Clustering Effect in Simon and Simeck

Gaëtan Leurent¹, Clara Pernot¹ and André Schrottenloher²

¹Inria, Paris ²CWI, Amsterdam

Thursday, May 11th 2023

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- Conclusion

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- Conclusion

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- 4 Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- Conclusion

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software

[BTSWSW, DAC'15]

[BTSWSW, DAC'15]

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

Simon optimized in hardware

[BTSWSW, DAC'15]

Speck optimized in software

[BTSWSW, DAC'15]

Attempt of ISO standardization...

But some experts were suspicious about:

- ightarrow the lack of clear need for standardisation of the new ciphers
- → NSA's previous involvement in the creation and promotion of backdoored cryptographic algorithm

More than 70 papers study Simon and Speck!

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

Simon optimized in hardware

[BTSWSW, DAC'15]

Speck optimized in software

[BTSWSW, DAC'15]

Attempt of ISO standardization...

But some experts were suspicious about:

- ightarrow the lack of clear need for standardisation of the new ciphers
- → NSA's previous involvement in the creation and promotion of backdoored cryptographic algorithm

More than 70 papers study Simon and Speck!

⇒ A variant of Simon and Speck: Simeck.

[YZSAG, CHES'15]

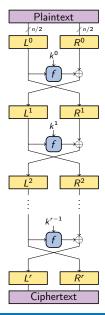
Summary of previous and new attacks

Cipher	Rounds	Attacked	Ref	Note
Simeck48/96	36	30	[QCW'16]	Linear † ‡
		32	New	Linear
Simeck64/128	44	37	[QCW'16]	Linear † ‡
		42	New	Linear
Simon96/96	52	37	[WWJZ'18]	Differential
		43	New	Linear
Simon96/144	54	38	[CW'16]	Linear
		45	New	Linear
Simon128/128	68	50	[WWJZ'18]	Differential
		53	New	Linear
Simon128/192	69	51	[WWJZ'18]	Differential
		55	New	Linear
Simon128/256	72	53	[CW'16]	Linear
		56	New	Linear

[†]The advantage is too low to do a key-recovery.

[‡]Attack use the duality between linear and differential distinguishers.

Feistel cipher



A Feistel network is characterized by:

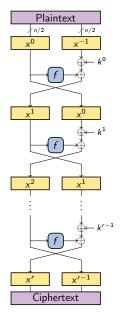
- its block size: n
- ullet its key size: κ
- its number of round: r
- its round function: *f*

For each round $i = 0, \ldots, r - 1$:

$$\left\{ \begin{array}{lcl} R^{i+1} & = & L^i \\ L^{i+1} & = & R^i \oplus f(L^i,k^i) \end{array} \right.$$

Example: Data Encryption Standard (DES).

Feistel cipher



A Feistel network is characterized by:

• its block size: n

ullet its key size: κ

• its number of round: r

• its round function: f

For each round $i = 0, \ldots, r - 1$:

$$x^{i+1} = x^{i-1} \oplus f(x^i) \oplus k^i$$

Example: Data Encryption Standard (DES).

Simon, Speck and Simeck

→ Simon is a Feistel network with a quadratic round function:

$$f(x) = ((x \ll 8) \land (x \ll 1)) \oplus (x \ll 2)$$

and a linear key schedule.

[BTSWSW, DAC'15]

→ Speck is an Add-Rotate-XOR (ARX) cipher:

$$R_k(x,y) = (((x \ll \alpha) \boxplus y) \oplus k, (y \ll \beta) \oplus ((x \ll \alpha) \boxplus y) \oplus k)$$

which reuses its round function R_k in the key schedule.

[BTSWSW, DAC'15]

Simon, Speck and Simeck

→ Simon is a Feistel network with a quadratic round function:

$$f(x) = ((x \ll 8) \land (x \ll 1)) \oplus (x \ll 2)$$

and a linear key schedule.

[BTSWSW, DAC'15]

→ Speck is an Add-Rotate-XOR (ARX) cipher:

$$R_k(x,y) = (((x \ll \alpha) \boxplus y) \oplus k, (y \ll \beta) \oplus ((x \ll \alpha) \boxplus y) \oplus k)$$

which reuses its round function R_k in the key schedule.

[BTSWSW, DAC'15]

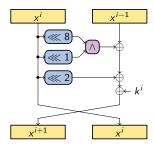
→ Simeck is a Feistel network with a quadratic round function:

$$f(x) = ((x \ll 5) \land x) \oplus (x \ll 1)$$

which reuses its round function *f* in the key schedule.

[YZSAG, CHES'15]

Simon and Simeck

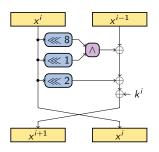


Simon round function

n (block size)	32	4	8	6	54	Ć	96		128	
1, 1							144 54	128 68	192 69	256 72

 \rightarrow Linear key schedule.

Simon and Simeck



Simon round function

n (block size)	32	4	8	(54	Ć	96	128	
κ (key size) r (rounds)							144 54	192 69	256 72

x^{i} x^{i-1}
5 1
(<u>(</u> 1)
$\leftarrow k^i$
x^{i+1} x^{i}

Simeck round function

n	32	48	64
κ	64	96	128
r	32	36	44

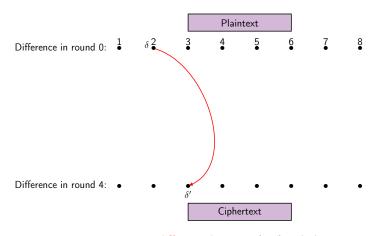
 \rightarrow Linear key schedule.

 \rightarrow Non-linear key schedule which reuses f.

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- 4 Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- Conclusion

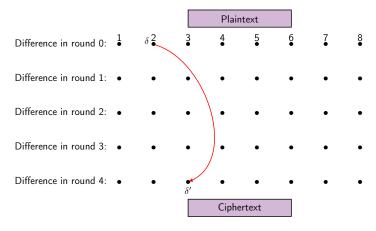
Difference in round 4: • • • • • •

Ciphertext



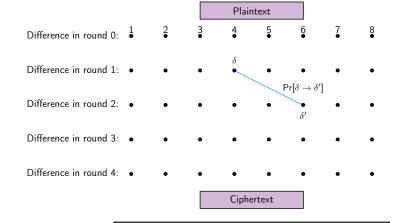
A differential is a pair (δ, δ') such that:

$$\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$$

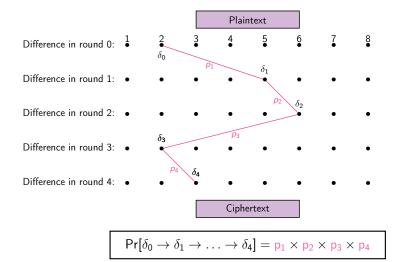


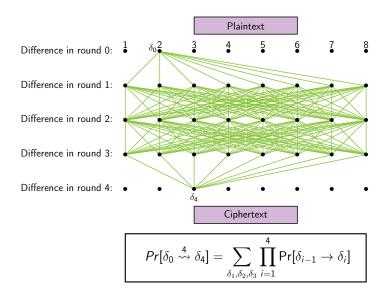
A differential is a pair (δ, δ') such that:

$$\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$$



$$\Pr[\delta \to \delta'] = \Pr_{x}[R(x) \oplus R(x \oplus \delta) = \delta']$$





Differential Cryptanalysis

The transition probabilities can also be written in a matrix A:

