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Introduction



Notation

Let Fq be a finite field of characteristic p > 2.

Let A,B ∈ Fq such that 4A3 + 27B2 ̸= 0. We define an elliptic curve E with:

E : y2 = x3 + Ax + B

We ask #E (Fq) = rh with r ̸= p prime and h small.

The trace of E is t = #E (Fq)− (q + 1).

Theorem: Hasse-Weil bound
With the previous notation, | t |⩽ 2

√
q.
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Pairings

Let G1,G2,GT be groups of exponent r . We call pairing an application

e : G1 ×G2 −→ GT

which is:

▶ non-degenerate: ∀P ∈ G1,∃Q ∈ G2, e(P,Q) ̸= 1
and ∀Q ∈ G2,∃P ∈ G1, e(P,Q) ̸= 1.

▶ bilinear: ∀P1,P2 ∈ G1,∀Q1,Q2 ∈ G2, e(P1 + P2,Q1) = e(P1,Q1)e(P2,Q1) and
e(P1,Q1 + Q2) = e(P1,Q1)e(P1,Q2).
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Examples

We denote the r -torsion of E by E [r ].

Let µr be the set of r -th roots of unity in Fq. Then Fq(µr ) has cardinal qk .

We call k the embedding degree of E .

Example:

eWeil : E [r ]× E [r ] −→ µr

Example:

eTate : E (Fq)[r ]× E (Fqk )/rE (Fqk ) −→ F×
qk/(F×

qk )
r
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Applications of pairings

Pairings have some interesting cryptographic applications:

▶ Identity-based encryption (Boneh–Franklin, 2003)

▶ Short signatures (Boneh–Lynn–Shacham, 2004)

▶ Flexible key-exchange protocols (Joux, 2004)
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MOV attack

If a pairing can be computed quickly,

DLP in E [r ](Fq) −→ DLP in F×
qk

To use pairings, we need F×
qk to be large enough, which means k is large enough.
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Supersingular curves and pairings

Definition
Let End(E ) be the endomorphism ring of the curve E . Then either:

- End(E ) is isomorphic to a maximal order in a quaternion algebra. We say that E is
supersingular.

- End(E ) is isomorphic to an order in an imaginary quadratic field. We say that E is
ordinary.

Proposition
If E is supersingular, then k ⩽ 6.
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Pairing-friendly curves

If E is an ordinary curve, usually k ≈ r .

We want curves with small enough k : pairing-friendly curves.

Pairing-friendly curves are rare, so we need to find ad hoc constructions.
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General strategy

We define the D discriminant of E as the squarefree part of the discriminant of End(E ).

General strategy to generate PF curves of a given security level n:

- Fix k and D.

- Find q and E/Fq with a subgroup of size r ≈ 22n, embedding degree k , and
discriminant D.

- Compute the ρ-value: ρ = log(q)/ log(r).

Goal: getting ρ ≈ 1.
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Describing PF curves with integers

Proposition
Fix k and D. Let q, r and t be integers satisfying:

▶ q is a prime (power).

▶ r is a prime.

▶ t is coprime to q.

▶ rh = q + 1 − t for some integer h.

▶ r divides Φk(q) where Φk is the k-th cyclotomic polynomial.

▶ Dy2 = 4q − t2 for some integer y (CM equation).

Then there exists a curve E over Fqk with discriminant D, trace t and a subgroup of
order r with embedding degree k .
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Describing PF curves with integers

Proposition
Fix k and D. Let q, r and t be integers satisfying:

▶ q is a prime (power).

▶ r is a prime.

▶ t is coprime to q.

▶ rh = q + 1 − t for some integer h.

▶ r divides Φk(t − 1) where Φk is the k-th cyclotomic polynomial.

▶ Dy2 = 4q − t2 = −(t − 2)2 mod r for some integer y (CM equation).

Then there exists a curve E over Fqk with discriminant D, trace t and a subgroup of
order r with embedding degree k .
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Considering families of curves

Two reasons to consider families of curves:

- smaller ρ-values.

- Adaptation to the security level.

Goal: Find polynomials Q, R , T in Q[X ] and take q = Q(x0), r = R(x0), t = T (x0) for
some integer x0.
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Prime values of polynomials

Conjecture: Buniakowski–Schinzel
Let P ∈ Q[X ]. P takes an infinite number of prime values if and only if:

▶ P is irreducible.

▶ P has a positive leading coefficient.

▶ P is non-constant.

▶ P takes integer values.

▶ gcd({P(x) | x ,P(x) ∈ Z}) = 1.

