between rounds r and r+1 whenever:

$$B_3^{r+1} = B_3^r$$
.

Proposition

If $d = 2^j - 1$, there is always **plateau** between rounds 1 and 2: $B_d^2 = B_d^1$.

Conclusions 00

Observed degree

Definition

There is a **plateau** between rounds r and r+1 whenever:

$$B_3^{r+1} = B_3^r$$
.

Proposition

If $d = 2^j - 1$, there is always **plateau** between rounds 1 and 2: $B_d^2 = B_d^1$.

Algebraic degree observed for n = 31.

Clémence Bouvier

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Conclusions 00

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Example

$$\mathcal{P}_{3,1}(x) = x^3$$
 so $\mathcal{E}_{3,1} = \{3\}$.

$$3 = [11]_2 \quad \xrightarrow{\text{cover}} \quad \begin{cases} [00]_2 = 0 & \xrightarrow{\times 3} & 0\\ [01]_2 = 1 & \xrightarrow{\times 3} & 3\\ [10]_2 = 2 & \xrightarrow{\times 3} & 6\\ [11]_2 = 3 & \xrightarrow{\times 3} & 9 \end{cases}$$

 $\mathcal{E}_{3,2} = \{0,3,6,9\} \ , \quad \text{indeed} \quad \mathcal{P}_{3,2}(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3 \ .$

Conclusions 00

Missing exponents

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_{3,r} = \{3 \times j \mod (2^n - 1) \text{ where } j \text{ is covered by } i, i \in \mathcal{E}_{3,r-1}\}$$

Missing exponents: no exponent $2^{2k} - 1$

Proposition

 $\forall i \in \mathcal{E}_{3,r}, i \not\equiv 5,7 \mod 8$

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

Representation exponents.

Missing exponents mod8.

Cryptanalysis and design of Arithmetization-Oriented primitives

Conclusions 00

Bounding the degree

Theorem

After r rounds of MIMC₃, the algebraic degree is

 $B_3^{\textbf{r}} \leq 2 \times \left\lceil \lfloor \frac{\textbf{r} \log_2 3}{\rfloor} / 2 - 1 \right\rceil$

Conclusions 00

Bounding the degree

Theorem

After r rounds of MIMC₃, the algebraic degree is

 $B_3^{\mathbf{r}} \leq 2 \times \lceil \lfloor \mathbf{r} \log_2 3 \rfloor / 2 - 1 \rceil$

 $B_3^r \ge \max\{\operatorname{wt}(3^i), i \le r\}$

 Upper bound reached for almost 16265 rounds

Cryptanalysis of MiMC

Conclusion: 00

3

Round 1

Cryptanalysis and design of Arithmetization-Oriented primitives

Cryptanalysis of MiMC

Conclusion: 00

Round 1

Cryptanalysis and design of Arithmetization-Oriented primitives

Cryptanalysis of MiMC

Conclusion: 00

Tracing exponents

Round 1

Cryptanalysis of MiMC

Conclusion: 00

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Design of Anemoi

Cryptanalysis of MiMC

Conclusions 00

Tracing exponents

Round 1

Clémence Bouvier

Cryptanalysis of MiMC

Conclusion: 00

Tracing exponents

Round 1

Round 4

Cryptanalysis of MiMC

Conclusion: 00

Tracing exponents

Round 1

Round 4

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

35 / 44

Conclusions 00

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, ..., 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, ...\}:$ $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_{3,r},$

* if $k_r = 0 \mod 2$,

 $\omega_r=2^{k_r}-7\in\mathcal{E}_{3,r}.$

Cryptanalysis and design of Arithmetization-Oriented primitives

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, ..., 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, ...\}:$ $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_{3,r},$

 \star if $k_r = 0 \mod 2$,

 $\omega_r = 2^{k_r} - 7 \in \mathcal{E}_{3,r}.$

 $k_{r-i} \mod 2$

Constructing exponents.

kr_; mod 2

0

0

1

r – 4

r - 3

r – 2 1

r - 1 = 1

r

 $2^{2k-10} - 7$

 $2^{2k-4} - 7$

 2^{2k-1}

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_{3,r},$

 \star if $k_r = 0 \mod 2$,

 $\omega_r=2^{k_r}-7\in\mathcal{E}_{3,r}.$

r-7 0 r-6 1 $2^{2k-9}-5$ r-5 1 $2^{2k-7}-5$

 2^{2k-6}

 2^{2k-3}

In most cases,
$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{3,r-\ell} \Rightarrow \omega_r \in \mathcal{E}_{3,r}$$

