On dual attacks against the Learning With Errors problem

Yixin Shen

Based on joint works with Martin R. Albrecht, Kevin Carrier, and Jean-Pierre Tillich

Royal Holloway, University of London

January 26, 2023

Innin_

Let n = 4, m = 6 and q = 17.

secret

Given A and b, find s.

Let n = 4, m = 6 and q = 17.

Given A and b, find s.

 \rightsquigarrow Very easy (e.g. Gaussian elimination) and in polynomial time

Let n = 4, m = 6 and q = 17.

Let n = 4, m = 6 and q = 17.

Given A and b, find s.

 \rightsquigarrow Suspected hard problem, even for quantum algorithms

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE(n, m, q, χ_e, χ_s): probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ► sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ► sample $s \leftarrow \chi_s^n$
- ► sample $e \leftarrow \chi_e^m$
- output (A, As + e).

Intuition: As + e is very close to a uniform distribution.

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE(n, m, q, χ_e, χ_s): probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ► sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ► sample $s \leftarrow \chi_s^n$
- ► sample $e \leftarrow \chi_e^m$
- output (A, As + e).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given $(A, b) \leftarrow LWE(n, m, q, \chi_e, \chi_s)$, recover *s*.

Decision LWE problem: distinguish LWE(n, m, q, χ_e, χ_s) from $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE(n, m, q, χ_e, χ_s): probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ► sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ► sample $s \leftarrow \chi_s^n$
- ► sample $e \leftarrow \chi_e^m$
- output (A, As + e).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given $(A, b) \leftarrow LWE(n, m, q, \chi_e, \chi_s)$, recover *s*.

Decision LWE problem: distinguish LWE(n, m, q, χ_e, χ_s) from $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Lemma: Search LWE is easy if and only if decision LWE is easy.

LWE(n, m, q, χ_e, χ_s): probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ► sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ► sample $s \leftarrow \chi_s^n$
- ► sample $e \leftarrow \chi_e^m$
- output (A, As + e).

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ► sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ► sample $s \leftarrow \chi_s^n$
- ► sample $e \leftarrow \chi_e^m$
- output (A, As + e).

Secret distributions χ_s :

- originally uniform in Z_q, now some distribution of small deviation σ_s (e.g. discrete Gaussian/centered Binormial, {−1,0,1} whp)
- Fact: small secret is as hard as uniform secret
- small secret allows more efficient schemes

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ► sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ► sample $s \leftarrow \chi_s^n$
- ► sample $e \leftarrow \chi_e^m$
- output (A, As + e).

Noise distributions χ_{e} :

- usually discrete Gaussian/centered Binormial of deviation σ_e
- most schemes (Kyber/Saber/...): σ_e small (\approx 1)

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST PQC candidates rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST PQC candidates rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

Two types of attacks:

- Primal attacks:
 - more efficient in most cases
 - no quantum speed-up known (besides BKZ)
- Dual attacks:
 - originally less efficient, now catching up
 - no quantum speed-up known (besides BKZ) up to now

Contributions:

- first quantum speed-up on dual attacks
- improvement on dual attacks using ideas from codes

Very naive attack:

Attack:

Attack:

🕨 guess ŝ

• output
$$b' = b - A\tilde{s}$$

Attack:

• output
$$b' = b - A\tilde{s}$$

Good guess ($s = \tilde{s}$):

b' = e

follows a discrete Gaussian of small deviation

Attack:

• output
$$b' = b - A\tilde{s}$$

Good guess ($s = \tilde{s}$):

b' = e

follows a discrete Gaussian of small deviation

Bad guess ($s \neq \tilde{s}$):

 $b' = e + A(s - \tilde{s})$

follows a uniform¹ distribution (*A* uniform in $\mathbb{Z}_q^{m \times n}$)

¹Technically only true for fixed *s*, random *A* and *š*

Given a sampler for χ^m , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian)

Given a sampler for χ^m , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian)

The entries are independent: given a sample from χ^m we obtain *m* independent samples from χ .

 \sim if *m* large enough, we know how to distinguish.

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian)

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian) Essentially optimal distingusher: let $Y = \Re(e^{2i\pi X/q})$

$$\mathbb{E}_{\boldsymbol{X}\leftarrow\chi}[\boldsymbol{Y}] \approx \begin{cases} 0 & \text{if } \chi = \boldsymbol{U}(\mathbb{Z}_q) \\ e^{-2\left(\frac{\pi\sigma}{q}\right)^2} & \text{if } \chi = \boldsymbol{D}_{\sigma,q} \end{cases}$$

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian) Essentially optimal distingusher: let $Y = \Re(e^{2i\pi X/q})$

$$\mathbb{E}_{\boldsymbol{X}\leftarrow\chi}[\boldsymbol{Y}] \approx \begin{cases} 0 & \text{if } \chi = \boldsymbol{U}(\mathbb{Z}_q) \\ e^{-2\left(\frac{\pi\sigma}{q}\right)^2} & \text{if } \chi = \boldsymbol{D}_{\sigma,q} \end{cases}$$

Attack:

• sample
$$N = \Omega(1/\varepsilon^2)$$
 values x_1, \ldots, x_N from χ

compute

$$S = \frac{1}{N} \sum_{j=1}^{N} \Re(e^{2i\pi x_j/q})$$
Check if $S > \frac{1}{2}e^{-2\left(\frac{\pi\sigma}{q}\right)^2}$
The quantity $\varepsilon = e^{-2\left(\frac{\pi\sigma}{q}\right)^2}$ is called the advantage.