P represents primes if P satisfies the 5 conditions of the conjecture.
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Complete families of curves

Fix k and D. Let Q, R , T , Y and H be polynomials in Q[X ]. The polynomials form a
potential (complete) family of curves if:

▶ R is irreducible, non-constant, has positive leading coefficient.

▶ RH = Q + 1 − T .

▶ R divides Φk(T − 1).

▶ DY 2 = 4Q − T 2.

They form a (complete) family if they additionally satisfy:

▶ Q represents primes.

▶ Q, R , T , Y , H all take an integer value at a common integer.

The ρ-value of a family: degQ/ degR .
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Brezing–Weng method

Let Ck be the field extension containing the k-th roots of unity.

Algorithm 2.1: Brezing–Weng method
Input: k > 0 and D > 0 squarefree.
Output: A potential family of elliptic curves.

1 Let R ∈ Q[X ] be an irreducible polynomial with positive leading coefficient such that
K = Q[X ]/⟨R⟩ contains

√
−D and Ck . Fix a primitive k-th root of unity ζk ∈ K .

2 Let T ∈ Q[X ] be a polynomial mapping to ζk + 1 in K .
3 Let Y ∈ Q[X ] be a polynomial mapping to T−2√

−D
in K .

4 Q = (T 2 + DY 2)/4 ∈ Q[X ]; H = (Q + 1 − T )/R ∈ Q[X ]

5 Return Q,R ,T ,Y ,H

14



Brezing–Weng method
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Example

Example:
The Barreto–Lynn–Scott family for k = 24, D = 3, and ρ = 5/4:

- R = Φ24(X ),

- T = X + 1,

- Q = 1
3(X − 1)2(X 8 + X 4 + 1) + X .
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KSS’s approach

The problem in the Brezing-Weng method is to find R . The first candidate polynomials
were the cyclotomic ones, but it is a bit restrictive.

Kachisa–Shaefer–Scott suggested to take R as the minimal polynomial of an element θ in
a suitable number field, and were successful in finding new families.

One of its interests is that it is easy to enumerate potential families through the
enumeration of the elements of the number field.
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KSS’algorithm

Algorithm 2.3: KSS algorithm
Input: k > 0 and D > 0 squarefree.
Output: A potential family of elliptic curves.

1 Fix K a number field containing
√
−D and a primitive k-th root of unity ζk .

2 Pick θ ∈ K such that Q(θ) = K .
3 Let R ∈ Q[X ] be the minimal polynomial of θ over Q.
4 Let T ∈ Q[X ] such that T (θ) = ζk + 1.
5 Let Y ∈ Q[X ] such that Y (θ) = ζk−1√

−D
.

6 Q = (T 2 + DY 2)/4 ∈ Q[X ]; H = (Q + 1 − T )/R ∈ Q[X ]

7 Return Q,R ,T ,Y ,H
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Example

Let k = 11 and D = 1. Set K = C11(
√
−1). Let ζ11 be a 11-th root of unity in K .

Let θ = ζ11/
√
−1. We have:

▶ θ11 = 1/
√
−111

= −1/
√
−1 =

√
−1

▶ −θ2 = ζ2
11

Let T = −X 2 + 1 and Y = −(−X 2 − 1)X 11.

Let R be the minimal polynomial of θ,
and Q = (T 2 + DY 2)/4.
We obtain a family with ρ-value 13

10 first discovered by Brezing and Weng.
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KSS16

Example:
The KSS16 family, k = 16, D = 1 and ρ = 5/4:

R = X 8 + 48x4 + 625,

T = 1
35(2X 5 + 41X + 35),

Y = 1
35

(
X 5 − 5X 4 + 38X − 120

)
,

Q = 1
980(X

10 + 2X 9 + 5X 8 + 48X 6 + 152X 5 + 240X 4 + 625X 2 + 2398X + 3125).
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KSS18

Example:
The KSS18 family, k = 18, D = 3 and ρ = 4/3:

R = X 6 + 37X 3 + 343,

T = 1
7(X

4 + 16X + 7),

Y = 1
21

(
−5X 4 − 14X 3 − 94X − 259

)
,

Q = 1
21(X

8 + 5X 7 + 7X 6 + 37X 5 + 188X 4 + 259X 3 + 343X 2 + 1763X + 2401).
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Subfield method



KSS enumeration

For their enumeration, KSS restricted themselves to K = Cℓ where ℓ = lcm(k , 4) or
ℓ = lcm(k , 6).

They noticed that for most θ in K , the potential families have a ρ-value around 2.