Clémence Bouvier

Conclusions 00

Covered rounds

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

Cryptanalysis and design of Arithmetization-Oriented primitives

Clémence Bouvier

Design of Anemoi

Cryptanalysis of MiMC

Conclusions 00

Covered rounds

Idea of the proof:

- \star inductive proof: existence of "good" ℓ
- MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

Plateau

Proposition

There is a plateau when $k_r = \lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$

Plateau

Proposition

There is a plateau when $k_r = \lfloor r \log_2 3 \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor (r+1) \log_2 3 \rfloor = 0 \mod 2$

If we have a plateau

$$B_3^r=B_3^{r+1},$$

Then the next one is

 $B_3^{r+4} = B_3^{r+5}$

or

 $B_3^{r+5} = B_3^{r+6}$.

0

Design of Anemoi

Cryptanalysis of MiMC

Conclusions 00

Music in MIMC₃

* Patterns in sequence $(\lfloor r \log_2 3 \rfloor)_{r>0}$: denominators of semiconvergents of

 $\log_2(3) \simeq 1.5849625$

 $\mathfrak{D} = \{ \fbox{1}, \fbox{2}, \texttt{3}, \texttt{5}, \fbox{7}, \fbox{12}, \texttt{17}, \texttt{29}, \texttt{41}, \fbox{53}, \texttt{94}, \texttt{147}, \texttt{200}, \texttt{253}, \texttt{306}, \fbox{359}, \ldots \} \;,$

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

***** Music theory:

- * perfect octave 2:1 $2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12}$
- ★ perfect fifth 3:2

 \Leftrightarrow 7 octaves \sim 12 fifths

Clémence Bouvier

Cryptanalysis of MiMC

Conclusions 00

Higher-Order differential attacks

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Cryptanalysis of MiMC

Conclusions 00

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

Cryptanalysis of MiMC

Conclusions 00

Comparison to previous work

First Bound: $\lceil r \log_2 3 \rceil$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	2 ¹²⁸ xor	2 ¹²⁸	[EGL+20]
<mark>81</mark> /82	$2^{128}\mathrm{XOR}$	2 ¹²⁸	New
80/82	$2^{125}\mathrm{XOR}$	2 ¹²⁵	New

Secret-key distinguishers (n = 129)

Conclusions 00

Take-Away

A better understanding of the algebraic degree of MiMC

- $\star\,$ guarantee on the degree of $MIMC_3$
 - \star upper bound on the algebraic degree

- \star bound tight, up to 16265 rounds
- $\star\,$ minimal complexity for higher-order differential attack

Conclusions 00

Take-Away

A better understanding of the algebraic degree of MiMC

- $\star\,$ guarantee on the degree of $MIMC_3$
 - \star upper bound on the algebraic degree

 $2 \times \left\lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \right\rceil$.

- \star bound tight, up to 16265 rounds
- $\star\,$ minimal complexity for higher-order differential attack

Missing exponents in the univariate representation

Cryptanalysis and design of Arithmetization-Oriented primitives

Conclusions 00

Take-Away

A better understanding of the algebraic degree of MiMC

- $\star\,$ guarantee on the degree of $MIMC_3$
 - * upper bound on the algebraic degree

- * bound tight, up to 16265 rounds
- $\star\,$ minimal complexity for higher-order differential attack

Conclusions 00

Take-Away

A better understanding of the algebraic degree of MiMC

- $\star\,$ guarantee on the degree of $MIMC_3$
 - * upper bound on the algebraic degree

- * bound tight, up to 16265 rounds
- $\star\,$ minimal complexity for higher-order differential attack

Conclusions 00

Take-Away

A better understanding of the algebraic degree of MiMC

- $\star\,$ guarantee on the degree of $MIMC_3$
 - * upper bound on the algebraic degree

- * bound tight, up to 16265 rounds
- $\star\,$ minimal complexity for higher-order differential attack

