A New Algebraic Approach to the Regular Syndrome Decoding Problem and Implications for PCG Constructions

Pierre Briaud ${ }^{1}$, joint work with Morten $\emptyset_{y g a r d e n ~}{ }^{2}$.

CARAMBA Seminar, March 30
${ }^{1}$ Inria Paris \& Sorbonne Université
${ }^{2}$ Simula UiB

Decoding Problem over \mathbb{F}_{q} (aka Primal LPN)

Given full-rank $G \in \mathbb{F}_{q}^{k \times n}$, distinguish

- $y=m G+e, m \in \mathbb{F}_{q}^{k}$, error $e \sim \chi$
- $\boldsymbol{y} \sim \mathcal{U}\left(\mathbb{F}_{q}^{n}\right)$

Our setting

Bounded number of samples $n=k^{1+\alpha}, 0<\alpha<1$
Error \boldsymbol{e} of low Hamming weight, $|\boldsymbol{e}|=t$
\rightarrow Coding theory point of view ! Length n, dim. k, code rate $R \stackrel{\text { def }}{=} \mathrm{k} / \mathrm{n}$

Underlying code \mathcal{C}

$$
\mathcal{C} \stackrel{\text { def }}{=}\left\{\boldsymbol{m} \boldsymbol{G}, \boldsymbol{m} \in \mathbb{F}_{q}^{k}\right\}=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n}, \boldsymbol{x} \boldsymbol{H}^{\top}=\mathbf{0}\right\}, \boldsymbol{H} \in \mathbb{F}_{q}^{(n-k) \times n}
$$

Syndrome Decoding Problem (aka Dual LPN)

Given full-rank $H \in \mathbb{F}_{q}^{(n-k) \times n}$, distinguish

- $u=e H^{\top} \in \mathbb{F}_{q}^{n-k}, e \sim \chi$
- $\boldsymbol{u} \sim \mathcal{U}\left(\mathbb{F}_{q}^{n-k}\right)$

Some use cases

- Symmetric crypto [HB01]
- PKE: Alekhnovich scheme [Ale03]

Correlated randomness for secure MPC, ZK proofs...
Pseudorandom correlation generators (PCGs). Ex., for Vector OLE [Boy+19]:

1. Function Secret Sharing \rightarrow Additive shares of sparse \boldsymbol{e}
2. Expansion with LPN PRG $(\boldsymbol{m}, \boldsymbol{e}) \mapsto \boldsymbol{m} G+e$ or $e \mapsto e \boldsymbol{H}^{\top}$
[^0]
Parameters for PCGs

Code-based crypto

LOW noise rate (inverse poly, not constant) \rightarrow Very large sizes
Possibly large field (typically $\mathbb{F}_{2^{128}}$)

Rate R depends on PRG

- Very low for $(\boldsymbol{m}, \boldsymbol{e}) \mapsto m G$ ("Primal")
- Constant for $e \mapsto e H^{\top}$ ("Dual")

Ex. "Primal", $\lambda=128:\left[\mathbb{F}_{2}, n=2^{22}, k=67440, t=4788\right] \quad[$ Boy +19$]$; [Liu+22]

Regular Syndrome Decoding

Assume $n=N \times t$ for some $N \in \mathbb{N}$ (blocksize)

Regular distribution [AFS05]

- For $1 \leq i \leq t$, sample $e_{i} \in \mathbb{F}_{q}^{N}$ random of weight 1
- Error is $e \stackrel{\text { def }}{=}\left(e_{1}, \ldots, e_{t}\right) \in \mathbb{F}_{q}^{n}$

Introduction in Secure Computation [Haz+18]
Now in many PCG protocols [Boy+19]; [Wen+20]; [Yan+20]...
\rightarrow Reduce Function Secret Sharing cost
[AFS05] Augot, Finiasz, and Sendrier. "A Family of Fast Syndrome Based Cryptographic Hash Functions". MYCRYPT 2005.
[Haz+18] Hazay et al. TinyKeys: A New Approach to Efficient Multi-Party Computation.

Known attacks on RSD

Do NOT exploit regular distribution:

- "Folklore attack" and ISD algorithms [Pra62]; [MMT11]; [MO15]...
- Statistical Decoding [Jab01] (recently improved by [Car+22])

What about algebraic techniques ?

