
On dual attacks against the Learning With Errors
problem

Yixin Shen

Based on joint works with
Martin R. Albrecht, Kevin Carrier, and Jean-Pierre Tillich

Royal Holloway, University of London

January 26, 2023

1 / 31

Learning with errors (LWE)

Let n = 4, m = 6 and q = 17.

A ∈ Zm×n
q

14 12 2 5

5 3 1 7

14 7 2 5

0 9 8 4

8 11 5 12
5 1 3 14

×

secret

s ∈ Zn
q

+

noise

e ∈ Zm
q

=

b ∈ Zm
q

11
5

14

6

12

13

Given A and b, find s.

2 / 31

Learning with errors (LWE)

Let n = 4, m = 6 and q = 17.

A ∈ Zm×n
q

14 12 2 5

5 3 1 7

14 7 2 5

0 9 8 4

8 11 5 12
5 1 3 14

×

secret

s ∈ Zn
q

1

2

1
5

+

noise

e ∈ Zm
q

=

b ∈ Zm
q

11
5

14

6

12

13

Given A and b, find s.

; Very easy (e.g. Gaussian elimination) and in polynomial time

2 / 31

Learning with errors (LWE)

Let n = 4, m = 6 and q = 17.

random

A ∈ Zm×n
q

14 12 2 5

5 3 1 7

14 7 2 5

0 9 8 4

8 11 5 12
5 1 3 14

×

secret

s ∈ Zn
q

1

2

1
5

+

noise

e ∈ Zm
q

-3

-1

2

-3

3

-1

=

b ∈ Zm
q

11
5

14

6

12

13

Given A and b, find s.

2 / 31

Learning with errors (LWE)

Let n = 4, m = 6 and q = 17.

random

A ∈ Zm×n
q

14 12 2 5

5 3 1 7

14 7 2 5

0 9 8 4

8 11 5 12
5 1 3 14

×

secret

s ∈ Zn
q

+

noise

e ∈ Zm
q

=

b ∈ Zm
q

11
5

14

6

12

13

Given A and b, find s.

; Suspected hard problem, even for quantum algorithms

2 / 31

Learning with errors (LWE)

Let n,m,q ∈ Z and χe, χs two distributions over Zq.

LWE(n,m,q, χe, χs): probability distribution on Zm×n
q ×Zm

q

▶ sample A← U(Zm×n
q)

▶ sample s ← χn
s

▶ sample e← χm
e

▶ output (A,As + e).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given (A,b)← LWE(n,m,q, χe, χs), recover s.

Decision LWE problem:
distinguish LWE(n,m,q, χe, χs) from U(Zm×n

q ×Zm
q).

Lemma: Search LWE is easy if and only if decision LWE is easy.

3 / 31

Learning with errors (LWE)

Let n,m,q ∈ Z and χe, χs two distributions over Zq.

LWE(n,m,q, χe, χs): probability distribution on Zm×n
q ×Zm

q

▶ sample A← U(Zm×n
q)

▶ sample s ← χn
s

▶ sample e← χm
e

▶ output (A,As + e).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given (A,b)← LWE(n,m,q, χe, χs), recover s.

Decision LWE problem:
distinguish LWE(n,m,q, χe, χs) from U(Zm×n

q ×Zm
q).

Lemma: Search LWE is easy if and only if decision LWE is easy.

3 / 31

Learning with errors (LWE)

Let n,m,q ∈ Z and χe, χs two distributions over Zq.

LWE(n,m,q, χe, χs): probability distribution on Zm×n
q ×Zm

q

▶ sample A← U(Zm×n
q)

▶ sample s ← χn
s

▶ sample e← χm
e

▶ output (A,As + e).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given (A,b)← LWE(n,m,q, χe, χs), recover s.

Decision LWE problem:
distinguish LWE(n,m,q, χe, χs) from U(Zm×n

q ×Zm
q).

Lemma: Search LWE is easy if and only if decision LWE is easy.