 \rightarrow For one round:

$$A = \begin{pmatrix} Pr[0 \to 0] & Pr[0 \to 1] & \cdots & Pr[0 \to 2^{n} - 1] \\ Pr[1 \to 0] & Pr[1 \to 1] & \cdots & Pr[1 \to 2^{n} - 1] \\ \vdots & \vdots & \ddots & \vdots \\ Pr[2^{n} - 1 \to 0] & Pr[2^{n} - 1 \to 1] & \cdots & Pr[2^{n} - 1 \to 2^{n} - 1] \end{pmatrix}$$

 \rightarrow For *r* rounds:

$$A^{r} = \begin{pmatrix} Pr[0 \stackrel{r}{\leadsto} 0] & Pr[0 \stackrel{r}{\leadsto} 1] & \cdots & Pr[0 \stackrel{r}{\leadsto} 2^{n} - 1] \\ Pr[1 \stackrel{r}{\leadsto} 0] & Pr[1 \stackrel{r}{\leadsto} 1] & \cdots & Pr[1 \stackrel{r}{\leadsto} 2^{n} - 1] \\ \vdots & \vdots & \ddots & \vdots \\ Pr[2^{n} - 1 \stackrel{r}{\leadsto} 0] & Pr[2^{n} - 1 \stackrel{r}{\leadsto} 1] & \cdots & Pr[2^{n} - 1 \stackrel{r}{\leadsto} 2^{n} - 1] \end{pmatrix}$$

 \Rightarrow Computing A^r is infeasible for practical ciphers.

• Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \leadsto \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

If $\Pr[\delta \leadsto \delta'] \gg 2^{-n}$, we obtain a distinguisher:

- $ightarrow \ Q pprox D imes \Pr[\delta \leadsto \delta']$ for the cipher
- $\rightarrow Q \approx D \times 2^n$ for a random permutation

Differential Cryptanalysis

Differential: a pair (δ, δ') such that

$$\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$$

With independent round keys:

 \rightarrow for 1 round:

$$\Pr[\delta \to \delta'] = \Pr_{x}[R(x) \oplus R(x \oplus \delta) = \delta']$$

 \rightarrow for *r* rounds:

$$\Pr[\delta_0 \overset{r}{\leadsto} \delta_r] = \sum_{\delta_1, \delta_2, \dots \delta_{r-1}} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i]$$

Differential Cryptanalysis

Differential: a pair (δ, δ') such that $\Pr_k[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$

With independent round keys:

 \rightarrow for 1 round:

$$\Pr[\delta \to \delta'] = \Pr_{\mathsf{x}}[R(\mathsf{x}) \oplus R(\mathsf{x} \oplus \delta) = \delta']$$

 \rightarrow for r rounds:

$$\Pr[\delta_0 \overset{r}{\leadsto} \delta_r] = \\ \sum_{\delta_1, \delta_2, \dots \delta_{r-1}} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i]$$

Linear Cryptanalysis

Linear Approx: a pair (α, α') such that $|2 \Pr_{\mathbf{x}}[\mathbf{x} \cdot \alpha = E_k(\mathbf{x}) \cdot \alpha'] - 1| \gg 2^{1-n/2}$

With independent round keys:

 \rightarrow for 1 round:

$$c(\alpha \to \alpha') = 2 \Pr_{x}[x \cdot \alpha = R(x) \cdot \alpha'] - 1$$

 \rightarrow for *r* rounds:

$$\mathsf{ELP}(\alpha_0 \overset{r}{\leadsto} \alpha_r) = \sum_{\alpha_1, \alpha_2, \dots \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

Differential and Linear Distinguishers

Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \leadsto \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

- $ightarrow~Q pprox D imes \Pr[\delta \leadsto \delta']$ for the cipher
- $ightarrow \ Q pprox D imes 2^{-n}$ for a random permutation

• Linear distinguisher:

We collect $D = \mathcal{O}(1/\operatorname{ELP}[\alpha \leadsto \alpha'])$ pairs (P, C) and compute:

$$Q = (\#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 0\} - \#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 1\})$$

- $\rightarrow Q^2 \approx D \times ELP[\alpha \leadsto \alpha']$ for the cipher
- $ightarrow Q^2 pprox D imes 2^{-n}$ for a random permutation

Differential and Linear Distinguishers

Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \leadsto \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

- $ightarrow \ Q pprox D imes \Pr[\delta \leadsto \delta']$ for the cipher
- $ightarrow \ Q pprox D imes 2^{-n}$ for a random permutation

• Linear distinguisher:

We collect $D = \mathcal{O}(1/\operatorname{ELP}[\alpha \leadsto \alpha'])$ pairs (P, C) and compute:

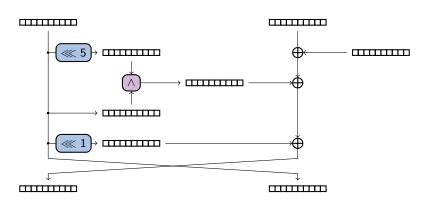
$$Q = (\#\{P,C:P\cdot\alpha\oplus C\cdot\alpha'=0\} - \#\{P,C:P\cdot\alpha\oplus C\cdot\alpha'=1\})$$

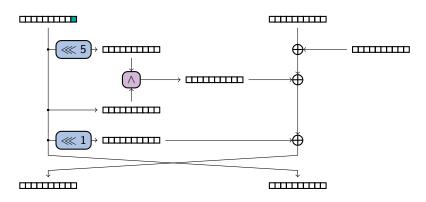
- $\rightarrow Q^2 \approx D \times ELP[\alpha \leadsto \alpha']$ for the cipher
- $ightarrow Q^2 pprox D imes 2^{-n}$ for a random permutation

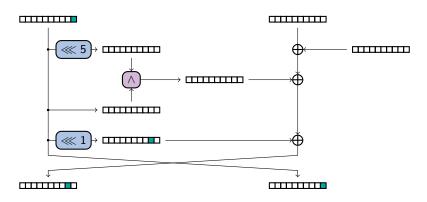
How to find stronger distinguishers for Simon and Simeck?