Very naive attack:

- guess \tilde{s} : q^n possiblities
- compute sum of $1/\varepsilon^2$ samples to check guess

Very naive attack:

- guess \tilde{s} : q^n possiblities
- compute sum of $1/\varepsilon^2$ samples to check guess Complexity estimate:

$$q^n \cdot e^{4\left(rac{\pi\sigma_e}{q}
ight)^2} = ext{too much}$$

Very naive attack:

- guess š: qⁿ possiblities
- compute sum of $1/\varepsilon^2$ samples to check guess

Complexity estimate:

$$q^n \cdot e^{4\left(rac{\pi\sigma_e}{q}
ight)^2} = ext{too much}$$

Can do better by guessing s in decreasing order of probability¹:

$$G(\chi_s^n) \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} \leqslant (1.22\sqrt{2\pi}\sigma_s)^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

where σ_s deviation of *s*, $G(\cdot) =$ guessing complexity

¹The complexity is now the expected running time

Very naive attack:

- guess š: qⁿ possiblities
- compute sum of $1/\varepsilon^2$ samples to check guess

Complexity estimate:

$$q^n \cdot e^{4\left(rac{\pi\sigma_e}{q}
ight)^2} = ext{too much}$$

Can do better by guessing s in decreasing order of probability¹:

$$G(\chi_s^n) \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} \leqslant (1.22\sqrt{2\pi}\sigma_s)^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

where σ_s deviation of s, $G(\cdot) =$ guessing complexity

Dual attacks: provide an efficient way to only guess a part of the secret

¹The complexity is now the expected running time

3	7	2	3	6
4	1	5	8	4
1	8	1	8	1
5	2	5	6	0
2	1	6	3	0
8	2	7	3	6
5	5	6	6	2

A

Split secret: $n = k_{\rm fft} + k_{\rm lat}$

Split secret: $n = k_{\rm fft} + k_{\rm lat}$

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output ($A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}}$)

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output ($A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}}$)

Good guess ($s_{\rm fft} = \tilde{s}_{\rm fft}$):

 $b' = A_{\text{lat}} s_{\text{lat}} + e$

so (A_{lat}, b') follows an LWE distribution

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output ($A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}}$)

Good guess ($s_{\rm fft} = \tilde{s}_{\rm fft}$): $b' = A_{\rm lat}s_{\rm lat} + e$ so ($A_{\rm lat}, b'$) follows an LWE distribution Bad guess $(s_{fft} \neq \tilde{s}_{fft})$: $b' = A_{fft}(s_{fft} - \tilde{s}_{fft}) + \cdots$ so (A_{lat}, b') follows a uniform distribution $(A_{fft}$ uniform)

Given a sampler for χ , decide if χ = uniform or LWE.

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A_{lat}, b') from χ
- compute $x \in \mathbb{Z}_q^m$ such that $x^T A_{\text{lat}} = 0$
- output $x^T b'$

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A_{lat}, b') from χ
- compute $x \in \mathbb{Z}_q^m$ such that $x^T A_{\text{lat}} = 0$
- output x^Tb'

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A_{lat}, b') from χ
- compute $x \in \mathbb{Z}_q^m$ such that $x^T A_{\text{lat}} = 0$
- output x^Tb'

When $\chi = LWE$: $x^Tb' = x^Te$

follows an approximate Gaussian distribution
Uniform/LWE distinguisher

Given a sampler for χ , decide if χ = uniform or LWE.

- ► sample (A_{lat}, b') from χ
- compute $x \in \mathbb{Z}_q^m$ such that $x^T A_{\text{lat}} = 0$
- output x^Tb'

When $\chi = LWE$: $x^Tb' = x^Te$

follows an approximate Gaussian distribution

When $\chi =$ Uniform: $\chi^{T}b'$

follows a uniform distribution (b' uniform, independent from A_{lat})

Naive dual attack:

- split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- compute dual vectors x and dot products x^Tb
- compute $1/\varepsilon^2$ samples to check guess

Naive dual attack:

- split secret $n = k_{\rm fft} + k_{\rm lat}$
- guess š_{fft}, subtract guess
- compute dual vectors x and dot products x^Tb
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- $x^T b = x^T e$ approx Gaussian deviation $||x|| \sigma_e$

Naive dual attack:

- split secret $n = k_{\rm fft} + k_{\rm lat}$
- guess š_{fft}, subtract guess
- compute dual vectors x and dot products x^Tb
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- $x^T b = x^T e$ approx Gaussian deviation $||x|| \sigma_e$

Complexity estimate:

$$q^{k_{\text{fft}}} \cdot e^{4\left(\frac{\pi ||x||\sigma_{\theta}}{q}\right)^2} + (\text{time to compute many } x)$$

Naive dual attack:

- split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- compute dual vectors x and dot products x^Tb
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- $x^T b = x^T e$ approx Gaussian deviation $||x|| \sigma_e$

Complexity estimate:

$$q^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi ||\mathbf{x}||\sigma_e}{q}\right)^2} + (\text{time to compute many } \mathbf{x})$$

 \rightsquigarrow we want x to be short

Naive dual attack:

- split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- guess š_{fft}, subtract guess
- compute dual vectors x and dot products x^Tb
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- $x^T b = x^T e$ approx Gaussian deviation $||x|| \sigma_e$

Complexity estimate:

$$q^{k_{\text{fft}}} \cdot e^{4\left(\frac{\pi \|\mathbf{x}\|\sigma_e}{q}\right)^2} + (\text{time to compute many } \mathbf{x})$$

 \rightarrow we want x to be short \rightarrow lattice reduction

What is a (Euclidean) lattice?

Definition

 $\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$ where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

We are chaining two reductions:

- ► $b' = b A_{\text{fft}} \tilde{s}_{\text{fft}}$ comes from search to decision reduction
- x_1, \ldots, x_N is a list of dual vectors
- $\alpha_j = x_j^T b'$ comes from uniform/LWE to uniform/Gaussian red.