3 / 31

Learning with errors (LWE)

LWE(n,m,q, χe, χs): probability distribution on Zm×n
q ×Zm

q

▶ sample A← U(Zm×n
q)

▶ sample s ← χn
s

▶ sample e← χm
e

▶ output (A,As + e).

4 / 31

Learning with errors (LWE)

LWE(n,m,q, χe, χs): probability distribution on Zm×n
q ×Zm

q

▶ sample A← U(Zm×n
q)

▶ sample s ← χn
s

▶ sample e← χm
e

▶ output (A,As + e).

Secret distributions χs:
▶ originally uniform in Zq, now some distribution of small deviation
σs (e.g. discrete Gaussian/centered Binormial, {−1,0,1} whp)

▶ Fact: small secret is as hard as uniform secret
▶ small secret allows more efficient schemes

4 / 31

Learning with errors (LWE)

LWE(n,m,q, χe, χs): probability distribution on Zm×n
q ×Zm

q

▶ sample A← U(Zm×n
q)

▶ sample s ← χn
s

▶ sample e← χm
e

▶ output (A,As + e).

Noise distributions χe:
▶ usually discrete Gaussian/centered Binormial of deviation σe

▶ most schemes (Kyber/Saber/...): σe small (≈ 1)

4 / 31

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
▶ several lattice-based NIST PQC candidates rely on LWE
▶ extensive literature
▶ all evidence points to resistance against quantum attacks

Two types of attacks:
▶ Primal attacks:

▶ more efficient in most cases
▶ no quantum speed-up known (besides BKZ)

▶ Dual attacks:
▶ originally less efficient, now catching up
▶ no quantum speed-up known (besides BKZ) up to now

Contributions:
▶ first quantum speed-up on dual attacks
▶ improvement on dual attacks using ideas from codes

5 / 31

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
▶ several lattice-based NIST PQC candidates rely on LWE
▶ extensive literature
▶ all evidence points to resistance against quantum attacks

Two types of attacks:
▶ Primal attacks:

▶ more efficient in most cases
▶ no quantum speed-up known (besides BKZ)

▶ Dual attacks:
▶ originally less efficient, now catching up
▶ no quantum speed-up known (besides BKZ) up to now

Contributions:
▶ first quantum speed-up on dual attacks
▶ improvement on dual attacks using ideas from codes

5 / 31

Search to distinguish

Very naive attack:

guess secret s̃

A
8 9 10 12

5 3 11 3

0 15 10 4

15 9 16 15

1 2 10 8

11 16 13 9

×

s

−

s̃
3

11

0

14

+

e

=

b
8

3

11

15

2

15

Attack:
▶ get (A,b)

▶ guess s̃
▶ output b′ = b − As̃

Good guess (s = s̃):

b′ = e

follows a discrete Gaussian
of small deviation

Bad guess (s ̸= s̃):

b′ = e + A(s − s̃)

follows a uniform1 distribution
(A uniform in Zm×n

q)

6 / 31

Search to distinguish

Very naive attack: guess secret s̃
A

8 9 10 12

5 3 11 3

0 15 10 4

15 9 16 15

1 2 10 8

11 16 13 9

×

s

−

s̃
3

11

0

14

+

e

=

b′

7

2

3

15

11

8

Attack:
▶ get (A,b)
▶ guess s̃
▶ output b′ = b − As̃

Good guess (s = s̃):

b′ = e

follows a discrete Gaussian
of small deviation

Bad guess (s ̸= s̃):

b′ = e + A(s − s̃)

follows a uniform1 distribution
(A uniform in Zm×n

q)

6 / 31

Search to distinguish

Very naive attack: guess secret s̃
A

8 9 10 12

5 3 11 3

0 15 10 4

15 9 16 15

1 2 10 8

11 16 13 9

×

s

−

s̃
3

11

0

14

+

e

=

b′

7

2

3

15

11

8

Attack:
▶ get (A,b)
▶ guess s̃
▶ output b′ = b − As̃

Good guess (s = s̃):

b′ = e

follows a discrete Gaussian
of small deviation

Bad guess (s ̸= s̃):

b′ = e + A(s − s̃)

follows a uniform1 distribution
(A uniform in Zm×n

q)