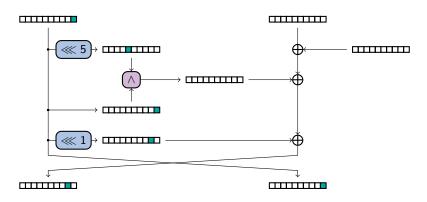
- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- 4 Improved Key-recovery attacks against Simecle
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- 6 Conclusion

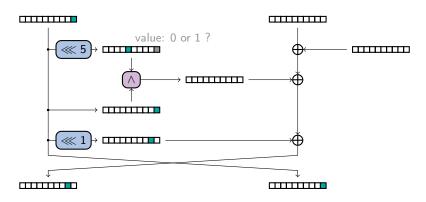
- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- 6 Conclusion

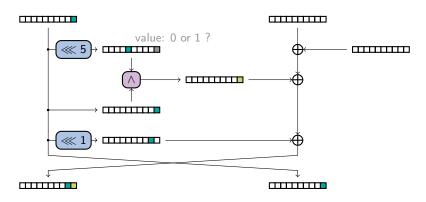


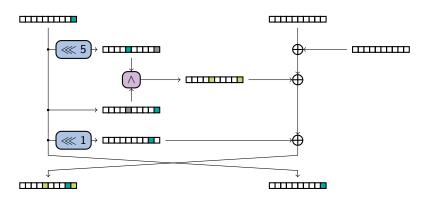






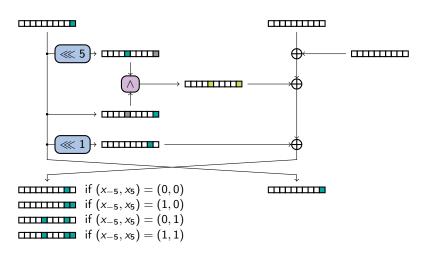






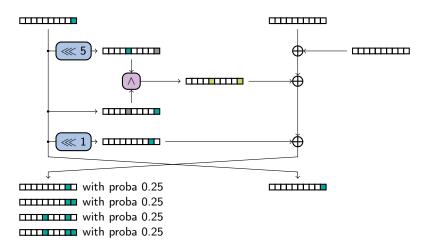
Probability of transition through f

Consider a difference $\delta = 1$ on the left part:



Probability of transition through f

Consider a difference $\delta = 1$ on the left part:



Probability of transition through f

Since f is quadratic, the exact probability of transitions can be computed efficiently for Simon and Simeck: [KLT, CRYPTO'15]

$$\Pr[(\delta_L, \delta_R) o (\delta_L', \delta_R')] = egin{cases} 2^{-\dim(U_{\delta_L})} & ext{if } \delta_L = \delta_R' ext{ and } \delta_R \oplus \delta_L' \in U_{\delta_L} \\ 0 & ext{otherwise} \end{cases}$$
 $U_{\delta} = \operatorname{Img}(x \mapsto f(x) \oplus f(x \oplus \delta) \oplus f(\delta)) \oplus f(\delta)$

Table of contents

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- 6 Conclusion

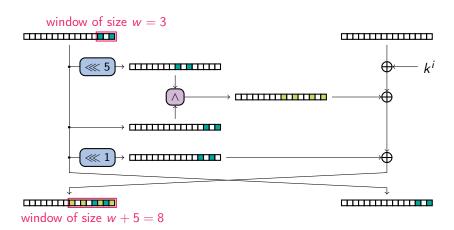
We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)]$ easily now...

 \rightarrow But computing $\Pr[(\delta_L, \delta_R) \stackrel{r}{\leadsto} (\delta'_L, \delta'_R)]$ remains hard!

We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)]$ easily now...

 \rightarrow But computing $\Pr[(\delta_L, \delta_R) \stackrel{r}{\leadsto} (\delta'_L, \delta'_R)]$ remains hard!

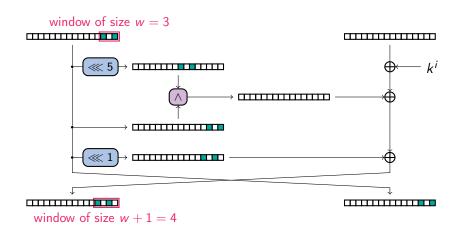
Observation: Simeck diffusion in the worst case



We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta_L', \delta_R')]$ easily now...

 \rightarrow But computing $\Pr[(\delta_L, \delta_R) \stackrel{r}{\leadsto} (\delta'_L, \delta'_R)]$ remains **hard!**

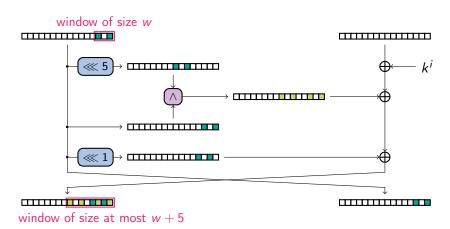
Observation: Simeck diffusion in the best case



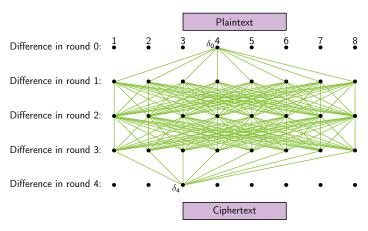
We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta_L', \delta_R')]$ easily now...

 \rightarrow But computing $\Pr[(\delta_L, \delta_R) \stackrel{r}{\leadsto} (\delta'_L, \delta'_R)]$ remains hard!

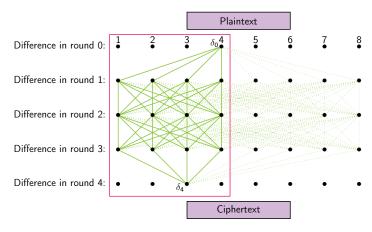
Conclusion: Simeck has a relatively slow diffusion!



Our idea is to focus on trails that are only active in a window of w bits:



Our idea is to focus on trails that are only active in a window of w bits:



- w: the size of the window ($w \le n/2$).
- Δ_w : the vector space of differences active only in the w LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

- w: the size of the window ($w \le n/2$).
- Δ_w : the vector space of differences active only in the w LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

A **lower bound** of the probability of the differential (δ_0, δ_r) is computed by summing over all characteristics with intermediate differences in Δ_w^2 :

$$\Pr[\delta_0 \overset{r}{\underset{w}{\longleftrightarrow}} \delta_r] = \sum_{\delta_1, \delta_2, \dots \delta_{r-1} \in \Delta_w^2} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i] \leq \Pr[\delta_0 \overset{r}{\leadsto} \delta_r]$$

- w: the size of the window ($w \le n/2$).
- Δ_w : the vector space of differences active only in the w LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

A **lower bound** of the probability of the differential (δ_0, δ_r) is computed by summing over all characteristics with intermediate differences in Δ_w^2 :

$$\Pr[\delta_0 \overset{r}{\underset{w}{\longleftrightarrow}} \delta_r] = \sum_{\delta_1, \delta_2, \dots \delta_{r-1} \in \Delta_w^2} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i] \leq \Pr[\delta_0 \overset{r}{\leadsto} \delta_r]$$

 \Rightarrow This can be done by computing A_w^r , with A_w the matrix of transitions $\Pr[\delta \to \delta']$ for all $\delta, \delta' \in \Delta_w^2$.

 \Rightarrow This can be done by computing A_w^r , with A_w the matrix of transitions $\Pr[\delta \to \delta']$ for all $\delta, \delta' \in \Delta_w^2$:

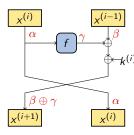
$$\begin{pmatrix} Pr[1 \to 1] & Pr[1 \to 2] & Pr[1 \to 3] & \cdots \\ Pr[2 \to 1] & Pr[2 \to 2] & Pr[2 \to 3] & \cdots \\ Pr[3 \to 1] & Pr[3 \to 2] & Pr[3 \to 3] & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \times \begin{pmatrix} Pr[1 \to 1] & Pr[1 \to 2] & Pr[1 \to 3] & \cdots \\ Pr[2 \to 1] & Pr[2 \to 2] & Pr[2 \to 3] & \cdots \\ Pr[3 \to 1] & Pr[3 \to 2] & Pr[3 \to 3] & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

⇒ We fix the input difference:

$$(Pr[1 \to 1] \quad Pr[1 \to 2] \quad Pr[1 \to 3] \quad \cdots) \times \begin{pmatrix} Pr[1 \to 1] & Pr[1 \to 2] & Pr[1 \to 3] & \cdots \\ Pr[2 \to 1] & Pr[2 \to 2] & Pr[2 \to 3] & \cdots \\ Pr[3 \to 1] & Pr[3 \to 2] & Pr[3 \to 3] & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

⇒ To reduce the memory requirement, we compute it on the fly!