To distinguish between unidimensional uniform/Gaussian, we compute

$$F(\tilde{s}_{\mathrm{fft}}) = \sum_{j=1}^{N} e^{rac{2i\pi}{q} lpha_j}$$

We are chaining two reductions:

- ► $b' = b A_{\text{fff}} \tilde{s}_{\text{fft}}$ comes from search to decision reduction
- x_1, \ldots, x_N is a list of dual vectors
- $\alpha_j = x_j^T b'$ comes from uniform/LWE to uniform/Gaussian red.

To distinguish between unidimensional uniform/Gaussian, we compute

$$F(\tilde{s}_{\text{fft}}) = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}x_j} = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}x_j^{T}(b-A_{\text{fft}}\tilde{s}_{\text{fft}})} = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}x_j^{T}b} \cdot e^{-\frac{2i\pi}{q}x_j^{T}A_{\text{fft}}\tilde{s}_{\text{fft}}}$$

and we want to find \tilde{s}_{fft} such that $\Re(F(\tilde{s}_{fft})) >$ threshold

Problem: given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\mathrm{fft}}} \times \mathbb{C}$ with N large and $\delta > 0$

► find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{j=1}^N w_j \cdot e^{-2i\pi x_j^T s/q}$

Problem: given $(x_1, w_1), \dots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$ Find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{j=1}^N w_j \cdot e^{-2i\pi x_j^T s/q}$

Naive complexity:

 $O(q^{k_{\mathrm{fft}}} \cdot N)$

Problem: given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$ Find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{j=1}^N w_j \cdot e^{-2i\pi x_j^T s/q}$

Naive complexity:

 $O(q^{k_{\mathrm{fft}}} \cdot N)$

Classical algorithm with optimisation:

- $T \leftarrow k_{\text{fft}}$ -dimensional array set to zero
- $T[x_j] \leftarrow T[x_j] + w_j \text{ for all } j$
- compute FFT \hat{T} of T (Fact: $\hat{T}[s] = F(s)$)
- check all $\hat{T}[s]$ against threshold

Problem: given $(x_1, w_1), \dots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$ Find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{j=1}^N w_j \cdot e^{-2i\pi x_j^T s/q}$

Naive complexity:

 $O(q^{k_{\mathrm{fft}}} \cdot N)$

Classical algorithm with optimisation:

- $T \leftarrow k_{\text{fft}}$ -dimensional array set to zero
- $T[x_j] \leftarrow T[x_j] + w_j \text{ for all } j$
- compute FFT \hat{T} of T (Fact: $\hat{T}[s] = F(s)$)
- check all $\hat{T}[s]$ against threshold

Complexity:

array filling time + FFT time + search time = $\tilde{O}(N + q^{k_{\rm fft}})$

Problem: given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with N large and $\delta > 0$

► find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_i^T s/q}$

What about quantum? initial idea: use the QFT

Problem: given $(x_1, w_1), \dots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$ Find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_j^T s/q}$

What about quantum? initial idea: use the QFT

create superposition

$$\psi = \frac{1}{Z} \sum_{j=1}^{N} w_j \left| \mathbf{x}_j \right\rangle$$

Problem: given $(x_1, w_1), \dots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$ Find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_j^T s/q}$

What about quantum? initial idea: use the QFT

create superposition

$$\psi = \frac{1}{Z} \sum_{j=1}^{N} w_j \left| \mathbf{x}_j \right\rangle$$

apply QFT to get

$$\hat{\psi} = \frac{1}{Z} \sum_{s \in \mathbb{Z}_q^k} F(s) \ket{s}$$

Problem: given $(x_1, w_1), \dots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$ Find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_j^T s/q}$

What about quantum? initial idea: use the QFT

create superposition

$$\psi = \frac{1}{Z} \sum_{j=1}^{N} w_j \left| \mathbf{x}_j \right\rangle$$

apply QFT to get

$$\hat{\psi} = \frac{1}{Z} \sum_{s \in \mathbb{Z}_q^k} F(s) \ket{s}$$

check if any amplitude in the superposition is above the threshold

Problem: given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$

► find $\mathbf{s} \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(\mathbf{s})) > \delta$ where $F(\mathbf{s}) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_i^T \mathbf{s}/q}$

What about quantum? initial idea: use the QFT

create superposition

impossible without QRAM?

$$\psi = \frac{1}{Z} \sum_{j=1}^{N} w_j \left| x_j \right\rangle$$

apply QFT to get

$$\hat{\psi} = \frac{1}{Z} \sum_{s \in \mathbb{Z}_q^k} F(s) \ket{s}$$

check if any amplitude in the superposition is above the threshold

Problem: given $(x_1, w_1), \dots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with N large and $\delta > 0$ Find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_i^T s/q}$

What about quantum? initial idea: use the QFT

create superposition

apply QFT to get

impossible without QRAM?

$$\psi = \frac{1}{Z} \sum_{j=1}^{N} w_j \left| x_j \right\rangle$$

polynomial time

$$\hat{\psi} = \frac{1}{Z} \sum_{s \in \mathbb{Z}_q^k} F(s) |s\rangle$$

check if any amplitude in the superposition is above the threshold

Problem: given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\text{fft}}} \times \mathbb{C}$ with N large and $\delta > 0$

► find $\mathbf{s} \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(\mathbf{s})) > \delta$ where $F(\mathbf{s}) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_i^T \mathbf{s}/q}$

What about quantum? initial idea: use the QFT

create superposition

apply QFT to get

impossible without QRAM?

$$\psi = \frac{1}{Z} \sum_{j=1}^{N} w_j \left| x_j \right\rangle$$

polynomial time

$$\hat{\psi} = \frac{1}{Z} \sum_{s \in \mathbb{Z}_q^k} F(s) \left| s \right\rangle$$

check if any amplitude in the superposition is above the threshold extremely expensive?