6 / 31

Search to distinguish

Very naive attack: guess secret s̃
A

8 9 10 12

5 3 11 3

0 15 10 4

15 9 16 15

1 2 10 8

11 16 13 9

×

s

−

s̃
3

11

0

14

+

e

=

b′

7

2

3

15

11

8

Attack:
▶ get (A,b)
▶ guess s̃
▶ output b′ = b − As̃

Good guess (s = s̃):

b′ = e

follows a discrete Gaussian
of small deviation

Bad guess (s ̸= s̃):

b′ = e + A(s − s̃)

follows a uniform1 distribution
(A uniform in Zm×n

q)

1Technically only true for fixed s, random A and s̃
6 / 31

Uniform/Gaussian distinguisher

Given a sampler for χm, decide if χ = U(Zq) or Dσ,q (discrete
Gaussian)

The entries are independent: given a sample from χm we obtain m
independent samples from χ.
; if m large enough, we know how to distinguish.

7 / 31

Uniform/Gaussian distinguisher

Given a sampler for χm, decide if χ = U(Zq) or Dσ,q (discrete
Gaussian)

The entries are independent: given a sample from χm we obtain m
independent samples from χ.
; if m large enough, we know how to distinguish.

7 / 31

Uniform/Gaussian distinguisher

Given a sampler for χ, decide if χ = U(Zq) or Dσ,q (discrete Gaussian)

Essentially optimal distingusher: let Y = ℜ(e2iπX/q)

EX←χ[Y] ≈

0 if χ = U(Zq)

e−2
(
πσ
q

)2

if χ = Dσ,q

Attack:
▶ sample N = Ω

(
1/ε2) values x1, . . . , xN from χ

▶ compute

S =
1
N

N∑
j=1

ℜ(e2iπxj/q)

▶ Check if S > 1
2e−2

(
πσ
q

)2

The quantity ε = e−2
(
πσ
q

)2

is called the advantage.

8 / 31

Uniform/Gaussian distinguisher

Given a sampler for χ, decide if χ = U(Zq) or Dσ,q (discrete Gaussian)

Essentially optimal distingusher: let Y = ℜ(e2iπX/q)

EX←χ[Y] ≈

0 if χ = U(Zq)

e−2
(
πσ
q

)2

if χ = Dσ,q

Attack:
▶ sample N = Ω

(
1/ε2) values x1, . . . , xN from χ

▶ compute

S =
1
N

N∑
j=1

ℜ(e2iπxj/q)

▶ Check if S > 1
2e−2

(
πσ
q

)2

The quantity ε = e−2
(
πσ
q

)2

is called the advantage.

8 / 31

Uniform/Gaussian distinguisher

Given a sampler for χ, decide if χ = U(Zq) or Dσ,q (discrete Gaussian)

Essentially optimal distingusher: let Y = ℜ(e2iπX/q)

EX←χ[Y] ≈

0 if χ = U(Zq)

e−2
(
πσ
q

)2

if χ = Dσ,q

Attack:
▶ sample N = Ω

(
1/ε2) values x1, . . . , xN from χ

▶ compute

S =
1
N

N∑
j=1

ℜ(e2iπxj/q)

▶ Check if S > 1
2e−2

(
πσ
q

)2

The quantity ε = e−2
(
πσ
q

)2

is called the advantage.

8 / 31

Very naive attack: summary

Very naive attack:
▶ guess s̃: qn possiblities
▶ compute sum of 1/ε2 samples to check guess

Complexity estimate:

qn · e4
(
πσe

q

)2

= too much

Can do better by guessing s in decreasing order of probability1:

G(χn
s) · e

4
(
πσe

q

)2

⩽ (1.22
√

2πσs)
n · e4

(
πσe

q

)2

= too much

where σs deviation of s, G(·) = guessing complexity

Dual attacks: provide an efficient way to only guess a part of the secret

9 / 31

Very naive attack: summary

Very naive attack:
▶ guess s̃: qn possiblities
▶ compute sum of 1/ε2 samples to check guess