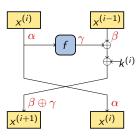
Algorithm Computation of $\Pr[(\delta_L, \delta_R) \overset{\sim}{\underset{w}{\smile}} (\delta'_L, \delta'_R)]$ Require: Pre-computation of U_{α} for all $\alpha \in \Delta_W$.



Algorithm Computation of $\Pr[(\delta_L, \delta_R) \stackrel{r}{\underset{w}{\stackrel{}{\smile}}} (\delta_L', \delta_R')]$

Require: Pre-computation of U_{α} for all $\alpha \in \Delta_W$.

Expansion of
$$\delta_{\alpha}$$
 for all $\alpha \in \Delta_{W}$. $X \leftarrow [0 \text{ for } i \in \Delta_{w}^{2}]$ $X[\delta_{L}, \delta_{R}] \leftarrow 1$ for $0 \leq i < r$ do $Y \leftarrow [0 \text{ for } i \in \Delta_{w}^{2}]$ for $\alpha \in \Delta_{w}$ do for $\beta \in \Delta_{w}$ do for $\gamma \in U_{\alpha}$ do $Y[\beta \oplus \gamma, \alpha] = Y[\beta \oplus \gamma, \alpha] + 2^{-\dim(U_{\alpha})}X[\alpha, \beta]$ $X \leftarrow Y$ return $X[\delta'_{I}, \delta'_{R}]$



- \Rightarrow This requires $r \times 2^{2w} \times \max_{\alpha \in \Delta_w} |U_{\alpha}|$ operations, and to store 2^{2w+1} probabilities.
- \Rightarrow In practice, for w = 18 and r = 30, it takes a week on a **48-core machine** using 1TB of RAM.

Tighter lower bound for the probability of differentials

Rounds	Differential	Proba (previous)	Reference	Proba (new)
26	(0,11) o (22,1)	$2^{-60.02}$	[Kölbl, Roy, 16]	$2^{-54.16}$
26	$(0,11)\rightarrow (2,1)$	$2^{-60.09}$	[Qin, Chen, Wang, 16]	$2^{-54.16}$
27	$(0,11)\rightarrow (5,2)$	$2^{-61.49}$	[Liu, Li, Wang, 17]	$2^{-56.06}$
27	$(0,11)\rightarrow (5,2)$	$2^{-60.75}$	[Huang, Wang, Zhang, 18]	II
28	$(0,11) \to (A8,5)$	$2^{-63.91}$	[Huang, Wang, Zhang, 18]	$2^{-59.16}$

Comparison of our lower bound on the differential probability for Simeck (with w=18), and estimates used in previous attacks.

The best characteristics we have identified are a set of 64 characteristics:

$$\{(1,2),(1,3),(1,22),(1,23),(2,5),(2,7),(2,45),(2,47)\}$$

$$\rightarrow$$

$$\{(2,1),(3,1),(22,1),(23,1),(5,2),(7,2),(45,2),(47,2)\}$$

 \Rightarrow However, $(0,1) \rightarrow (1,0)$ is almost as good and will lead to a more efficient key-recovery because it has fewer active bits!

Computation of the log_2 of the probability of differentials for Simeck, and the total number of trails (using w = 18):

	Differential				
Rounds	$(0,1) \to (1,0)$		$(1,2) \to (2,1)$		
10	$-\infty$		$-\infty$		
11	-23.25	(28.0)	-27.25		
12	-26.40	(36.2)	-26.17		
13	-28.02	(47.2)	-26.90		
14	-30.06	(58.2)	-29.59		
15	-31.93	(70.8)	-31.37		
			:		
20	-41.75	(131.9)	-41.26		
			:		
25	-51.01	(192.9)	-50.54		
			:		
	:		:		
30	-60.41	(254.0)	-59.92		
31	-62.29	(266.2)	-61.81		
32	-64.17	(278.4)	-63.69		

Computation of the log_2 of the probability of differentials for Simeck, and the total number of trails (using w = 18):

Differential					
(0, 1) -	→ (1, 0)	$(1,2) \rightarrow (2,1)$			
$-\infty$		$-\infty$			
-23.25	(28.0)	-27.25			
-26.40	(36.2)	-26.17			
-28.02	(47.2)	-26.90			
-30.06	(58.2)	-29.59			
-31.93	(70.8)	-31.37			
:	: '	:			
-41.75	(131.9)	-41.26			
:	:	:			
-51.01	(192.9)	-50.54			
:		:			
-60.41	(254.0)	-59.92			
-62.29	(266.2)	-61.81			
	,	-63.69			
	-∞ -23.25 -26.40 -28.02 -30.06 -31.93 : -41.75 : -51.01 : -60.41				

How does our lower bound vary depending on the size of the window w?

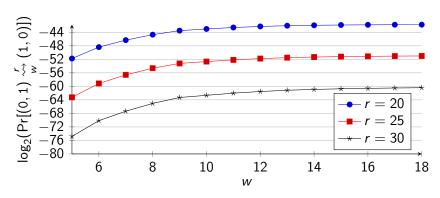


Table of contents

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- Conclusion

We want to compute a lower bound of:

$$\mathsf{ELP}(\alpha_0 \overset{r}{\leadsto} \alpha_r) = \sum_{\alpha_1, \alpha_2, \dots \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

We want to compute a lower bound of:

$$\mathsf{ELP}(\alpha_0 \overset{r}{\leadsto} \alpha_r) = \sum_{\alpha_1, \alpha_2, \dots \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

(1) Since f is quadratic, the exact probability through one round is:

$$c((\alpha_L,\alpha_R) \to (\alpha_L',\alpha_R'))^2 = \begin{cases} 2^{-\dim(V_{\alpha_R})} & \text{if } \alpha_R = \alpha_L' \text{ and } \alpha_L \oplus \alpha_R' \in V_{\alpha_R} \\ 0 & \text{otherwise} \end{cases}$$

$$V_{\alpha} = \operatorname{Img}\left(x \mapsto \left(\left(\alpha \wedge \left(x \ll a - b\right)\right) \oplus \left(\left(\alpha \wedge x\right) \gg a - b\right)\right) \gg b\right) \oplus \left(\alpha \gg c\right)$$
[KLT, CRYPTO'15]

We want to compute a lower bound of:

$$\mathsf{ELP}(\alpha_0 \overset{r}{\leadsto} \alpha_r) = \sum_{\alpha_1, \alpha_2, \dots \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