[^1]
Algebraic attacks

Generic technique in cryptanalysis:

- Model scheme or hard problem as polynomial system
- Solve it! (Gröbner Bases, linearization)

Algebraic attack on RSD

- Good for low rates used in "Primal"
- Polynomial system + detailed analysis
(Naive) algebraic system

Modeling regular structure

Polynomial ring $R \stackrel{\text { def }}{=} \mathbb{F}_{q}\left[\left(e_{i, j}\right)_{i, j}\right]$ in n variables, block $e_{i} \stackrel{\text { def }}{=}\left(e_{i, 1}, \ldots, e_{i, N}\right) \in \mathbb{F}_{q}^{N}$
Coordinates $\in \mathbb{F}_{q}$ (field equations)

$$
\begin{equation*}
\forall i, \forall j, e_{i, j}^{q}-e_{i, j}=0 . \tag{1}
\end{equation*}
$$

One $\neq 0$ coordinate per block

$$
\begin{equation*}
\forall i, \forall j_{1} \neq j_{2}, e_{i, j_{1}} e_{i, j_{2}}=0 . \tag{2}
\end{equation*}
$$

Over \mathbb{F}_{2}, this coordinate is 1

$$
\begin{equation*}
\forall i, \sum_{j=1}^{N} e_{i, j}=1 . \tag{3}
\end{equation*}
$$

We consider quadratic system $\mathcal{Q} \stackrel{\text { def }}{=}(1) \cup(2) \cup(3)$

Adding parity-check equations

Linear equations in the $e_{i, j}$'s from $e H^{\top}=u$:

Parity-checks

$$
\mathcal{P} \stackrel{\text { def }}{=}\left\{\forall i \in\{1 . . n-k\},\left\langle\boldsymbol{e}, \boldsymbol{h}_{i}\right\rangle-u_{i}=0\right\} .
$$

Final system $\mathcal{S} \stackrel{\text { def }}{=} \mathcal{P} \cup \mathcal{Q}$
Set of solutions to $\mathcal{S}=$ Set of solutions to RSD (let's say 1)

Solving Algorithms

1) Multiply by monomials 2) Linear Algebra up to some degree D

Macaulay matrix $\boldsymbol{M}_{d}, d \leq D$:

Cost $\exp (D)$
Need to estimate solving degree D

Analyzing \mathcal{S}

Approach

$$
\begin{aligned}
& \text { Recall that } \mathcal{S}=\{\underbrace{\text { parity-checks }}_{\mathcal{P}}\} \cup\{\underbrace{\{\text { regular structure }}_{\mathcal{Q}}\} \\
& \mathcal{P}=\left\{\forall i \in\{1 . . n-k\},\left\langle\boldsymbol{e}, \boldsymbol{h}_{i}\right\rangle-u_{i}\right\} \\
& \mathcal{Q}=\left\{\forall i \in\{1 . . t\}, \forall j \in\{1 . . N\}, e_{i, j}^{2}-e_{i, j}\right\} \cup\left\{\forall i, \forall j_{1} \neq j_{2}, e_{i, j_{1}} e_{i, j_{2}}\right\} \cup\left\{\forall i, \sum_{j=1}^{N} e_{i, j}-1\right\}
\end{aligned}
$$

- To keep internal structure, treat \mathcal{P} and \mathcal{Q} separately
- Focus on homogeneous parts: $\left\langle\mathcal{S}^{(h)}\right\rangle=\left\langle\mathcal{P}^{(h)}\right\rangle+\left\langle\mathcal{Q}^{(h)}\right\rangle$

Solving degree from Hilbert series

Polynomial ring $R \stackrel{\text { def }}{=} \mathbb{F}_{q}\left[\left(e_{i, j}\right)_{i, j}\right], R=\oplus_{d \in \mathbb{N}} R_{d}$ hom. components Hom. ideal $I \stackrel{\text { def }}{=}\left\langle f_{1}, \ldots, f_{m}\right\rangle, I_{d} \stackrel{\text { def }}{=} I \cap R_{d}$

Hilbert series (HS) of I

Contains properties of I we need
\rightarrow Find Hilbert series for $\left\langle\mathcal{S}^{(h)}\right\rangle$ then deduce D

More formally

$$
\mathcal{H}_{R / I}(z) \stackrel{\text { def }}{=} \sum_{d \in \mathbb{N}} \operatorname{dim}\left(R_{d} / I_{d}\right) z^{d}
$$

0-dimensional ideal $\left(\mathcal{H}_{R / I}(z)\right.$ is a polynomial): $H(I) \stackrel{\text { def }}{=} \min \left\{\delta \in \mathbb{N}, I_{\delta}=R_{\delta}\right\}$

