A New Algebraic Approach to the Regular Syndrome Decoding Problem and Implications for PCG Constructions

Pierre Briaud¹, joint work with Morten Øygarden².

CARAMBA Seminar, March 30

¹Inria Paris & Sorbonne Université

²Simula UiB

Decoding Problem over \mathbb{F}_q (aka Primal LPN)

Given full-rank $G \in \mathbb{F}_q^{k \times n}$, distinguish

- $\mathbf{y} = \mathbf{mG} + \mathbf{e}, \ \mathbf{m} \in \mathbb{F}_q^k, \ \text{error } \mathbf{e} \sim \chi$
- $\mathbf{y} \sim \mathcal{U}(\mathbb{F}_q^n)$

Our setting

Bounded number of samples $n = k^{1+\alpha}$, $0 < \alpha < 1$ Error e of low Hamming weight, |e| = t

 \rightarrow Coding theory point of view! Length n, dim. k, code rate $R \stackrel{def}{=} k/n$

Underlying code C

$$\mathcal{C} \stackrel{def}{=} \left\{ oldsymbol{m} oldsymbol{G}, \ oldsymbol{m} \in \mathbb{F}_q^k
ight\} = \left\{ oldsymbol{x} \in \mathbb{F}_q^n, \ oldsymbol{x} oldsymbol{H}^\mathsf{T} = oldsymbol{0}
ight\}, \ oldsymbol{H} \in \mathbb{F}_q^{(n-k) imes n}$$

Syndrome Decoding Problem (aka Dual LPN)

Given full-rank $\boldsymbol{H} \in \mathbb{F}_q^{(n-k) \times n}$, distinguish

- $\mathbf{u} = \mathbf{e}\mathbf{H}^{\mathsf{T}} \in \mathbb{F}_q^{n-k}, \ \mathbf{e} \sim \chi$
- $\mathbf{u} \sim \mathcal{U}(\mathbb{F}_q^{n-k})$

Some use cases

- Symmetric crypto [HB01]
- PKE: Alekhnovich scheme [Ale03]

Correlated randomness for secure MPC, ZK proofs...

Pseudorandom correlation generators (PCGs). Ex., for Vector OLE [Boy+19]:

- 1. Function Secret Sharing o Additive shares of sparse $m{e}$
- 2. Expansion with LPN PRG $(m, e) \mapsto mG + e$ or $e \mapsto eH^T$

[HB01] Hopper and Blum. "Secure Human Identification Protocols". Advances in Cryptology — ASIACRYPT 2001.

[Ale03] Alekhnovich. "More on Average Case vs Approximation Complexity".

[Boy+19] Boyle et al. Compressing Vector OLE.

Parameters for PCGs

Code-based crypto

LOW noise rate (inverse poly, not constant) → Very large sizes

Possibly large field (typically $\mathbb{F}_{2^{128}}$)

Rate R depends on PRG

- Very low for $(m, e) \mapsto mG$ ("Primal")
- Constant for $e \mapsto eH^{\mathsf{T}}$ ("Dual")

Ex. "Primal",
$$\lambda = 128$$
: [\mathbb{F}_2 , $n = 2^{22}$, $k = 67440$, $t = 4788$] [Boy+19]; [Liu+22]

[Liu+22] Liu et al. The Hardness of LPN over Any Integer Ring and Field for PCG Applications.

Regular | Syndrome Decoding

Assume $n = N \times t$ for some $N \in \mathbb{N}$ (blocksize)

Regular distribution [AFS05]

- For $1 \le i \le t$, sample $e_i \in \mathbb{F}_q^N$ random of weight 1
- Error is $oldsymbol{e} \stackrel{def}{=} (oldsymbol{e}_1, \dots, oldsymbol{e}_t) \in \mathbb{F}_q^n$

Introduction in Secure Computation [Haz+18]

Now in many PCG protocols [Boy+19]; [Wen+20]; [Yan+20]...

 \rightarrow Reduce Function Secret Sharing cost

[[]AFS05] Augot, Finiasz, and Sendrier. "A Family of Fast Syndrome Based Cryptographic Hash Functions". MYCRYPT 2005.