(1) Since f is quadratic, the exact probability through one round is:

$$c((\alpha_L,\alpha_R) \to (\alpha_L',\alpha_R'))^2 = \begin{cases} 2^{-\dim(V_{\alpha_R})} & \text{if } \alpha_R = \alpha_L' \text{ and } \alpha_L \oplus \alpha_R' \in V_{\alpha_R} \\ 0 & \text{otherwise} \end{cases}$$

$$V_{\alpha} = \operatorname{Img}\left(x \mapsto \left(\left(\alpha \wedge \left(x \ll a - b\right)\right) \oplus \left(\left(\alpha \wedge x\right) \gg a - b\right)\right) \gg b\right) \oplus \left(\alpha \gg c\right)$$
[KLT, CRYPTO'15]

(2) Approximation of the ELP using windows of w bits:

$$\mathsf{ELP}(\alpha_0 \overset{r}{\leadsto} \alpha_r) \approx \sum_{\alpha_1, \alpha_2, \dots \alpha_{r-1} \in \Delta^2_w} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

A set of 64 (almost) optimal trails is obtained:

$$\{(20,40),(22,40),(60,40),(62,40),(50,20),(51,20),(70,20),(71,20)\}$$

$$\rightarrow$$

$$\{(40,20),(40,22),(40,60),(40,62),(20,50),(20,51),(20,70),(20,71)\}$$

A set of 64 (almost) optimal trails is obtained:

$$\{(20,40),(22,40),(60,40),(62,40),(50,20),(51,20),(70,20),(71,20)\}$$

$$\rightarrow$$

$$\{(40,20),(40,22),(40,60),(40,62),(20,50),(20,51),(20,70),(20,71)\}$$

ightarrow They are bit-reversed versions of the optimal differential characteristics.

A set of 64 (almost) optimal trails is obtained:

$$\{(20,40),(22,40),(60,40),(62,40),(50,20),(51,20),(70,20),(71,20)\}$$

$$\rightarrow$$

$$\{(40,20),(40,22),(40,60),(40,62),(20,50),(20,51),(20,70),(20,71)\}$$

- ightarrow They are bit-reversed versions of the optimal differential characteristics.
- \rightarrow For key-recovery attack, the preference is given to $(1,0) \rightarrow (0,1)$.

Lower bound of linear and differential distinguishers

Comparison of the probability of differentials and the linear potential of linear approximations for Simeck (\log_2 , using w=18). We also give the total number of trails included in the bound in parenthesis (\log_2):

	Differential			Linear		
Rounds	(0, 1) -	→ (1, 0)	$(1,2) \to (2,1)$	(1,0) -	→ (0, 1)	$(1,2) \to (2,1)$
10	$-\infty$		$-\infty$	$-\infty$		$-\infty$
11	-23.25	(28.0)	-27.25	-23.81	(23.9)	-27.81
12	-26.40	(36.2)	-26.17	-26.39	(31.7)	-26.68
13	-28.02	(47.2)	-26.90	-27.98	(42.0)	-27.31
14	-30.06	(58.2)	-29.59	-29.95	(52.5)	-29.56
15	-31.93	(70.8)	-31.37	-31.86	(64.9)	-31.29
		()				
:	:	:	:	:	:	:
20	-41.75	(131.9)	-41.26	-41.74	(124.5)	-41.25
		/	•			•
:	:	:	:	:	:	:
25	-51.01	(192.9)	-50.54	-51.00	(184.1)	-50.56
:		: 1	:	:	: 1	:
30	-60.41	(254.0)	-59.92	-60.36	(243.6)	-59.86
31	-62.29	(266.2)	-61.81	-62.24	(255.5)	-61.75
32	-64.17	(278.4)	-63.69	-64.12	(267.4)	-63.63
33	-66.05	(290.6)	-65.57	-66.00	(279.3)	-65.51

Lower bound of linear and differential distinguishers

Comparison of the probability of differentials and the linear potential of linear approximations for Simeck (\log_2 , using w = 18). We also give the total number of trails included in the bound in parenthesis (\log_2):

	Differential			Linear		
Rounds	(0, 1) -	→ (1, 0)	$(1,2) \to (2,1)$	(1,0) -	→ (0, 1)	(1,2) o (2,1)
10	$-\infty$		$-\infty$	$-\infty$		$-\infty$
11	-23.25	(28.0)	-27.25	-23.81	(23.9)	-27.81
12	-26.40	(36.2)	-26.17	-26.39	(31.7)	-26.68
13	-28.02	(47.2)	-26.90	-27.98	(42.0)	-27.31
14	-30.06	(58.2)	-29.59	-29.95	(52.5)	-29.56
15	-31.93	(70.8)	-31.37	-31.86	(64.9)	-31.29
:	:	:		:	:	
20	-41.75	(131.9)	-41.26	-41.74	(124.5)	-41.25
:	:	:			:	
25	-51.01	(192.9)	-50.54	-51.00	(184.1)	-50.56
:		: 1	:		: 1	:
:	:	:	:		:	:
30	-60.41	(254.0)	-59.92	-60.36	(243.6)	-59.86
31	-62.29	(266.2)	-61.81	-62.24	(255.5)	-61.75
32	-64.17	(278.4)	-63.69	-64.12	(267.4)	-63.63
33	-66.05	(290.6)	-65.57	-66.00	(279.3)	-65.51

Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability p:

$$(\alpha_0, \beta_0) \to (\alpha_1, \beta_1) \to \ldots \to (\alpha_r, \beta_r)$$

we can convert it into a linear trail:

$$(\overleftarrow{\beta}_0, \overleftarrow{\alpha}_0) \to (\overleftarrow{\beta}_1, \overleftarrow{\alpha}_1) \to \ldots \to (\overleftarrow{\beta}_r, \overleftarrow{\alpha}_r)$$

where \overleftarrow{x} denotes bit-reversed x.

Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability p:

$$(\alpha_0, \beta_0) \to (\alpha_1, \beta_1) \to \ldots \to (\alpha_r, \beta_r)$$

we can convert it into a linear trail:

$$(\overleftarrow{\beta}_0, \overleftarrow{\alpha}_0) \to (\overleftarrow{\beta}_1, \overleftarrow{\alpha}_1) \to \ldots \to (\overleftarrow{\beta}_r, \overleftarrow{\alpha}_r)$$

where \overleftarrow{x} denotes bit-reversed x.

 \rightarrow if all the non-linear gates are independent: the linear trail has squared correlation p.

Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability p:

$$(\alpha_0, \beta_0) \to (\alpha_1, \beta_1) \to \ldots \to (\alpha_r, \beta_r)$$

we can convert it into a linear trail:

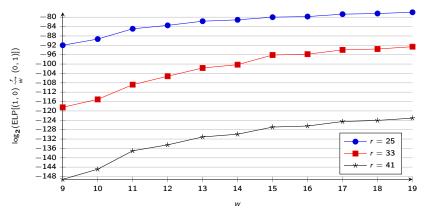
$$(\overleftarrow{\beta}_0, \overleftarrow{\alpha}_0) \to (\overleftarrow{\beta}_1, \overleftarrow{\alpha}_1) \to \ldots \to (\overleftarrow{\beta}_r, \overleftarrow{\alpha}_r)$$

where \overleftarrow{x} denotes bit-reversed x.

- \rightarrow if all the non-linear gates are independent: the linear trail has squared correlation p.
- ightarrow else: the probabilities of the linear and differential trails are not the same, but very similar.

What about Simon?