Open question: can this approach be made efficient?

Problem: given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\mathrm{fft}}} \times \mathbb{C}$ with N large and $\delta > 0$

• find $\mathbf{s} \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(\mathbf{s})) > \delta$ where $F(\mathbf{s}) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_i^T \mathbf{s}/q}$

Alternative quantum algorithm:

- ▶ search over $s \in \mathbb{Z}_q^{k_{\text{fit}}}$ with Grover
 - compute F(s) and check against threshold

Problem: given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\mathrm{fft}}} \times \mathbb{C}$ with N large and $\delta > 0$

► find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{j=1}^N w_j \cdot e^{-2i\pi x_j^T s/q}$

Alternative quantum algorithm:

• search over $s \in \mathbb{Z}_q^{k_{\text{fit}}}$ with Grover

compute F(s) and check against threshold

Complexity: $O(\sqrt{q^{k_{\rm fft}}} \cdot N) \triangleright$ worse than classical unless $N < \sqrt{q^{k_{\rm fft}}}$

Problem: given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\mathrm{fft}}} \times \mathbb{C}$ with N large and $\delta > 0$

► find $s \in \mathbb{Z}_q^{k_{\text{fft}}}$ s.t. $\Re(F(s)) > \delta$ where $F(s) = \sum_{i=1}^N w_i \cdot e^{-2i\pi x_i^T s/q}$

Alternative quantum algorithm:

• search over $s \in \mathbb{Z}_q^{k_{\text{fit}}}$ with Grover

compute F(s) and check against threshold

Complexity: $O(\sqrt{q^{k_{\rm fft}}} \cdot N) \triangleright$ worse than classical unless $N < \sqrt{q^{k_{\rm fft}}}$

we can do better with a QRAM

Theorem (Simplified)

There is a quantum algorithm that computes $F(s) \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X :

 $\mathcal{O}_X: \ket{j} \ket{0} \to \ket{j} \ket{x_j}.$

How can we build such an oracle? \rightsquigarrow QRAM

Assumption: O(1) time cost

Assumption: O(1) time cost

Assumption: O(1) time cost

17/31

Given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\mathrm{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$

- ▶ put (x_j, w_j) in a QRAM \mathcal{O}_X
- ▶ search over $s \in \mathbb{Z}_q^k$ with Grover
 - compute F(s) using theorem with \mathcal{O}_X and check against threshold δ

Theorem (Simplified)

There is a quantum algorithm that computes $F(s) \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X .

Given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\mathrm{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$

- ▶ put (x_j, w_j) in a QRAM \mathcal{O}_X
- ▶ search over $s \in \mathbb{Z}_q^k$ with Grover
 - compute F(s) using theorem with \mathcal{O}_X and check against threshold δ

Theorem (Simplified)

There is a quantum algorithm that computes $F(s) \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X .

What about ε ?

Given $(x_1, w_1), \ldots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\mathrm{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$

- ▶ put (x_j, w_j) in a QRAM \mathcal{O}_X
- ▶ search over $s \in \mathbb{Z}_q^k$ with Grover
 - compute F(s) using theorem with \mathcal{O}_X and check against threshold δ

Theorem (Simplified)

There is a quantum algorithm that computes $F(s) \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X .

What about ε ? For dual attacks: $\varepsilon = \Omega(1/\sqrt{N})$

Quantum complexity

$$O(\sqrt{q^{k_{\mathrm{fft}}}\cdot N})$$

Given $(x_1, w_1), \dots, (x_N, w_N) \in \mathbb{Z}_q^{k_{\mathrm{fft}}} \times \mathbb{C}$ with *N* large and $\delta > 0$

- ▶ put (x_j, w_j) in a QRAM \mathcal{O}_X
- ▶ search over $s \in \mathbb{Z}_q^k$ with Grover
 - compute F(s) using theorem with \mathcal{O}_X and check against threshold δ

Theorem (Simplified)

There is a quantum algorithm that computes $F(s) \pm \varepsilon$ given oracle access by making $O(1/\varepsilon)$ queries to \mathcal{O}_X .

What about ε ? For dual attacks: $\varepsilon = \Omega(1/\sqrt{N})$

Quantum complexity

 $O(\sqrt{q^{k_{\rm fft}}} \cdot N)$

Classical complexity

$$O(q^{k_{\rm fft}} + N)$$

- quantum never worse than classical
- gain when $N \ll q^{k_{\rm fft}}$ or $N \gg q^{k_{\rm fft}}$

Dual attack: summary

- split secret $n = k_{\rm fft} + k_{\rm lat}$
- compute many dual vectors x
- ► find *s*_{fft} using FFT/quantum mean estimation

Dual attack: summary

- split secret $n = k_{\rm fft} + k_{\rm lat}$
- compute many dual vectors x
- find $\tilde{s}_{\rm fft}$ using FFT/quantum mean estimation

Pick x short in lattice L using BKZ:

$$L = \left\{ \mathbf{X} \in \mathbb{Z}^m : \mathbf{X}^T A_{\text{lat}} = 0 \mod q \right\}$$

Complexity estimate:

$$q^{k_{ ext{fft}}} + e^{4\left(rac{\pi \|X\|\sigma_e}{q}
ight)^2} + T_{ ext{BKZ}}$$
Classical

$$\sqrt{q^{k_{\mathrm{fft}}}e^{4\left(rac{\pi \|\mathbf{x}\|\sigma_{e}}{q}
ight)^{2}}} + T_{\mathrm{BKZ}}$$