Structural part \mathcal{Q}

Only depends on regular distribution. We analyze $q=2$ (e.g. we can use (3))

$$
\mathcal{Q}^{(h)}=\underbrace{\left\{\forall i \in\{1 . . t\}, \forall j \in\{1 . . N\}, e_{i, j}^{2}\right\}}_{(1)} \cup \underbrace{\left\{\forall i, \forall j_{1} \neq j_{2}, e_{i, j_{1}} e_{i, j_{2}}\right\}}_{(2)} \cup \underbrace{\left\{\forall i, \sum_{j=1}^{N} e_{i, j}\right\}}_{(3)}
$$

HS 1

We have $\operatorname{dim}\left(R_{d} /\left\langle\mathcal{Q}^{(h)}\right\rangle_{d}\right)=\binom{t}{d}(N-1)^{d}$. Thus,

$$
\mathcal{H}_{R /\left\langle\mathcal{Q}^{(h)}\right\rangle}(z)=(1+(N-1) z)^{t}
$$

Proof (monomial counting).

Using (1) and (2), squarefree + at most one variable per $\boldsymbol{e}_{\boldsymbol{i}}$ block
Using (3), we get rid of one variable per $\boldsymbol{e}_{\boldsymbol{i}}$ block

Random part \mathcal{P}

We have $\mathcal{P}^{(h)}=\left\{\boldsymbol{e} \boldsymbol{H}^{\top}\right\}$. By assumption on \boldsymbol{H}, "random" linear equations

- but we want "randomness" in $R /\left\langle Q^{(h)}\right\rangle$
- here, randomness means (semi)-regularity:

Semi-regularity over \mathbb{F}_{2} [Bar04]

Let $S \stackrel{\text { def }}{=} \mathbb{F}_{2}[\boldsymbol{e}] /\left\langle\boldsymbol{e}^{2}\right\rangle, \mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ homogeneous, 0 -dim, index $d_{\langle\mathcal{F}\rangle}$ System \mathcal{F} is semi-regular over \mathbb{F}_{2} if $\langle\mathcal{F}\rangle \neq S$ and if

$$
\begin{equation*}
\forall i, \operatorname{deg}\left(g_{i} f_{i}\right)<d_{\langle\mathcal{F}\rangle}, g_{i} f_{i}=0 \in S /\left\langle f_{1}, \ldots, f_{i-1}\right\rangle \Rightarrow g_{i}=0 \in S /\left\langle f_{1}, \ldots, f_{i}\right\rangle \tag{4}
\end{equation*}
$$

In this paper, we adapt it to $R /\left\langle\mathcal{Q}^{(h)}\right\rangle$ instead of $R /\left\langle\boldsymbol{e}^{2}\right\rangle$

Combining everything

Semi-regular HS are known! (write exact sequences from (4))

Assumption

We assume semi-regularity of $\mathcal{P}^{(h)}$ with our new definition
We have $\left\langle\mathcal{S}^{(h)}\right\rangle=\left\langle\mathcal{P}^{(h)}\right\rangle+\left\langle\mathcal{Q}^{(h)}\right\rangle$, we know $\mathcal{H}_{R /\left\langle\mathcal{Q}^{(h)}\right\rangle}$. We want $\mathcal{H}_{R /\left\langle\mathcal{S}^{(h)}\right\rangle}$
Under Assumption, we get

$$
\mathcal{H}_{R /\left\langle\mathcal{S}^{(h)}\right\rangle}(z)=\frac{\mathcal{H}_{R /\left\langle\mathcal{Q}^{(n)}\right\rangle}(z)}{(1+z)^{n-k}}
$$

HS for $\mathcal{S}^{(h)}$ (under Assumption + using HS 1)

$$
\mathcal{H}_{R /\left\langle\mathcal{S}^{(h)}\right\rangle}(z)=\frac{(1+(N-1) z)^{t}}{(1+z)^{n-k}}
$$

Solving strategies

Cost of Gröbner Basis

- Dense linear algebra on Macaulay matrix $\boldsymbol{M}_{\boldsymbol{D}} \rightarrow$ row ech. form
- Cost exponential in D, $2 \leq \omega<3$:

$$
T_{\text {solve }}(\mathcal{S})=\mathcal{O}\left(\# \operatorname{cols}\left(\boldsymbol{M}_{D}\right)^{\omega}\right)=\mathcal{O}\left(\binom{t}{D}^{\omega}(N-1)^{\omega D}\right)
$$