We also apply the same strategy against Simon, but the bound we obtain is **not** as tight as for Simeck: the linear potential still increases significantly with the window size w.



Effect of w on the probability of Simon linear hulls.

Table of contents

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- 6 Conclusion

Table of contents

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- Conclusion

Reminder: Differential and Linear Distinguishers

• Differential distinguisher:

We collect $D=\mathcal{O}(1/\Pr[\delta\leadsto\delta'])$ pairs $(P,P\oplus\delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

- $ightarrow~Qpprox D/\Pr[\delta\leadsto\delta']$ for the cipher
- $\rightarrow Q \approx D/2^n$ for a random permutation

• Linear distinguisher:

We collect $D = \mathcal{O}(1/\operatorname{ELP}[\alpha \leadsto \alpha'])$ pairs (P, C) and compute:

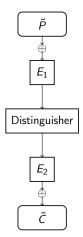
$$Q = (\#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 0\} - \#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 1\})/D$$

- $\rightarrow Q^2 \approx \textit{ELP}[\alpha \leadsto \alpha']$ for the cipher
- $ightarrow Q^2 \approx 2^{-n/2}$ for a random permutation

Key Recovery

Distinguisher

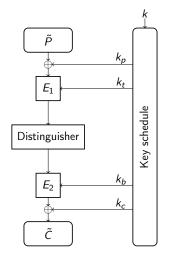
Key Recovery



General description of a cipher.

• Some rounds are added before and/or after the distinguisher.

Key Recovery



General description of a cipher.

- Some rounds are added before and/or after the distinguisher.
- The statistic used by the distinguisher is Q, and it can be evaluated using a subset of the key: (k_p, k_t, k_b, k_c) .
- The total number of guessed bits is κ_g with $\kappa_g < \kappa$.

Algorithm Naive key-recovery

for all
$$k = (k_p, k_t, k_b, k_c)$$
 do
for all pairs in D do
compute $Q(k)$
if $Q(k) > s$ then
 k is a possible candidate

Complexity: $D \times 2^{\kappa_g}$ with κ_g the number of key bits of k.

Algorithm Naive key-recovery

for all
$$k = (k_p, k_t, k_b, k_c)$$
 do
for all pairs in D do
compute $Q(k)$
if $Q(k) > s$ then
 k is a possible candidate

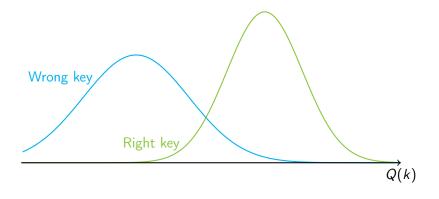
Complexity: $D \times 2^{\kappa_g}$ with κ_g the number of key bits of k.

This can be reduced to approximately $D + 2^{\kappa_g}$ using algorithm tricks:

- Dynamic key guessing for Differential Cryptanalysis
 - [QHS'16, WWJZ'18]
 - Fast Walsh Transform for Linear Cryptanalysis
- [CSQ'07, FN'20]

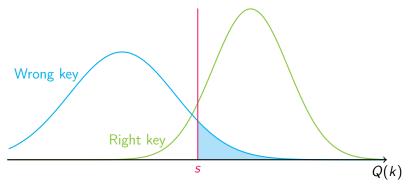
 F_R : the probability distribution of Q for the right key.

 F_W : the probability distribution of Q for a wrong key.



 F_R : the probability distribution of Q for the right key.

 F_W : the probability distribution of Q for a wrong key.

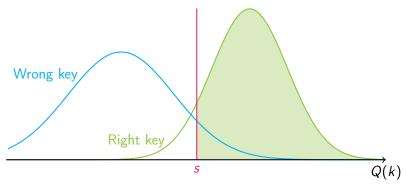


We aim to keep a proportion 2^{-a} of key candidates, so we set a threshold s:

$$2^{-a} = 1 - F_W(s) \Leftrightarrow s = F_w^{-1}(1 - 2^{-a})$$

 F_R : the probability distribution of Q for the right key.

 F_W : the probability distribution of Q for a wrong key.



Then, the success probability is given by:

$$P_S = 1 - F_R(s)$$

Table of contents

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- Conclusion

Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack.

[QHS'16,WWJZ'18]

(1) Which key bits need to be guessed?

(2) How to rearrange operations to reduce time complexity?

Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack.

[QHS'16,WWJZ'18]

- (1) Which key bits need to be guessed?
 Offline part: determining the extended path associated to a differential, and then deducing the subkey bits that need to be guessed.
- (2) How to rearrange operations to reduce time complexity?

Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack.

[QHS'16,WWJZ'18]

- (1) Which key bits need to be guessed?
 Offline part: determining the extended path associated to a differential, and then deducing the subkey bits that need to be guessed.
- (2) How to rearrange operations to reduce time complexity? Online part: guess subkey bits and filter data round by round, in order to compute Q(k).

r	Differential path					
3	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	000000000000000000000000000000000000000				
	30-round differ	ential (3 $ ightarrow$ 33)				
33	0000000000000000000	000000000000000000000000000000000000000				

r	Differential path				
		,			
3	000000000000000000000000000000000000000				
	30-round differential (3 $ ightarrow$ 33)	1			
33	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			

Starting from the differential $(0,1) \rightarrow (1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:

(1) Tracking the propagation of differences in the additional rounds.

r	Differential path	
2	000000000000000000000000000000000000000	001*
3		0001
	30-round differential (3 $ ightarrow$ 33)	
33	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0000
34	0000000000000000000000000000 000000	00001

Starting from the differential $(0,1) \rightarrow (1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:

(1) Tracking the propagation of differences in the additional rounds.

```
Differential path
        30-round differential (3 \rightarrow 33)
000000000000000000*********
        38 | 0 0 0 0 0 0 0 * 0 0 0 0 * * 0 0 0 * * * 0 * * * * * * *
        000000**********
```

Starting from the differential $(0,1) \rightarrow (1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:

(1) Tracking the propagation of differences in the additional rounds.

r	Differen	tial path
0	000000000000000000000000000000000000000	000000000000000000000000000000000000000
1	000000000000000000000000000000000000000	000000000000000000000000000000000000000
2	000000000000000000000000000000000000000	000000000000000000000000000000000000000
3	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	30-round differe	ential $(3 \rightarrow 33)$
33	000000000000000000000000000000000000000	,
34	000000000000000000000000000000000000000	000000000000000000000000000000000000000
35	000000000000000000000000*000**001**	000000000000000000000000000000000000000
36	000000000000000000*000**00***01***	000000000000000000000000000000000000000
37	000000000000*000**00***0***1***	000000000000000000*000**00***01***
38	000000*000**00***0******	0000000000000***00***0***1***
39	0 * 0 0 0 0 * * 0 0 * * * 0 * * * * * *	000000*000**00***0*******
40	**00***0******	0 * 0 0 0 0 * * 0 0 * * * 0 * * * * * *

- (1) Tracking the propagation of differences in the additional rounds.
- (2) Determining the sufficient bit conditions (in red).