Quantum with QRAM

Dual attack: summary

- split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- compute many dual vectors x
- ▶ find s_{fft} using FFT/quantum mean estimation

Pick x short in lattice L using BKZ:

$$L = \left\{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T A_{\text{lat}} = 0 \mod q \right\}$$

Complexity estimate:

$$q^{k_{\text{fft}}} + e^{4\left(\frac{\pi \|x\|\sigma_e}{q}\right)^2} + T_{\text{BKZ}} \qquad \sqrt{q^{k_{\text{fft}}}e^{4\left(\frac{\pi \|x\|\sigma_e}{q}\right)^2}} + T_{\text{BKZ}}$$
Classical
Quantum with QRAM

- BKZ trade-off: short x ~ more expensive algorithm
- ▶ best dual attack parameters (*k*_{fft}, ...) found by optimization
Advanced dual attacks

Modulus switching: only guess part of secret modulo p ($p \ll q$)

- reduce guessing complexity
- increase distinguishing cost due to modulo remainders
- makes reduced secret dense

Advanced dual attacks

Modulus switching: only guess part of secret modulo p ($p \ll q$)

- reduce guessing complexity
- increase distinguishing cost due to modulo remainders
- makes reduced secret dense

Hybrid attack: split secret into three parts

- \triangleright s_{enum}: brute force enumeration by decreasing probability
- s_{fft}: guess by FFT
- s_{lat}: removed by dual attack

Advanced dual attacks

Modulus switching: only guess part of secret modulo p ($p \ll q$)

- reduce guessing complexity
- increase distinguishing cost due to modulo remainders
- makes reduced secret dense

Hybrid attack: split secret into three parts

- s_{enum}: brute force enumeration by decreasing probability
- s_{fft}: guess by FFT
- \triangleright s_{lat} : removed by dual attack

BKZ with sieving

- obtain many dual vectors at once
- reducing the number of BKZ reductions

Combine enumeration with dual attack:

- enumerate $s_{\text{enum}} \in \mathbb{Z}_q^{k_{\text{enum}}}$
 - enumerate all $s_{\mathrm{fft}} \in \mathbb{Z}_p^{k_{\mathrm{fft}}}$
 - compute a DFT-like sum
 - check if it is above the threshold

sampled from $\chi^{k_{\rm enum}}_{{\mathcal S}}$ uniform in $\mathbb{Z}_{\rho}^{k_{\rm fit}}$

Combine enumeration with dual attack:

- enumerate $s_{\text{enum}} \in \mathbb{Z}_q^{k_{\text{enum}}}$
 - enumerate all $s_{\mathrm{fft}} \in \mathbb{Z}_p^{k_{\mathrm{fft}}}$
 - compute a DFT-like sum
 - check if it is above the threshold

sampled from $\chi^{k_{\rm enum}}_{{\mathcal S}}$ uniform in $\mathbb{Z}^{k_{\rm fit}}_{\rho}$

- guessing complexity: try senum in decreasing order of probability
- FFT: compute all DFT-sums in one go with a FFT
- dual vectors: compute them once, reuse for all senum

Gain: reduce $k_{\text{lat}} \sim$ decrease BKZ cost

Combine enumeration with dual attack:

- enumerate $s_{\text{enum}} \in \mathbb{Z}_q^{k_{\text{enum}}}$
 - enumerate all $s_{\rm fft} \in \mathbb{Z}_p^{k_{\rm fft}}$
 - compute a DFT-like sum
 - check if it is above the threshold

sampled from $\chi^{k_{\rm enum}}_{{\mathcal S}}$ uniform in $\mathbb{Z}^{k_{\rm fit}}_{\rho}$

- guessing complexity: try senum in decreasing order of probability
- FFT: compute all DFT-sums in one go with a FFT
- dual vectors: compute them once, reuse for all senum

Gain: reduce $k_{\text{lat}} \sim$ decrease BKZ cost

Classical:

$$G(\chi_{s}^{k_{\text{enum}}}) \cdot \left(p^{k_{\text{fft}}} + e^{4\left(\frac{\pi \|\boldsymbol{x}\| \sigma_{e}}{q}\right)^{2}} \right) + T_{\text{BKZ}}$$

Combine enumeration with dual attack:

- enumerate $s_{\text{enum}} \in \mathbb{Z}_q^{k_{\text{enum}}}$
 - enumerate all $s_{\rm fft} \in \mathbb{Z}_p^{k_{\rm fft}}$
 - compute a DFT-like sum
 - check if it is above the threshold

sampled from $\chi^{k_{\rm enum}}_{{\mathcal S}}$ uniform in $\mathbb{Z}^{k_{\rm fit}}_{\rho}$

- guessing complexity: try senum in decreasing order of probability
- FFT: compute all DFT-sums in one go with a FFT
- dual vectors: compute them once, reuse for all senum

Gain: reduce $k_{\text{lat}} \sim$ decrease BKZ cost

Quantum with QRAM:

$$G^{qc}(\chi_s^{k_{\text{enum}}}) \cdot \sqrt{p^{k_{\text{fft}}} \cdot e^{4\left(rac{\pi \|x\|\sigma_e}{q}
ight)^2}} + T_{\text{BKZ}}$$

Dual attack cost estimates (logarithms to base two)

	Classical			Quantum		Our work	
Scheme	CC	CN	C0	QN	Q0	QN	Q0
Kyber 512	139.2	134.4	115.4	124.4	102.7	119.3	99.6
Kyber 768	196.1	190.6	173.7	175.3	154.6	168.2	149.8
Kyber 1024	262.4	256.1	241.8	234.5	215.0	226.0	208.5
LightSaber	138.5	133.1	113.7	122.7	101.1	118.6	98.5
Saber	201.4	195.9	179.2	179.9	159.4	175.6	155.7
FireSaber	263.5	258.2	243.8	235.9	216.7	228.3	210.7
TFHE630	118.2	113.3	93.0	105.2	83.0	102.6	81.6
TFHE1024	122.0	117.2	95.4	108.5	84.8	106.6	83.5