Conclusions

- ★ New tools for designing primitives:
 - \star Anemoi: a new family of ZK-friendly hash functions
 - \star a link between CCZ-equivalence and AO
 - * more general contributions: Jive, Flystel

Conclusions

- * New tools for designing primitives:
 - ★ Anemoi: a new family of ZK-friendly hash functions
 - * a link between CCZ-equivalence and AO
 - * more general contributions: Jive, Flystel
- * Practical and theoretical cryptanalysis
 - \star a better insight into the behaviour of algebraic systems
 - \star a comprehensive understanding of the univariate representation of MiMC
 - \star guarantees on the algebraic degree of MiMC

Conclusions O

Perspectives

- \star On the design
 - \star a Flystel with more branches
 - \star solve the conjecture for the linearity

Conclusions O•

Perspectives

\star On the design

- \star a Flystel with more branches
- * solve the conjecture for the linearity

$\star\,$ On the cryptanalysis

- * solve conjectures to trace maximum-weight exponents
- * generalization to other schemes
- * find a univariate distinguisher

Conclusions O

Perspectives

\star On the design

- \star a Flystel with more branches
- ★ solve the conjecture for the linearity

* On the cryptanalysis

- * solve conjectures to trace maximum-weight exponents
- * generalization to other schemes
- * find a univariate distinguisher

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Conclusions O

Perspectives

\star On the design

- \star a Flystel with more branches
- * solve the conjecture for the linearity

$\star\,$ On the cryptanalysis

- * solve conjectures to trace maximum-weight exponents
- * generalization to other schemes
- * find a univariate distinguisher

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Anemoi

More benchmarks and Cryptanalysis

Cryptanalysis and design of Arithmetization-Oriented primitives

Sponge construction

- * Hash function (random oracle):
 - \star input: arbitrary length
 - \star ouput: fixed length

New Mode: Jive

- \star Compression function (Merkle-tree):
 - ★ input: fixed length
 - \star output: (input length) /2

Dedicated mode: 2 words in 1

$$(x,y)\mapsto x+y+u+v$$
.

New Mode: Jive

- * Compression function (Merkle-tree):
 - ★ input: fixed length
 - \star output: (input length) /b

Dedicated mode: b words in 1

$$\mathtt{Jive}_b(P): egin{cases} (\mathbb{F}_q^m)^b & o \mathbb{F}_q^m \ (x_0,...,x_{b-1}) & \mapsto \sum_{i=0}^{b-1} (x_i + P_i(x_0,...,x_{b-1})) \ . \end{cases}$$

Comparison for Plonk (with optimizations)

	т	Constraints
Docpupon	3	110
POSEIDON	2	88
ainformed Concrete	3	378
	2	236
Rescue–Prime	3	252
Griffin	3	125
AnemoiJive	2	86 56
(a) With 3 wires.		

Constraints comparison with an additional custom gate for x^{α} . (s = 128).

with an additional quadratic custom gate: 56 constraints

Cryptanalysis and design of Arithmetization-Oriented primitives

Native performance

Rescue-12	Rescue-8	Poseidon-12	Poseidon-8	GRIFFIN-12	$\operatorname{GRIFFIN-8}$	Anemoi-8
15.67 μ s	9.13 μ s	5.87 μ s	2.69 μ s	2.87 μ s	2.59 μ s	4.21 μ s

2-to-1 compression functions for \mathbb{F}_p with $p = 2^{64} - 2^{32} + 1$ (s = 128).

Rescue	Poseidon	Griffin	Anemoi
206 µs	9.2 μs	74.18 μ s	128.29 μ s

For BLS12 – 381, Rescue, POSEIDON, Anemoi with state size of 2, GRIFFIN of 3 (s = 128).

Cryptanalysis and design of Arithmetization-Oriented primitives

Algebraic attacks: 2 modelings

Cryptanalysis and design of Arithmetization-Oriented primitives

Properties of Flystel in \mathbb{F}_p

* Linear properties

÷.

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \le p \log p ?$$

.

Conjecture for the linearity.

Properties of Flystel in \mathbb{F}_p

* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \le p \log p ?$$

(a) when p = 11 and d = 3.

(c) when p = 17 and d = 3.

LAT of Flystel_p.