Complexity estimate:

qn · e4
(
πσe

q

)2

= too much

Can do better by guessing s in decreasing order of probability1:

G(χn
s) · e

4
(
πσe

q

)2

⩽ (1.22
√

2πσs)
n · e4

(
πσe

q

)2

= too much

where σs deviation of s, G(·) = guessing complexity

Dual attacks: provide an efficient way to only guess a part of the secret

9 / 31

Very naive attack: summary

Very naive attack:
▶ guess s̃: qn possiblities
▶ compute sum of 1/ε2 samples to check guess

Complexity estimate:

qn · e4
(
πσe

q

)2

= too much

Can do better by guessing s in decreasing order of probability1:

G(χn
s) · e

4
(
πσe

q

)2

⩽ (1.22
√

2πσs)
n · e4

(
πσe

q

)2

= too much

where σs deviation of s, G(·) = guessing complexity

Dual attacks: provide an efficient way to only guess a part of the secret

1The complexity is now the expected running time
9 / 31

Very naive attack: summary

Very naive attack:
▶ guess s̃: qn possiblities
▶ compute sum of 1/ε2 samples to check guess

Complexity estimate:

qn · e4
(
πσe

q

)2

= too much

Can do better by guessing s in decreasing order of probability1:

G(χn
s) · e

4
(
πσe

q

)2

⩽ (1.22
√

2πσs)
n · e4

(
πσe

q

)2

= too much

where σs deviation of s, G(·) = guessing complexity

Dual attacks: provide an efficient way to only guess a part of the secret

1The complexity is now the expected running time
9 / 31

Search to Decision LWE

Split secret: n = kfft + klat , guess s̃fft, output (Alat,b′ = b − Affts̃fft)

A
3 7 2 3 6

4 1 5 8 4

1 8 1 8 1

5 2 5 6 0

2 1 6 3 0

8 2 7 3 6

5 5 6 6 2

Afft Alat

×

s

Afft

Afft

×

sfftAfft

Afft

×
(sfft

−

s̃fft)

+

Alat

Alat

×

slat

+

e

=

b

′

1

8

6

4

1

2

1

Good guess (sfft = s̃fft):

b′ = Alatslat + e

so (Alat,b′) follows an LWE
distribution

Bad guess (sfft ̸= s̃fft):

b′ = Afft(sfft − s̃fft) + · · ·
so (Alat,b′) follows a uniform
distribution (Afft uniform)

10 / 31

Search to Decision LWE

Split secret: n = kfft + klat

, guess s̃fft, output (Alat,b′ = b − Affts̃fft)

A

3 7 2 3 6

4 1 5 8 4

1 8 1 8 1

5 2 5 6 0

2 1 6 3 0

8 2 7 3 6

5 5 6 6 2

Afft Alat

×

s

Afft

Afft

×

sfftAfft

Afft

×
(sfft

−

s̃fft)

+

Alat

Alat

×

slat

+

e

=

b

′

1

8

6

4

1

2

1

Good guess (sfft = s̃fft):

b′ = Alatslat + e

so (Alat,b′) follows an LWE
distribution

Bad guess (sfft ̸= s̃fft):

b′ = Afft(sfft − s̃fft) + · · ·
so (Alat,b′) follows a uniform
distribution (Afft uniform)

10 / 31

Search to Decision LWE

Split secret: n = kfft + klat

, guess s̃fft, output (Alat,b′ = b − Affts̃fft)

A

3 7 2 3 6

4 1 5 8 4

1 8 1 8 1

5 2 5 6 0

2 1 6 3 0

8 2 7 3 6

5 5 6 6 2

Afft Alat

×

s

Afft

Afft

×

sfft

Afft

Afft

×
(sfft

−

s̃fft)

+

Alat

Alat

×

slat

+

e

=

b

′

1

8

6

4

1

2

1

Good guess (sfft = s̃fft):

b′ = Alatslat + e

so (Alat,b′) follows an LWE
distribution

Bad guess (sfft ̸= s̃fft):

b′ = Afft(sfft − s̃fft) + · · ·
so (Alat,b′) follows a uniform
distribution (Afft uniform)