[[]Haz+18] Hazay et al. TinyKeys: A New Approach to Efficient Multi-Party Computation.

Known attacks on RSD

Do NOT exploit regular distribution:

- "Folklore attack" and ISD algorithms [Pra62]; [MMT11]; [MO15]...
- Statistical Decoding [Jab01] (recently improved by [Car+22])

What about algebraic techniques?

[[]Pra62] Prange. "The use of information sets in decoding cyclic codes".

[[]Jab01] Jabri. "A Statistical Decoding Algorithm for General Linear Block Codes".

[[]Car+22] Carrier et al. Statistical Decoding 2.0: Reducing Decoding to LPN.

Algebraic attacks

Generic technique in cryptanalysis:

- Model scheme or hard problem as polynomial system
- Solve it! (Gröbner Bases, linearization)

This talk

Algebraic attack on RSD

- Good for low rates used in "Primal"
- ullet Polynomial system + detailed analysis

(Naive) algebraic system

Modeling regular structure

Polynomial ring $R \stackrel{def}{=} \mathbb{F}_q[(e_{i,j})_{i,j}]$ in n variables, block $\mathbf{e}_i \stackrel{def}{=} (e_{i,1}, \dots, e_{i,N}) \in \mathbb{F}_q^N$

Coordinates $\in \mathbb{F}_q$ (field equations)

$$\forall i, \ \forall j, \ e_{i,j}^q - e_{i,j} = 0. \tag{1}$$

One $\neq 0$ coordinate per block

$$\forall i, \ \forall j_1 \neq j_2, \ e_{i,j_1} e_{i,j_2} = 0.$$
 (2)

Over \mathbb{F}_2 , this coordinate is 1

$$\forall i, \ \sum_{j=1}^{N} e_{i,j} = 1.$$
 (3)

We consider quadratic system $Q \stackrel{def}{=} (1) \cup (2) \cup (3)$

Adding parity-check equations

Linear equations in the $e_{i,j}$'s from $eH^{\top} = u$:

Parity-checks

$$\mathcal{P} \stackrel{def}{=} \{ \forall i \in \{1..n-k\}, \ \langle \boldsymbol{e}, \boldsymbol{h}_i \rangle - u_i = 0 \}.$$

Final system $\mathcal{S} \stackrel{\text{def}}{=} \mathcal{P} \cup \mathcal{Q}$

Set of solutions to $\mathcal{S}=\mathsf{Set}$ of solutions to RSD (let's say 1)

Solving Algorithms

1) Multiply by monomials 2) Linear Algebra up to some degree D Macaulay matrix M_d , d < D:

Cost exp(D)

Need to estimate solving degree D

Analyzing ${\mathcal S}$

Approach

Recall that
$$S = \{\underbrace{\mathsf{parity\text{-}checks}}_{\mathcal{P}}\} \cup \{\underbrace{\mathsf{regular structure}}_{\mathcal{Q}}\}$$

$$\mathcal{P} = \{\forall i \in \{1...n-k\}, \ \langle \boldsymbol{e}, \boldsymbol{h}_i \rangle - u_i\}$$

$$\mathcal{Q} = \{\forall i \in \{1...t\}, \forall j \in \{1...N\}, \ e_{i,j}^2 - e_{i,j}\} \cup \{\forall i, \forall j_1 \neq j_2, \ e_{i,j_1}e_{i,j_2}\} \cup \{\forall i, \ \sum_{j=1}^N e_{i,j} - 1\}$$

- ullet To keep internal structure, treat ${\mathcal P}$ and ${\mathcal Q}$ separately
- Focus on homogeneous parts: $\langle \mathcal{S}^{(h)} \rangle = \langle \mathcal{P}^{(h)} \rangle + \langle \mathcal{Q}^{(h)} \rangle$