r	Differen	tial path
0	000000000000000000000000000000000000000	000000000000000000000000000000000000000
1	0000000000000000000	000000000000000000000000000000000000000
2	0000000000000000000	000000000000000000000000000000000000000
3	0000000000000000000	000000000000000000000000000000000000000
	30-round differen	ential (3 → 33)
33	000000000000000000000000000000000000000	000000000000000000000000000000000000000
34	000000000000000000000000000000000000000	000000000000000000000000000000000000000
35	000000000000000000000000000000000000000	000000000000000000000000000000000000000
36	000000000000000000*000**00***01***	000000000000000000000000000000000000000
37	000000000000************	000000000000000000000000000000000000000
38	000000*000**00***0******	000000000000*000***0***0***1****
39	0 * 0 0 0 * * 0 0 * * * 0 * * * * * * *	000000*000***00***0******
40	**00***0******	0 * 0 0 0 0 * * 0 0 * * * 0 * * * * * *

- (1) Tracking the propagation of differences in the additional rounds.
- (2) Determining the sufficient bit conditions (in red).

r	Differen	tial path
0	000000000000000000000000000000000000000	000000000000000000**********
1	0000000000000000000	000000000000000000000000000000000000000
2	0000000000000000000	000000000000000000000000000000000000000
3	000000000000000000000000000000000000000	
	30-round differen	ential (3 → 33)
33	000000000000000000000000000000000000000	000000000000000000000000000000000000000
34	000000000000000000000000000000000000000	000000000000000000000000000000000000000
35	000000000000000000000000000000000000000	000000000000000000000000000000000000000
36	000000000000000000*000**00***01***	000000000000000000000000000000000000000
37	000000000000************	000000000000000000000000000000000000000
38	000000*000**00***0******	000000000000*000***0***0***1***
39	0 * 0 0 0 * * 0 0 * * * 0 * * * * * * *	000000*000**00***0*******
40	**00***0******	0 * 0 0 0 0 * * 0 0 * * * 0 * * * * * *

- (1) Tracking the propagation of differences in the additional rounds.
- (2) Determining the sufficient bit conditions (in red).
- (3) Deducing the necessary bits to check the sufficient bit conditions:

$$(k_p, k_t, k_b, k_c)$$

Round by round, we **guess** subkey bits and **filter** the pairs that do not check the sufficient bit conditions.

At the end, for each key guess (k_p, k_t, k_b, k_c) , we compute Q(k) the number of pairs satisfying the differential:

- \rightarrow for the **right** key guess, the expected value is $\lambda_R = p \times D/2$.
- \rightarrow for the **wrong** key guess, the expected value is $\lambda_W = D/2^{n-1}$.
- \Rightarrow F_R and F_W are **Poisson law** with parameter λ_R and λ_W .

For all k such that Q(k) > s, the corresponding master keys are rebuilt:

- If the key schedule is linear:
 - ightarrow exhaustive search of the $\kappa-\kappa_g$ missing bits + linear algebra
- If the key schedule is non-linear:
 - ightarrow exhaustive search of the $\kappa \kappa_{max}$ missing bits with $\kappa_{max} = \max \left(\kappa_{p} + \kappa_{t}, \kappa_{b} + \kappa_{c} \right)$

In total, the complexity and the probability of success are:

$$C_1 = D + 2^{\kappa_g} \cdot \lambda_W + 2^{\kappa + \kappa_{\min}} \cdot (1 - F_W(s))$$

$$P_S = 1 - F_R(s)$$

with $\kappa_{min} = \min (\kappa_p + \kappa_t, \kappa_b + \kappa_c)$.

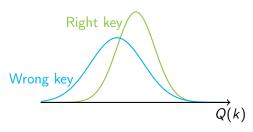
In total, the complexity and the probability of success are:

$$C_1 = D + 2^{\kappa_g} \cdot \lambda_W + 2^{\kappa + \kappa_{\min}} \cdot (1 - F_W(s))$$

$$P_S = 1 - F_R(s)$$

with $\kappa_{min} = \min (\kappa_p + \kappa_t, \kappa_b + \kappa_c)$.

 \Rightarrow The attack is repeated until it succeeds, using rotations of the initial differential: $C = C_1/P_S$.



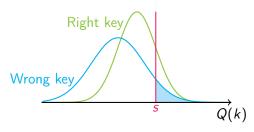
In total, the complexity and the probability of success are:

$$C_1 = D + 2^{\kappa_g} \cdot \lambda_W + 2^{\kappa + \kappa_{\min}} \cdot (1 - F_W(s))$$

 $P_S = 1 - F_R(s)$

with $\kappa_{min} = \min (\kappa_p + \kappa_t, \kappa_b + \kappa_c)$.

 \Rightarrow The attack is repeated until it succeeds, using rotations of the initial differential: $C=C_1/P_S$.



In total, the complexity and the probability of success are:

$$C_1 = D + 2^{\kappa_g} \cdot \lambda_W + 2^{\kappa + \kappa_{\min}} \cdot (1 - F_W(s))$$

$$P_S = 1 - F_R(s)$$

with $\kappa_{min} = \min (\kappa_p + \kappa_t, \kappa_b + \kappa_c)$.

 \Rightarrow The attack is repeated until it succeeds, using rotations of the initial differential: $C=C_1/P_S$.

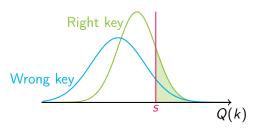


Table of contents

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- 4 Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- 6 Conclusion

We apply the Fast Walsh Transform approach proposed by [CSQ'07]:

$$q(k_p, k_t, k_c, k_b) = \frac{1}{D} (\#\{P, C : P' \cdot \alpha = C' \cdot \beta\} - \#\{P, C : P' \cdot \alpha \neq C' \cdot \beta\})$$
$$= \frac{1}{D} \sum_{P, C} (-1)^{P' \cdot \alpha \oplus C' \cdot \beta}$$

We apply the Fast Walsh Transform approach proposed by [CSQ'07]:

$$q(k_{p}, k_{t}, k_{c}, k_{b}) = \frac{1}{D} (\#\{P, C : P' \cdot \alpha = C' \cdot \beta\} - \#\{P, C : P' \cdot \alpha \neq C' \cdot \beta\})$$
$$= \frac{1}{D} \sum_{P,C} (-1)^{P' \cdot \alpha \oplus C' \cdot \beta}$$

Let define
$$P' \cdot \alpha = f(k_t, k_p \oplus \chi_p(P))$$
 and $C' \cdot \beta = g(k_b, k_c \oplus \chi_c(C))$

$$= \frac{1}{D} \sum_{P,C} (-1)^{f(k_t, k_p \oplus \chi_p(P)) \oplus g(k_b, k_c \oplus \chi_c(C))}$$

$$= \frac{1}{D} \sum_{i \in \mathbb{R}^{\kappa_p}} \sum_{i \in \mathbb{R}^{\kappa_c}} \#\{P, C : \chi_p(P) = i, \chi_c(C) = j\} \times (-1)^{f(k_t, k_p \oplus i) \oplus g(k_b, k_c \oplus j)}$$

We apply the Fast Walsh Transform approach proposed by [CSQ'07]:

$$q(k_{p}, k_{t}, k_{c}, k_{b}) = \frac{1}{D} (\#\{P, C : P' \cdot \alpha = C' \cdot \beta\} - \#\{P, C : P' \cdot \alpha \neq C' \cdot \beta\})$$
$$= \frac{1}{D} \sum_{P,C} (-1)^{P' \cdot \alpha \oplus C' \cdot \beta}$$