10 / 31

Search to Decision LWE

Split secret: n = kfft + klat , guess s̃fft, output (Alat,b′ = b − Affts̃fft)

A

3 7 2 3 6

4 1 5 8 4

1 8 1 8 1

5 2 5 6 0

2 1 6 3 0

8 2 7 3 6

5 5 6 6 2

Afft Alat

×

sAfft

Afft

×

sfft

Afft

Afft

×
(sfft

−

s̃fft)
+

Alat

Alat

×

slat

+

e

=

b′

0

5

8

7

1

3

5

Good guess (sfft = s̃fft):

b′ = Alatslat + e

so (Alat,b′) follows an LWE
distribution

Bad guess (sfft ̸= s̃fft):

b′ = Afft(sfft − s̃fft) + · · ·
so (Alat,b′) follows a uniform
distribution (Afft uniform)

10 / 31

Search to Decision LWE

Split secret: n = kfft + klat , guess s̃fft, output (Alat,b′ = b − Affts̃fft)

A

3 7 2 3 6

4 1 5 8 4

1 8 1 8 1

5 2 5 6 0

2 1 6 3 0

8 2 7 3 6

5 5 6 6 2

Afft Alat

×

sAfft

Afft

×

sfft

Afft

Afft

×
(sfft

−

s̃fft)
+

Alat

Alat

×

slat

+

e

=

b′

0

5

8

7

1

3

5

Good guess (sfft = s̃fft):

b′ = Alatslat + e

so (Alat,b′) follows an LWE
distribution

Bad guess (sfft ̸= s̃fft):

b′ = Afft(sfft − s̃fft) + · · ·
so (Alat,b′) follows a uniform
distribution (Afft uniform)

10 / 31

Search to Decision LWE

Split secret: n = kfft + klat , guess s̃fft, output (Alat,b′ = b − Affts̃fft)

A

3 7 2 3 6

4 1 5 8 4

1 8 1 8 1

5 2 5 6 0

2 1 6 3 0

8 2 7 3 6

5 5 6 6 2

Afft Alat

×

sAfft

Afft

×

sfft

Afft

Afft

×
(sfft

−

s̃fft)
+

Alat

Alat

×

slat

+

e

=

b′

0

5

8

7

1

3

5

Good guess (sfft = s̃fft):

b′ = Alatslat + e

so (Alat,b′) follows an LWE
distribution

Bad guess (sfft ̸= s̃fft):

b′ = Afft(sfft − s̃fft) + · · ·
so (Alat,b′) follows a uniform
distribution (Afft uniform)

10 / 31

Uniform/LWE distinguisher

Given a sampler for χ, decide if χ = uniform or LWE.

▶ sample (Alat,b′) from χ

▶ compute x ∈ Zm
q such that xT Alat = 0

▶ output xT b′

xT × b′ = xT ×

 Alat

× slat +
e

= xT × e

When χ = LWE:

xT b′ = xT e

follows an approximate
Gaussian distribution

When χ = Uniform:

xT b′

follows a uniform distribution (b′

uniform, independent from Alat)

11 / 31

Uniform/LWE distinguisher

Given a sampler for χ, decide if χ = uniform or LWE.

▶ sample (Alat,b′) from χ

▶ compute x ∈ Zm
q such that xT Alat = 0

▶ output xT b′

xT × b′

= xT ×

 Alat

× slat +
e

= xT × e

When χ = LWE:

xT b′ = xT e

follows an approximate
Gaussian distribution

When χ = Uniform:

xT b′

follows a uniform distribution (b′

uniform, independent from Alat)

11 / 31

Uniform/LWE distinguisher

Given a sampler for χ, decide if χ = uniform or LWE.

▶ sample (Alat,b′) from χ

▶ compute x ∈ Zm
q such that xT Alat = 0

▶ output xT b′

xT × b′ = xT ×

 Alat

× slat +
e

= xT × e

When χ = LWE:

xT b′ = xT e

follows an approximate
Gaussian distribution

When χ = Uniform:

xT b′

follows a uniform distribution (b′

uniform, independent from Alat)

11 / 31

Uniform/LWE distinguisher

Given a sampler for χ, decide if χ = uniform or LWE.