Solving degree from Hilbert series

Polynomial ring $R \stackrel{def}{=} \mathbb{F}_q[(e_{i,j})_{i,j}], R = \bigoplus_{d \in \mathbb{N}} R_d$ hom. components Hom. ideal $I \stackrel{def}{=} \langle f_1, \dots, f_m \rangle, I_d \stackrel{def}{=} I \cap R_d$

Hilbert series (HS) of /

Contains properties of I we need

ightarrow Find Hilbert series for $\langle \mathcal{S}^{(h)}
angle$ then deduce D

More formally

$$\mathcal{H}_{R/I}(z) \stackrel{def}{=} \sum_{d \in \mathbb{N}} \dim (R_d/I_d) z^d$$

0-dimensional ideal $(\mathcal{H}_{R/I}(z))$ is a polynomial): $H(I) \stackrel{def}{=} \min \{\delta \in \mathbb{N}, I_{\delta} = R_{\delta}\}$

Structural part Q

Only depends on regular distribution. We analyze q=2 (e.g. we can use (3))

$$\mathcal{Q}^{(h)} = \underbrace{\{\forall i \in \{1..t\}, \forall j \in \{1..N\}, \ e_{i,j}^2\}}_{(1)} \cup \underbrace{\{\forall i, \forall j_1 \neq j_2, \ e_{i,j_1}e_{i,j_2}\}}_{(2)} \cup \underbrace{\{\forall i, \ \sum_{j=1}^N e_{i,j}\}}_{(3)}$$

HS₁

We have $\dim(R_d/\langle \mathcal{Q}^{(h)} \rangle_d) = \binom{t}{d} (N-1)^d$. Thus,

$$\mathcal{H}_{R/\langle \mathcal{Q}^{(h)} \rangle}(z) = (1 + (N-1)z)^t$$

Proof (monomial counting).

Using (1) and (2), squarefree + at most one variable per e_i block Using (3), we get rid of one variable per e_i block

Random part \mathcal{P}

We have $\mathcal{P}^{(h)} = \{e\mathbf{H}^{\mathsf{T}}\}$. By assumption on \mathbf{H} , "random" linear equations

- but we want "randomness" in $R/\langle Q^{(h)}\rangle$
- here, randomness means (semi)-regularity:

Semi-regularity over \mathbb{F}_2 [Bar04]

Let
$$S \stackrel{def}{=} \mathbb{F}_2[e]/\langle e^2 \rangle$$
, $\mathcal{F} = \{f_1, \dots, f_m\}$ homogeneous, 0-dim, index $d_{\langle \mathcal{F} \rangle}$

System ${\mathcal F}$ is semi-regular over ${\mathbb F}_2$ if $\langle {\mathcal F} \rangle
eq S$ and if

$$\forall i, \ \deg(g_i f_i) < d_{\langle \mathcal{F} \rangle}, \ g_i f_i = \ 0 \in S/\langle f_1, \dots, f_{i-1} \rangle \Rightarrow g_i = \ 0 \in S/\langle f_1, \dots, f_i \rangle \qquad (4)$$

In this paper, we adapt it to $R/\langle Q^{(h)}\rangle$ instead of $R/\langle e^2\rangle$

[Bar04] Bardet. "Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie".

Combining everything

Semi-regular HS are known! (write exact sequences from (4))

Assumption

We assume semi-regularity of $\mathcal{P}^{(h)}$ with our new definition

We have $\langle \mathcal{S}^{(h)} \rangle = \langle \mathcal{P}^{(h)} \rangle + \langle \mathcal{Q}^{(h)} \rangle$, we know $\mathcal{H}_{R/\langle \mathcal{Q}^{(h)} \rangle}$. We want $\mathcal{H}_{R/\langle \mathcal{S}^{(h)} \rangle}$ Under Assumption, we get

$$\mathcal{H}_{R/\langle \mathcal{S}^{(h)}
angle}(z) = rac{\mathcal{H}_{R/\langle \mathcal{Q}^{(h)}
angle}(z)}{(1+z)^{n-k}}$$