Let define
$$P' \cdot \alpha = f(k_t, k_p \oplus \chi_p(P))$$
 and $C' \cdot \beta = g(k_b, k_c \oplus \chi_c(C))$
$$= \frac{1}{D} \sum_{P,C} (-1)^{f(k_t, k_p \oplus \chi_p(P)) \oplus g(k_b, k_c \oplus \chi_c(C))}$$

$$=\frac{1}{D}\sum_{i\in\mathbb{F}_{2}^{\kappa_{p}}}\sum_{j\in\mathbb{F}_{2}^{\kappa_{c}}}\#\{P,C:\chi_{p}(P)=i,\chi_{c}(C)=j\}\times(-1)^{f(k_{t},k_{p}\oplus i)\oplus g(k_{b},k_{c}\oplus j)}$$

We remark that the previous expression is actually a convolution:

$$=\frac{1}{D}\sum_{i,j}\phi(i,j)\times\psi_{k_t,k_b}(k_p\oplus i,k_c\oplus j)=\frac{1}{D}(\phi*\psi_{k_t,k_b})(k_p,k_c),$$

with
$$\begin{cases} \phi(x,y) &= \#\{P,C:\chi_p(P)=x,\chi_c(C)=y\} \\ \psi_{k_t,k_b}(x,y) &= (-1)^{f(k_t,x)\oplus g(k_b,y)} \end{cases}$$

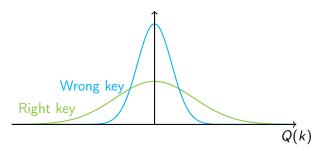
How to estimate the Success Probability when they are several dominant trails?

As seen previously, they can interact **constructively**, or **destructively**...

But the correlation for the **right** and the **wrong** key follow **normal distribution** with parameters:

[BN, ToSC'16]

$$\mu_R = 0$$
 $\sigma_R^2 = B/D + \text{ELP}$ $\sigma_W^2 = 0$ $\sigma_W^2 = B/D + 2^{-n}$

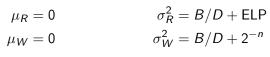


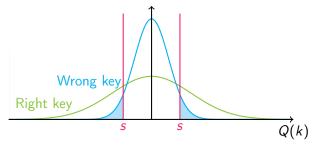
How to estimate the Success Probability when they are several dominant trails?

As seen previously, they can interact **constructively**, or **destructively**...

But the correlation for the **right** and the **wrong** key follow **normal distribution** with parameters:

[BN, ToSC'16]





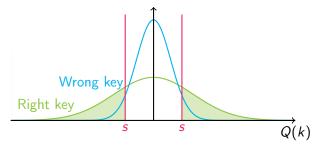
How to estimate the Success Probability when they are several dominant trails?

As seen previously, they can interact **constructively**, or **destructively**...

But the correlation for the **right** and the **wrong** key follow **normal distribution** with parameters:

[BN, ToSC'16]

$$\mu_R = 0$$
 $\sigma_R^2 = B/D + \text{ELP}$ $\mu_W = 0$ $\sigma_W^2 = B/D + 2^{-n}$



Linear VS Differential Key-recovery

Key bits	Differential		Linear		
Rounds	total independent		total	independent	
1	0	0	0	0	
2	2	2	2	2	
3	9	9	7	7	
4	27	27	16	16	
5	56	56	30	30	
6	88	88	50	48	
7	120	114	75	68	
8			104	88	

Comparison of the **number of bits** that have to be **guessed** for differential and linear attacks against Simeck64/128.

Key-Recovery Parameters

Examples of set of parameters for Simeck64/128:

Differential cryptanalysis:

$$Rounds = 40 = 3 + 30 + 7$$
 $D = 2^{64}$ $\kappa_{min} = 9$ $\kappa_{max} = 114$ $\lambda_R = 2^{2.59}$ $\lambda_W = 2^{-1}$ $s = 6$ $\Rightarrow C_1 = 2^{122}$ $P_S = 0.4$ $C = 2^{123.4}$

Linear cryptanalysis:

Rounds =
$$42 = 8 + 30 + 4$$
 $D = 2^{64}$
 $\kappa_{min} = 16$ $\kappa_{max} = 88$ $a = 29$
 $\Rightarrow C_1 = 2^{118}$ $P_S = 0.1$ $C = 2^{121.5}$

Table of contents

- Introduction
 - Simon and Simeck
 - Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis
- Conclusion

Results on Simeck

Cipher	Rounds	Attacked	Data	Time	Ref	Note
Simeck48/96 Simeck64/128	36 44	30 32 37 42	2 ⁴⁷ .66 2 ⁴⁷ 2 ^{63.09} 2 ^{63.5}	2 ^{88.04} 2 ^{90.9} 2 ^{121.25} 2 ^{123.9}	New	Linear † ‡ Linear Linear † ‡ Linear

Summary of previous and new attacks against Simeck.

[†]The advantage is too low to do a key-recovery.

[‡]Attack use the duality between linear and differential distinguishers.

Results on Simon

Cipher	Rounds	Attacked	Data	Time	Ref	Note
Simon96/96	52	37	2^{95}	$2^{87.2}$	[WWJZ'18]	Diff.
		43	2^{94}	$2^{89.6}$	New	Linear
Simon96/144	54	38	$2^{95.2}$	2^{136}	[CW'16]	Linear
		45	2^{95}	$2^{136.5}$	New	Linear
Simon128/128	68	50	2^{127}	$2^{119.2}$	[WWJZ'18]	Diff.
		53	2^{127}	2^{121}	New	Linear
Simon128/192	69	51	2^{127}	$2^{183.2}$	[WWJZ'18]	Diff.
		55	2^{127}	$2^{185.2}$	New	Linear
Simon128/256	72	53	$2^{127.6}$	2^{249}	[CW'16]	Linear
		56	2^{126}	2 ²⁴⁹	New	Linear

Summary of previous and new attacks against Simon.

Results on Simon

We show that Simon96/96 and Simon96/144 only have 17% of the rounds as security margin, which contradicts what the designers wrote:

Assumption [Simon designers, ePrint2017/560]

"After almost 4 years of concerted effort by academic researchers, the various versions of Simon and Speck retain a margin averaging around 30%, and in every case over 25%. The design team's analysis when making stepping decisions was consistent with these numbers."

- Using differential and linear paths with all intermediate states in a fixed window of w bits:
 - better probabilities for existing distinguishers
 - good differential/linear approximation with the minimum number of active bits

- Using differential and linear paths with all intermediate states in a fixed window of w bits:
 - better probabilities for existing distinguishers
 - good differential/linear approximation with the minimum number of active bits
 - ▶ attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...

- Using differential and linear paths with all intermediate states in a fixed window of w bits:
 - better probabilities for existing distinguishers
 - good differential/linear approximation with the minimum number of active bits
 - attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...
- Further work can probably improve our results on Simon

- Using differential and linear paths with all intermediate states in a fixed window of w bits:
 - better probabilities for existing distinguishers
 - good differential/linear approximation with the minimum number of active bits
 - attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...
- Further work can probably improve our results on Simon

For more details:

https://eprint.iacr.org/2021/1198