They restricted themselves to algebraic integers with sparse coefficients in the base of
powers of ζℓ.

In this subset of K , they managed to find some elements generating interesting potential
families.

Goal: Describe the elements generating interesting families.
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Our field extension pattern

Let k ⩾ 7 and D > 0 squarefree.

Q

CkQ(
√
−D)

Ck(
√
−D)

K
F

Figure 1: Our setting

K is an extension of Ck(
√
−D), F is a subfield of K containing

√
−D such that

K = FCk . 22



First observations

The generator change θ2 = θ1 −λ, λ ∈ Q, yields the polynomial substitution X 7→ X +λ:

Q2(X ) = Q1(X + λ), ...

The ρ-value is not affected.

The generator change θ2 = Nθ1, N ∈ Q, yields the polynomial substitution X 7→ X/N:

Q2(X ) = Q1(X/N), ...

The ρ-value is not affected.

Therefore, affine rational transformations on θ does not affect the ρ-value of the
generated potential family.

23



Subfield method

Fix ζk a primitive k-th root of unity.

Consider the Q-vector space F ζk = {αζk ; α ∈ F}. Take θ = αζk for some α ∈ F , such
that Q(θ) = K .

Define e an integer such that Q(θe) = F . Let P1, P2, P3 in Q[X ] such that:

- P1(θ
e) = 1/α.

- P2(θ
e) = 1/(α

√
−D).

- P3(θ
e) = 1/

√
−D.
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Subfield method

Then T (X ) = P1(X e)X + 1 as

P1(θ
e)θ + 1 = 1/α(αζk) + 1 = ζk + 1.

Similarly, Y (X ) = P2(X e)X − P3(X e).

Then ρ = 2e([F :Q]−1)+2
[K :Q] = 2e

[K :F ]

(
1 − 1

[F :Q]

)
+ 2

[K :Q] .
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First case: e = k

Q

CkQ(
√
−D)

F

K

Figure 2: General setting for Case 1.

The ρ-value is optimal if F = Q(
√
−D).
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First case: e = k

Q

CkQ(
√
−D) = F

K = Ck(
√
−D)

Figure 2: Optimized setting for Case 1.
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First case: e = k

Q

CkQ(
√
−D) = F

K = Ck(
√
−D)

Figure 2: Optimized setting for Case 1.

ρ =
k + 1
φ(k)

if
√
−D /∈ Ck and ρ =

2(k + 1)
φ(k)

if
√
−D ∈ Ck
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Second case: e = k/2

Q

CkQ(
√
−D)

F

K

Figure 3: General setting for Case 2.

The ρ-value is optimal if F = Q(
√
−D).
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Second case: e = k/2

Q

CkQ(
√
−D)

F

K

Figure 3: General setting for Case 2.

The ρ-value is optimal if F = Q(
√
−D).
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Third case: e = k/d

Let d be a divisor of k , d ≥ 3, and let e = k/d .

Q

Ck

CdQ(
√
−D)

F

K

Figure 4: General setting for Case 3.

The ρ-value is optimal if F = Cd (
√
−D).

28



Third case: e = k/d

Let d be a divisor of k , d ≥ 3, and let e = k/d .

Q

Ck

CdQ(
√
−D)

F

K

Figure 4: General setting for Case 3.

ρ =
2(φ(d)− 1)

d
k

φ(k)
+

2
φ(k)

if
√
−D ∈ Cd
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Possibilities for d

k d , d | k 2(φ(d)− 1)/d upper bound

odd
3 2/3

Case 1: 1
15 14/15

even

4 1/2

Case 2: 1/2
6 1/3
12 1/2
30 7/15

Table 1: Choices for d between 3 and 50 and corresponding coefficients.
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Sum-up

The optimal case is when F is an imaginary quadratic field, F = Q(
√
−D). The

discriminant you can choose depends on k :

▶ if 3 | k , D = 3, and e = k/ gcd(6, k).

▶ else if 4 | k , D = 1 and e = k/4, or
√
−D /∈ Ck and e = k/2.

▶ else if k is even,
√
−D /∈ Ck and e = k/2.

▶ else
√
−D /∈ Ck and e = k .
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Example

Let k = 18, D = 3. Let K = C18 and θ = (1 + 3ζ3
18)ζ18. We obtain:

T = (3X 4 + 176X + 221)/221,

Y = (5X 4 − 26X 3 + 146X − 1157)/663,

R = (X 6 + 89X 3 + 2197)/(133 · 172),

Q = 1
11271

(
X 8 − 5X 7 + 13X 6 + 89X 5 − 292X 4 + 1157X 3 + 2197X 2

−2009X + 28561)

The family has the same ρ-value as KSS18: ρ = 4/3.
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Results



Theoretical results

▶ We found a Q-vector space of good generators. We are able to generate many
families at any embedding degree k , for almost any discriminant.