HS for $S^{(h)}$ (under Assumption + using HS 1)

$$\mathcal{H}_{R/\langle S^{(h)}
angle}(z)=rac{(1+(N-1)z)^t}{(1+z)^{n-k}}$$

Solving strategies

Cost of Gröbner Basis

- **Dense** linear algebra on Macaulay matrix $M_D o$ row ech. form
- Cost exponential in D, $2 \le \omega < 3$:

$$\mathcal{T}_{\mathsf{solve}}(\mathcal{S}) = \mathcal{O}(\#\mathsf{cols}(oldsymbol{M}_D)^\omega) = \mathcal{O}\left(inom{t}{D}^\omega(N-1)^{\omega D}
ight)$$

Solving degree D from HS

Index of first < 0 coef. in $\mathcal{H}_{R/\langle \mathcal{S}^{(h)}\rangle}$

Hybrid approach I

Conjectured D may be too high to be practical

Hybrid approach (folklore & [BFP10])

Fix f > 0 variables + solve specialized system $S_{\text{spec } f}$

Hope: smaller D for $S_{\text{spec},f}$

 \rightarrow Guess f > 0 zero positions in **e** (as Prange but $f \ll k$)

• Simplest way: $u \stackrel{\text{def}}{=} f/t$ per block, success proba $\left| \left(\frac{\binom{N-1}{u}}{\binom{N}{u}} \right)^t = (1 - u/N)^t \right|$

$$\left(\frac{\binom{N-1}{u}}{\binom{N}{u}}\right)^t = (1 - u/N)^t$$

[BFP10] Bettale, Faugère, and Perret, "Hybrid approach for solving multivariate systems over finite fields",

Hybrid approach II

Cost of solving $S_{\text{spec},f}$? Same assumptions as for S, same analysis:

$$\mathcal{H}_{R/\langle \mathcal{S}_{\mathsf{spec},f}^{(h)}
angle}(z) = rac{(1+(\mathit{N}-1- \cupu)z)^t}{(1+z)^{n-k}}$$

Final complexity:

$$\mathcal{O}\left(\min_{0 \leq u \leq \mathcal{N}-1} \left\{ (1-u/\mathcal{N})^{-t} imes \mathcal{T}_{\mathsf{solve}}(\mathcal{S}_{\mathsf{spec},u \cdot t})
ight\}
ight)$$

• Other ways to fix zeroes (inspired by ISDs ?). We analyze one more in the paper.

Improvement with XL-Wiedemann

Sparse linear algebra. Hope: replace ω by 2

Kernel of affine Macaulay matrix

Degree D: only highest degree hom. parts

Affine eqs here! We analyze witness degree d_{wit} [Bar+13, Definition 2]:

- might be strictly larger than D (sometimes by 1 for some parameters)
- still upper bounds from HS machinery!

Experimental Verification

We relied on Magma

- Compute HS for both $S^{(h)}$ and $S^{(h)}_{\text{spec},f}$ (various f)
- Assumptions regarding dwit: HS again

Conclusion

Conjectured cost with Wiedemann

Parameters from Boyle et al. [Boy+19], updated analysis by Liu et al. [Liu+22]

Large field: no more $\{\forall i, \sum_{j=1}^{N} e_{i,j} = 1\}$, fields eqs of high degree (that's ok)

n	k	t	\mathbb{F}_2 [Liu+22]	This work \mathbb{F}_2	$\mathbb{F}_{2^{128}}$ [Liu+22]	This work $\mathbb{F}_{2^{128}}$
2 ²²	64770	4788	147	104	156	111
2 ²⁰	32771	2467	143	<u>126</u>	155	<u>131</u>
2 ¹⁸	15336	1312	139	<u>123</u>	153	<u>133</u>
2 ¹⁶	7391	667	135	141	151	151
2 ¹⁴	3482	338	132	140	150	152
2 ¹²	1589	172	131	136	155	<u>152</u>
2 ¹⁰	652	106	176	146	194	<u>180</u>

More on the results

- Sometimes beats Gauss/ISDs for very low rates ("Primal")
- Zone with constant deg. $D \rightarrow \text{polynomial algorithm}$?

Rather similar to Arora-Gê on LWE [AG11] (polynomial for sufficiently many samples)