Solving degree D from HS

Index of first <0 coef. in $\mathcal{H}_{R /\left\langle\mathcal{S}^{(h)}\right\rangle}$

Hybrid approach I

Conjectured D may be too high to be practical

Hybrid approach (folklore \& [BFP10])

```
Fix f}\geq0\mathrm{ variables + solve specialized system }\mp@subsup{\mathcal{S}}{\mathrm{ spec, }f}{
```

Hope: smaller D for $\mathcal{S}_{\text {spec }, f}$

$$
\rightarrow \text { Guess } f \geq 0 \text { zero positions in } e \text { (as Prange but } f \ll k \text {) }
$$

- Simplest way: $u \stackrel{\text { def }}{=} f / t$ per block, success proba $\left(\frac{\binom{N-1}{u}}{\binom{N}{u}}\right)^{t}=(1-u / N)^{t}$

Hybrid approach II

Cost of solving $\mathcal{S}_{\text {spec }, f}$? Same assumptions as for \mathcal{S}, same analysis:

$$
\mathcal{H}_{R /\left\langle\mathcal{S}_{\text {spece } f}^{(h)}\right\rangle}(z)=\frac{(1+(N-1-u) z)^{t}}{(1+z)^{n-k}}
$$

Final complexity:

$$
\mathcal{O}\left(\min _{0 \leq u \leq N-1}\left\{(1-u / N)^{-t} \times T_{\text {solve }}\left(\mathcal{S}_{\text {spec }, u \cdot t}\right)\right\}\right)
$$

- Other ways to fix zeroes (inspired by ISDs ?). We analyze one more in the paper.

Improvement with XL-Wiedemann

Sparse linear algebra. Hope: replace ω by 2

- Kernel of affine Macaulay matrix

Degree D : only highest degree hom. parts

Affine eqs here! We analyze witness degree $d_{\text {wit }}$ [Bar+13, Definition 2]:

- might be strictly larger than D (sometimes by 1 for some parameters)
- still upper bounds from HS machinery !

Experimental Verification

We relied on Magma

- Compute HS for both $\mathcal{S}^{(h)}$ and $\mathcal{S}_{\text {spec, }, f}^{(h)}$ (various f)
- Assumptions regarding $d_{\text {wit }}$: HS again

Conclusion

Conjectured cost with Wiedemann

Parameters from Boyle et al. [Boy+19], updated analysis by Liu et al. [Liu+22]
Large field: no more $\left\{\forall i, \quad \sum_{j=1}^{N} e_{i, j}=1\right\}$, fields eqs of high degree (that's ok)

n	k	t	$\mathbb{F}_{2}[$ Liu +22$]$	This work \mathbb{F}_{2}	$\mathbb{F}_{2^{128}}[$ Liu+22]	This work $\mathbb{F}_{2^{128}}$
2^{22}	64770	4788	147	$\mathbf{1 0 4}$	156	$\mathbf{1 1 1}$
2^{20}	32771	2467	143	$\underline{\underline{126}}$	155	$\underline{\underline{131}}$
2^{18}	15336	1312	139	$\underline{\underline{123}}$	153	$\underline{\underline{133}}$
2^{16}	7391	667	135	141	151	151
2^{14}	3482	338	132	140	150	152
2^{12}	1589	172	131	136	155	$\underline{152}$
2^{10}	652	106	176	$\mathbf{1 4 6}$	194	$\underline{\underline{180}}$

More on the results

- Sometimes beats Gauss/ISDs for very low rates ("Primal")
- Zone with constant deg. $D \rightarrow$ polynomial algorithm ?

Rather similar to Arora-Gê on LWE [AG11]
(polynomial for sufficiently many samples)
[AG11] Arora and Ge. "New Algorithms for Learning in Presence of Errors". Automata, Languages and Programming.

[^0]: [HB01] Hopper and Blum. "Secure Human Identification Protocols". Advances in Cryptology — ASIACRYPT 2001.
 [Ale03] Alekhnovich. "More on Average Case vs Approximation Complexity".
 [Boy+19] Boyle et al. Compressing Vector OLE.

[^1]: [Pra62] Prange. "The use of information sets in decoding cyclic codes".
 [Jab01] Jabri. "A Statistical Decoding Algorithm for General Linear Block Codes".
 [Car+22] Carrier et al. Statistical Decoding 2.0: Reducing Decoding to LPN.