Algebraic attacks

Trick for **POSEIDON**

Trick for Rescue-Prime

Attack complexity

RP	Authors claims	Ethereum claims	deg ^u	Our complexity	R	т	Authors claims	Ethereum claims	deg ^u	Our complexity
3	2 ¹⁷	2 ⁴⁵	$3^9\approx 2^{14.3}$	2 ²⁶	4	3	2 ³⁶	2 ^{37.5}	$3^9\approx 2^{14.3}$	2 ⁴³
8	2 ²⁵	2 ⁵³	$3^{14}\approx 2^{22.2}$	2 ³⁵	6	2	2 ⁴⁰	2 ^{37.5}	$3^{11}\approx 2^{17.4}$	2 ⁵³
13	2 ³³	2 ⁶¹	$3^{19}\approx 2^{30.1}$	244	7	2	2 ⁴⁸	2 ^{43.5}	$3^{13}\approx 2^{20.6}$	2 ⁶²
19	2 ⁴²	2 ⁶⁹	$3^{25}\approx 2^{39.6}$	2 ⁵⁴	5	3	2 ⁴⁸	2 ⁴⁵	$3^{12}\approx 2^{19.0}$	2 ⁵⁷
24	2 ⁵⁰	277	$3^{30}\approx 2^{47.5}$	2 ⁶²	8	2	2 ⁵⁶	2 ^{49.5}	$3^{15}\approx 2^{23.8}$	272

(a) For POSEIDON.

(b) For Rescue-Prime.

Cryptanalysis Challenge

Category	Parameters	Security level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N = 6, m = 2	25	\$4,000
Medium	N = 7, m = 2	29	\$6,000
Hard	N = 5, m = 3	30	\$12,000
Hard	N=8, m=2	33	\$26,000

(a) Rescue-Prime

Category	Parameters	Security level	Bounty
Easy	r = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 14	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	r = 22	34	\$26,000

(b) Feistel–MiMC

Category	Parameters	Security level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4,000
Medium	RP = 13	24	\$6,000
Hard	RP = 19	32	\$12,000
Hard	RP = 24	40	\$26,000

⁽c) POSEIDON

Category	Parameters	Security level	Bounty
Easy	<i>p</i> = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

Open problems

on the Algebraic Degree

Cryptanalysis and design of Arithmetization-Oriented primitives

Missing exponents when $d = 2^j - 1$

 $i \bmod 8 \not\in \{5,7\}$.

⋆ For MIMC₇

 $i \mod 16 \not\in \{9, 11, 13, 15\}$.

- * For MIMC₁₅ $i \mod 32 \notin \{17, 19, 21, 23, 25, 27, 29, 31\}$.
- ★ For MIMC₃₁

 $i \mod 64 \not\in \{33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63\}$.

Proposition

Let $i \in \mathcal{E}_{d,r}$, where $d = 2^j - 1$. Then:

 $\forall i \in \mathcal{E}_{d,r}, i \bmod 2^{j+1} \in \left\{0, 1, \dots 2^{j}\right\} \ \mathbb{U} \ \left\{2^{j} + 2\gamma, \gamma = 1, 2, \dots 2^{j-1} - 1\right\}.$

(a) For MIMC₃.

(b) For MIMC₇.

(c) For MIMC₁₅.

(d) For MIMC₃₁.

Cryptanalysis and design of Arithmetization-Oriented primitives

Missing exponents when $d = 2^j + 1$

Proposition

Let $i \in \mathcal{E}_{d,r}$ where $d = 2^j + 1$ and j > 1. Then:

$$\forall i \in \mathcal{E}_{d,r}, \ i \bmod 2^j \in \{0,1\}$$
.

Cryptanalysis and design of Arithmetization-Oriented primitives

Missing exponents when $d = 2^{j} + 1$ (first rounds)

Corollary

Let $i \in \mathcal{E}_{d,r}$ where $d = 2^j + 1$ and j > 1. Then:

$$\begin{cases} i \mod 2^{2j} \in \left\{ \{\gamma 2^j, (\gamma + 1)2^j + 1\}, \ \gamma = 0, \dots r - 1 \right\} & \text{if } r \le 2^j \ , \\ i \mod 2^j \in \{0, 1\} & \text{if } r \ge 2^j \ . \end{cases}$$

(a) Round 1

(b) Round 2

(c) Round 3

(d) Round 4

(c) Round 7

(d) Round $r \ge 8$

Bounding the degree when $d = 2^j - 1$

Note that if $d = 2^j - 1$, then

 $2^i \mod d \equiv 2^{i \mod j}$.