- QN: quantum version of CN
- Q0: quantum version of C0
- CC: classical circuit model (most detailed)
- CN: intermediate model
- C0: Core-SVP model (very pessimistic)

Recall: split secret + dual vector

Combine: split secret

Recall: split secret + dual vector

Combine: split secret

With: dual vector x such that $x^T A_{\text{lat}} = 0$

$$X^{T} \times b = X^{T} \times A_{fft} \times s_{fft} + X^{T} \times e$$

▶ split secret, find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$

$$\mathbf{x}^{T} \times \mathbf{b} = \mathbf{y}^{T} \times \mathbf{s}_{\text{fit}} + \mathbf{x}^{T} \times \mathbf{e}$$

- ▶ split secret, find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$
- guess secret s̃ and subtract

$$\mathbf{x}^{T} \times \mathbf{b} - \mathbf{y}^{T} \times \tilde{\mathbf{s}}_{\text{fft}} = \mathbf{y}^{T} \times \left(\mathbf{s}_{\text{fft}} - \tilde{\mathbf{s}}_{\text{fft}}\right) + \mathbf{x}^{T} \times \mathbf{e}$$

▶ split secret, find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$

guess secret s̃ and subtract

$$\mathbf{x}^{\mathsf{T}} \times \mathbf{b} - \mathbf{y}^{\mathsf{T}} \times \mathbf{\tilde{s}_{\text{fit}}} = \mathbf{y}^{\mathsf{T}} \times \left(\mathbf{s}_{\text{fit}} - \mathbf{\tilde{s}}_{\text{fit}}\right) + \mathbf{x}^{\mathsf{T}} \times \mathbf{e}$$

Good guess (
$$s_{\rm fft} = \tilde{s}_{\rm fft}$$
):
 $x^T e$

follows a discrete Gaussian of small deviation (depends on ||x||)

▶ split secret, find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$

guess secret s and subtract

$$\mathbf{x}^{\mathsf{T}} \times \mathbf{b} - \mathbf{y}^{\mathsf{T}} \times \mathbf{\tilde{s}_{\text{fit}}} = \mathbf{y}^{\mathsf{T}} \times \left(\mathbf{s}_{\text{fit}} - \mathbf{\tilde{s}}_{\text{fit}}\right) + \mathbf{x}^{\mathsf{T}} \times \mathbf{e}$$

Good guess (
$$s_{\rm fft} = \tilde{s}_{\rm fft}$$
):
 $x^T e$

follows a discrete Gaussian of small deviation (depends on ||x||)

Bad guess ($s_{\text{fft}} \neq \tilde{s}_{\text{fft}}$): $y^T (s_{\text{fft}} - \tilde{s}_{\text{fft}}) + x^T e$ follows a uniform distribution

 $(y \approx \text{uniform in } \mathbb{Z}_q^{k_{\text{fit}}})$

▶ split secret, find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$

guess secret s̃ and subtract

$$\mathbf{X}^{\mathsf{T}} \times \mathbf{b} - \mathbf{y}^{\mathsf{T}} \times \mathbf{\tilde{s}_{\text{fft}}} = \mathbf{y}^{\mathsf{T}} \times \left(\mathbf{s_{\text{fft}}} - \mathbf{\tilde{s}_{\text{fft}}}\right) + \mathbf{X}^{\mathsf{T}} \times \mathbf{e}$$

Good guess (
$$s_{\rm fft} = \tilde{s}_{\rm fft}$$
):
 $x^T e$

follows a discrete Gaussian of small deviation (depends on ||x||)

Bad guess ($s_{\text{fft}} \neq \tilde{s}_{\text{fft}}$): $y^T (s_{\text{fft}} - \tilde{s}_{\text{fft}}) + x^T e$ follows a uniform distribution

 $(y \approx \text{uniform in } \mathbb{Z}_q^{k_{\text{fit}}})$

Problem: cost of distinguishing grows as $q^{k_{\rm fft}}$ \sim can we change to a modulo $p \ll q$ to reduce the cost?

Modulus switching from a high level

Let p < q, write

py = qu + twhere $u \in \mathbb{Z}_p^{k_{\text{lat}}}$ and $t \in \mathbb{Z}_q^{k_{\text{lat}}}$.

Modulus switching from a high level

Let p < q, write

py = qu + twhere $u \in \mathbb{Z}_p^{k_{\text{lat}}}$ and $t \in \mathbb{Z}_q^{k_{\text{lat}}}$. Then

Modulus switching from a high level

Let p < q, write

py = qu + twhere $u \in \mathbb{Z}_p^{k_{\text{lat}}}$ and $t \in \mathbb{Z}_q^{k_{\text{lat}}}$. Then

This is a trade-off (details omitted):

- ► only need to guess S_{fft} mod p: FFT over Z^k_{fft} instead of Z^k_{fft}
- the error ε has increased: the number of samples increases

from
$$4\left(\frac{\pi \|x\|\sigma_e}{q}\right)^2$$
 to $4\left(\frac{\pi \|x\|\sigma_e}{q}\right)^2 + \frac{1}{3}\left(\frac{\pi \|S_{\text{fit}}\|q}{p}\right)^2$

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Modulus switching: approximate a vector $y \in \mathbb{Z}_q^n$ by

$$y = \frac{q}{p} \cdot \left[\frac{p}{q}y\right] + \frac{q}{p}\left\{\frac{p}{q}y\right\} = \frac{q}{p} \cdot u + t$$