▶ Our method generalizes most previous works (not BN curves).

▶ Our families have ρ-values at least equal to previous best families. We improved the
ρ-value for k = 22.

▶ The new families have larger denominators.
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New families

Our new curve GG22 for k = 22 and D = 7, from α = (1 +
√

7)/2:

T = (X 12 + 45X + 46)/46

Y = (X 12 − 4X 11 − 47X − 134)/322

R = (X 20−X 19−X 18+3X 17−X 16−5X 15+7X 14+3X 13−17X 12+11X 11+23X 10+

22X 9−68X 8+24X 7+112X 6−160X 5−64X 4+384X 3−256X 2−512X +1024)/23

Q = (X 24−X 23+2X 22+67X 13+94X 12+134X 11+2048X 2+5197X +4096)/7406

Its ρ-value: ρ = 1.2 (previous was 1.3).
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New families

Our new GG20a curve for k = 20 and D = 1, from α = 1 − 2ζ4:

T = (2X 6 + 117X + 205)/205

Y = (X 6 − 5X 5 − 44X − 190)/205

R = (X 8 + 4X 7 + 11X 6 + 24X 5 + 41X 4 + 120X 3 + 275X 2 + 500X + 625)/25625

Q = (X 12 − 2X 11 + 5X 10 + 76X 7 + 176X 6 + 380X 5 + 3125X 2 + 12938X
+15625)/33620

Its ρ-value: ρ = 1.5.
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New families

Our new GG20b curve for k = 20 and D = 1, from α = 1 + 2ζ4:

T = (−2X 6 + 117X + 205)/205

Y = (X 6 − 5X 5 + 44X + 190)/205

R = (X 8 − 4X 7 + 11X 6 − 24X 5 + 41X 4 − 120X 3 + 275X 2 − 500X + 625)/25625

Q = (X 12 − 2X 11 + 5X 10 − 76X 7 − 176X 6 − 380X 5 + 3125X 2 + 12938X
+15625)/33620

Its ρ-value: ρ = 1.5.
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Seeds for new curves

Some new curves for the 192-bit security level:

curve seed log q log r ρ log qk sec.
Fqk

GG20a −(249 + 246 + 241 + 218 + 23 + 22 + 1) 576 379 1.52 11520 196
GG20a 249 + 246 + 244 + 240 + 234 + 227 + 214 + 1 576 380 1.52 11500 196
GG20b −249 − 245 − 242 − 236 + 211 + 1 575 379 1.52 11500 196
GG20b −249 + 246 − 241 + 235 + 230 − 1 575 379 1.52 11500 196
GG20b −249 − 247 + 245 − 227 − 222 − 218 − 1 576 380 1.52 11520 196
GG22D7 −220 + 218 + 213 − 210 − 28 − 22 + 1 457 383 1.19 10054 220

Table 2: Parameters of our new curves at the 192-bit security level.
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Optimal ate pairing cost estimates

Table 3: Optimal ate pairing and final exponentiation cost estimates in terms of finite field
multiplications.

curve
p r Miller loop final exp

bits bits optimal ate easy hard total
GG20b 575 379 17554m 507m 41997m 42504m
GG22D7 457 383 45780m 1500m 79740m 81240m

The bitsize of p has a scale color w.r.t. its 64-bit machine word size: 512 < 9w ≤ 576 ,
448 < 8w ≤ 512 .
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Optimal ate pairing cost estimates

Table 4: Optimal ate pairing and final exponentiation cost estimates in terms of finite field
multiplications.

curve
p r pairing

bits bits total
GG20b 575 379 60058m
GG22D7 457 383 127020m

The bitsize of p has a scale color w.r.t. its 64-bit machine word size: 512 < 9w ≤ 576 ,
448 < 8w ≤ 512 .
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Conclusion

▶ We generalizes the KSS technique to generate complete families of pairing-friendly
curves.

▶ For k = 16, k = 18, we obtain alternative choices of comparable performances as
the well-known KSS curves.

▶ For k = 20, we improve on the previous FST 6.4 curves with parameters that are
not vulnerable to a STNFS attack.

▶ For k = 22, we improve on the previously best ρ-values.

Links:

▶ Sagemath code for generating families and optimal ate pairing implementation.

▶ HAL
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