Proposition

Let $d = 2^j - 1$, such that $j \ge 2$. Then,

$$B_d^r \leq \lfloor r \log_2 d \rfloor - (\lfloor r \log_2 d \rfloor \mod j)$$
.

Note that if $2 \le j \le 7$, then

$$2^{\lfloor r \log_2 d \rfloor + 1} - 2^j - 1 > d^r$$
 .

Corollary

Let $d \in \{3, 7, 15, 31, 63, 127\}$. Then,

$$B_d^r \leq \begin{cases} \lfloor r \log_2 d \rfloor - j & \text{if } \lfloor r \log_2 d \rfloor \mod j = 0 \\ \lfloor r \log_2 d \rfloor - (\lfloor r \log_2 d \rfloor \mod j) & \text{else }. \end{cases}$$

Cryptanalysis and design of Arithmetization-Oriented primitives

Bounding the degree when $d = 2^j - 1$

Particularity: Plateau when $\lfloor r \log_2 d \rfloor \mod j = j - 1$ and $\lfloor (r + 1) \log_2 d \rfloor \mod j = 0$.

Bound for MIMC₃

Bound for MIMC₇

Bounding the degree when $d = 2^j + 1$

Note that if $d = 2^j + 1$, then

$$2^i \bmod d \equiv \begin{cases} 2^i \bmod 2^j & \text{if } i \equiv 0, \dots, j \bmod 2j \\ d - 2^{(i \bmod 2j) - j} & \text{if } i \equiv 0, \dots, j \bmod 2j \end{cases}.$$

Proposition

Let $d = 2^{j} + 1$ s.t. j > 1. Then if r > 1:

$$B_d^r \leq \begin{cases} \lfloor r \log_2 d \rfloor - j + 1 & \text{if } \lfloor r \log_2 d \rfloor \mod 2j \in \{0, j - 1, j + 1\} \\ \lfloor r \log_2 d \rfloor - j & \text{else }. \end{cases}$$

The bound can be refined on the first rounds!

Cryptanalysis and design of Arithmetization-Oriented primitives

Bounding the degree when $d = 2^j + 1$

Particularity: There is a gap in the first rounds.

Bound for MIMC₅

Bound for MIMC₉

Sporadic Cases

Observation

Let $k_{3,r} = \lfloor r \log_2 3 \rfloor$. If $4 \le r \le 16265$, then

$$3^r > 2^{k_{3,r}} + 2^r$$
.

Observation

Let t be an integer s.t. $1 \le t \le 21$. Then

$$\forall x \in \mathbb{Z}/3^{t}\mathbb{Z}, \ \exists \varepsilon_{2}, \ldots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{j=2}^{2t+2} \varepsilon_{j} 4^{j} \ \text{mod} \ 3^{t} \ .$$

Is it true for any t? Should we consider more ε_j for larger t?

Cryptanalysis and design of Arithmetization-Oriented primitives

More maximum-weight exponents

Study of $MiMC_3^{-1}$

Inverse: $F: x \mapsto x^{s}, \ s = (2^{n+1} - 1)/3 = [101..01]_2$

First plateau

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$

 \star Round 1:

$$B_{\rm s}^1={\rm wt}({\rm s})=({\rm n}+1)/2$$

 \star Round 2:

$$B_s^2 = \max\{\operatorname{wt}(is), \text{ for } i \leq s\} = (n+1)/2$$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3\\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 0, 1 \mod 3 \end{cases}$$

Cryptanalysis and design of Arithmetization-Oriented primitives

Next Rounds

Proposition [Boura and Canteaut, IEEE13]

 $\forall i \in [1, n-1]$, if the algebraic degree of encryption is deg^a(F) < (n-1)/i, then the algebraic degree of decryption is deg^a(F⁻¹) < n-i

$$r_{n-i} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{1}{2} \left\lceil \frac{n-1}{i} \right\rceil \right\rceil + 1 \right) \right\rceil$$

In particular:

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$