- ▶ $u \in \mathbb{Z}_p^n$: smaller domain (field is smaller)
- ▶ $||t|| \leq \frac{q}{p}$: "small error"

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Modulus switching: approximate a vector $y \in \mathbb{Z}_q^n$ by

$$y = \frac{q}{p} \cdot \left[\frac{p}{q}y\right] + \frac{q}{p}\left\{\frac{p}{q}y\right\} = \frac{q}{p} \cdot u + t$$

•
$$u \in \mathbb{Z}_{p}^{n}$$
: smaller domain (field is smaller)
• $||t|| \leq \frac{q}{p}$: "small error"

Our observation: this looks like a special case of lattice codes

$$y = Gu + t$$

- $G \in \mathbb{Z}_q^{n \times k}$: defines a code
- $u \in \mathbb{Z}_q^k$: smaller domain (dimension is smaller)
- $\models ||t|| \text{ is small (depends on } G)$

Applying lattice codes

Recall: find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$

$$\mathbf{x}^{T} \times \mathbf{b} = \mathbf{y}^{T} \times \mathbf{s}_{\text{fff}} + \mathbf{x}^{T} \times \mathbf{e}$$

Applying lattice codes

Recall: find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$

$$\mathbf{x}^{T} \times \mathbf{b} = \mathbf{y}^{T} \times \mathbf{s}_{\text{fff}} + \mathbf{x}^{T} \times \mathbf{e}$$

Choose a code $G \in \mathbb{Z}_q^{k_{\text{fff}} \times k_{\text{cod}}}$, decode *y* as

$$y = G \times u + t$$

Applying lattice codes

Recall: find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$

$$\mathbf{x}^{T} \times \mathbf{b} = \mathbf{y}^{T} \times \mathbf{s}_{\text{fff}} + \mathbf{x}^{T} \times \mathbf{e}$$

Choose a code $G \in \mathbb{Z}_q^{k_{\text{fff}} \times k_{\text{cod}}}$, decode y as

$$y = G \times u + t$$

New fundamental equation:

$$\mathbf{x}^{T} \cdot \mathbf{b} = \mathbf{u}^{T} \cdot \mathbf{G}^{T} \cdot \mathbf{s}_{\text{fft}} + \mathbf{t}^{T} \cdot \mathbf{s}_{\text{fft}} + \mathbf{x}^{T} \cdot \mathbf{e}$$

▶ find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$ ▶ choose a code $G \in \mathbb{Z}_q^{k_{\text{fft}} \times k_{\text{cod}}}$, decode y = Gu + t **x**^T
• $b = u^T \cdot G^T \cdot s_{\text{fft}} + u^T \cdot s_{\text{fft}} + x^T \cdot e$

▶ find (x, y) such that x^TA_{lat} = 0 and y^T = x^TA_{fft}
 ▶ choose a code G ∈ Z_q<sup>k_{fft}×k_{cod}, decode y = Gu + t
</sup>

where

Observations:

- we directly guess s_{cod} instead of s_{fft}
- ► $s_{\text{cod}} = G^T s_{\text{fft}} \in \mathbb{Z}_q^{k_{\text{cod}}}$ has smaller dimension $k_{\text{cod}} \ll k_{\text{fft}}$

Observations:

- we directly guess s_{cod} instead of s_{fft}
- ► $s_{\text{cod}} = G^T s_{\text{fft}} \in \mathbb{Z}_q^{k_{\text{cod}}}$ has smaller dimension $k_{\text{cod}} \ll k_{\text{fft}}$
- ε' = t^Ts_{fft} + x^Te follows a discrete Gaussian whose deviation depends on ||x||, ||s_{fft}||, ||e|| and ||t||
- ||t|| is small for a good code G

Lattice codes vs modulo switching

Lattice codes Modulus switching $\begin{array}{c|c} x^T \\ \hline x^T \\ \hline \end{array} \cdot \begin{array}{c} b \\ b \end{array} = \begin{array}{c} u^T \\ \hline s_{cod} \\ \hline \end{array} + \begin{array}{c} \varepsilon' \\ \hline \end{array} \begin{array}{c} x^T \\ \hline \end{array} \cdot \begin{array}{c} b \\ b \end{array} = \begin{array}{c} p \\ q \\ \hline \end{array} \begin{array}{c} y^T \\ \hline \end{array} \cdot \begin{array}{c} s_{ff} \\ \hline \end{array} + \begin{array}{c} \varepsilon \\ \hline \end{array}$

Lattice codes vs modulo switching

 $\begin{array}{c|c} \mathbf{x}^{T} \\ \mathbf{x}^{T} \\ \mathbf{b} \end{array} = \begin{array}{c} \mathbf{u}^{T} \\ \mathbf{s}_{\text{scol}} \end{array} + \begin{array}{c} \mathbf{\varepsilon}^{\prime} \\ \mathbf{z}^{\prime} \\ \mathbf{x}^{T} \\ \mathbf{b} \end{array} = \begin{array}{c} \left[\begin{array}{c} \mathbf{\rho} \\ \mathbf{q} \\ \mathbf{y}^{T} \end{array} \right] \cdot \begin{array}{c} \mathbf{s}_{\text{fff}} \\ \mathbf{s}_{\text{fff}} \end{array} + \begin{array}{c} \mathbf{\varepsilon} \\ \mathbf{\varepsilon} \\ \mathbf{s}_{\text{fff}} \end{array} + \begin{array}{c} \mathbf{\varepsilon} \\ \mathbf{s}_{\text{fff}} \\ \mathbf{s}_{\text{fff}} \end{array} + \begin{array}{c} \mathbf{\varepsilon} \\ \mathbf{\varepsilon} \\ \mathbf{s}_{\text{fff}} \end{array} + \begin{array}{c} \mathbf{\varepsilon} \\ \mathbf{\varepsilon} \\ \mathbf{s}_{\text{fff}} \\ \mathbf{s}_{\text{fff}} \end{array} + \begin{array}{c} \mathbf{\varepsilon} \\ \mathbf{\varepsilon} \\ \mathbf{s}_{\text{fff}} \\ \mathbf{s}_{\text{fff}} \\ \mathbf{s}_{\text{fff}} \end{array} + \begin{array}{c} \mathbf{\varepsilon} \\ \mathbf{\varepsilon} \\ \mathbf{s}_{\text{fff}} \\ \mathbf{s}_{\text{fff}} \\ \mathbf{s}_{\text{fff}} \end{array} + \begin{array}{c} \mathbf{\varepsilon} \\ \mathbf{\varepsilon} \\ \mathbf{s}_{\text{fff}} \\ \mathbf{s}_{\text{$

Modulus switching

- ► FFT cost: *q*^{k_{cod}} • error ε' : Gaussian of stddev $\tau_{\mathrm{LC}}^{2} = \|\boldsymbol{x}\|^{2} \cdot \sigma_{\boldsymbol{e}}^{2} + \|\boldsymbol{s}_{\mathrm{fft}}\|^{2} \cdot \frac{q^{2-2\frac{K_{\mathrm{cod}}}{K_{\mathrm{fft}}}}}{2\pi\boldsymbol{e}}$ for an asymptotically optimal code
- FFT cost: p^{km}
- error ε : Gaussian of stddev

$$\tau_{\mathrm{MS}}^2 = \|\mathbf{X}\|^2 \cdot \sigma_{e}^2 + \|\mathbf{S}_{\mathrm{fft}}\|^2 \cdot \frac{q^2}{12p^2}$$

Lattice codes vs modulo switching

- $\mathbf{x}^{T} \cdot \mathbf{b} = \mathbf{u}^{T} \cdot \mathbf{s}_{\text{cod}} + \mathbf{\varepsilon}' \qquad \mathbf{x}^{T} \cdot \mathbf{b} = \begin{bmatrix} p \\ q \end{bmatrix} \mathbf{y}^{T} \cdot \mathbf{s}_{\text{fit}} + \mathbf{\varepsilon}$
- ► FFT cost: *q*^{k_{cod}} • error ε' : Gaussian of stddev $\tau_{\mathrm{LC}}^{2} = \|\mathbf{x}\|^{2} \cdot \sigma_{e}^{2} + \|\mathbf{s}_{\mathrm{fft}}\|^{2} \cdot \frac{q^{2-2\frac{K_{\mathrm{cod}}}{K_{\mathrm{fft}}}}}{2\pi e}$ for an asymptotically optimal code

▶ FFT cost: p^kfft

error ε : Gaussian of stddev

$$\tau_{\mathrm{MS}}^2 = \|\mathbf{x}\|^2 \cdot \sigma_{\boldsymbol{e}}^2 + \|\mathbf{s}_{\mathrm{fft}}\|^2 \cdot \frac{q^2}{12p^2}$$

Comparison for same FFT cost: $q^{k_{cod}} = p^{k_{fft}}$

$$\frac{q^{2-2}\frac{k_{\rm cod}}{k_{\rm fft}}}{2\pi e} = \frac{q}{2\pi e\rho} \approx \frac{q}{17\rho} \ll \frac{q}{12\rho}$$

 \sim lattice codes are always better than modulo switching!

Modulus switching

Other important details

- FFT is more efficient for powers of two
- $q^{k_{\text{cod}}}$ has coarse granularity for big q

 \sim use modulo switching to change *q* to $p = 2^m$ then use lattice codes: best of both, allow more "continuous" parameter choice

Other important details

- FFT is more efficient for powers of two
- $q^{k_{\text{cod}}}$ has coarse granularity for big q

 \sim use modulo switching to change *q* to $p = 2^m$ then use lattice codes: best of both, allow more "continuous" parameter choice

- optimal codes are expensive but we need a fast decoder
- we only need to decode to a close codeword, not the closest
- \sim we suggest to use polar codes which are asymptotically optimal

Other important details

- FFT is more efficient for powers of two
- $q^{k_{\text{cod}}}$ has coarse granularity for big q

 \sim use modulo switching to change *q* to $p = 2^m$ then use lattice codes: best of both, allow more "continuous" parameter choice

- optimal codes are expensive but we need a fast decoder
 we only need to decode to a close codeword, not the closest
 we suggest to use polar codes which are asymptotically optimal
 - we suggest to use polar codes which are asymptotically optimal
 - many parameters to choose (p, k_{fft} , k_{cod} , BKZ block size, ...)
 - no obvious way to choose them
- \sim search for optimal parameters with an optimisation program

Results

- CC: classical circuit model (most detailed cost)
- CN: intermediate model
- C0: "Core-SVP" cost model

	I	MATZOV	/	Ours			
Scheme	CC	CN	C0	CC	CN	C0	
Kyber 512	138.5	133.7	114.8	137.8	133.0	114.0	
Kyber 768	195.7	190.4	173.1	192.5	187.2	170.2	
Kyber 1024	261.4	255.4	240.7	256.2	250.5	235.7	
LightSaber	137.1	132.3	113.1	136.8	131.5	112.3	
Saber	201.1	195.1	178.3	199.7	194.9	177.0	
FireSaber	263.6	257.7	242.8	259.9	254.4	239.4	

- ▶ 1 to 5 bit gain over MATZOV
- further 1 bit gain with Prange bet (not in the talk)