▶ sample (Alat,b′) from χ

▶ compute x ∈ Zm
q such that xT Alat = 0

▶ output xT b′

xT × b′ = xT ×

 Alat

× slat +
e

= xT × e

When χ = LWE:

xT b′ = xT e

follows an approximate
Gaussian distribution

When χ = Uniform:

xT b′

follows a uniform distribution (b′

uniform, independent from Alat)

11 / 31

Uniform/LWE distinguisher

Given a sampler for χ, decide if χ = uniform or LWE.

▶ sample (Alat,b′) from χ

▶ compute x ∈ Zm
q such that xT Alat = 0

▶ output xT b′

xT × b′ = xT ×

 Alat

× slat +
e

= xT × e

When χ = LWE:

xT b′ = xT e

follows an approximate
Gaussian distribution

When χ = Uniform:

xT b′

follows a uniform distribution (b′

uniform, independent from Alat)
11 / 31

Dual attack: naive complexity

Naive dual attack:
▶ split secret n = kfft + klat

▶ guess s̃fft, subtract guess
▶ compute dual vectors x and dot products xT b
▶ compute 1/ε2 samples to check guess

What is ε ?
▶ e approx Gaussian deviation σe

▶ xT b = xT e approx Gaussian deviation ∥x∥σe

Complexity estimate:

qkfft · e
4
(
π∥x∥σe

q

)2

+ (time to compute many x)

; we want x to be short ; lattice reduction

12 / 31

Dual attack: naive complexity

Naive dual attack:
▶ split secret n = kfft + klat

▶ guess s̃fft, subtract guess
▶ compute dual vectors x and dot products xT b
▶ compute 1/ε2 samples to check guess

What is ε ?
▶ e approx Gaussian deviation σe

▶ xT b = xT e approx Gaussian deviation ∥x∥σe

Complexity estimate:

qkfft · e
4
(
π∥x∥σe

q

)2

+ (time to compute many x)

; we want x to be short ; lattice reduction

12 / 31

Dual attack: naive complexity

Naive dual attack:
▶ split secret n = kfft + klat

▶ guess s̃fft, subtract guess
▶ compute dual vectors x and dot products xT b
▶ compute 1/ε2 samples to check guess

What is ε ?
▶ e approx Gaussian deviation σe

▶ xT b = xT e approx Gaussian deviation ∥x∥σe

Complexity estimate:

qkfft · e
4
(
π∥x∥σe

q

)2

+ (time to compute many x)

; we want x to be short ; lattice reduction

12 / 31

Dual attack: naive complexity

Naive dual attack:
▶ split secret n = kfft + klat

▶ guess s̃fft, subtract guess
▶ compute dual vectors x and dot products xT b
▶ compute 1/ε2 samples to check guess

What is ε ?
▶ e approx Gaussian deviation σe

▶ xT b = xT e approx Gaussian deviation ∥x∥σe

Complexity estimate:

qkfft · e
4
(
π∥x∥σe

q

)2

+ (time to compute many x)

; we want x to be short

; lattice reduction

12 / 31

Dual attack: naive complexity

Naive dual attack:
▶ split secret n = kfft + klat

▶ guess s̃fft, subtract guess
▶ compute dual vectors x and dot products xT b
▶ compute 1/ε2 samples to check guess

What is ε ?
▶ e approx Gaussian deviation σe

▶ xT b = xT e approx Gaussian deviation ∥x∥σe

Complexity estimate:

qkfft · e
4
(
π∥x∥σe

q

)2

+ (time to compute many x)

; we want x to be short ; lattice reduction
12 / 31

What is a (Euclidean) lattice?

Definition
L(b1, . . . ,bn) =

{∑n
i=1 xibi : xi ∈ Z

}
where b1, . . . ,bn is a basis of Rn.

b1

b2

O

13 / 31

Lattice-based cryptography: fundamental idea

O

▶ good basis: private information, makes problem easy
▶ bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one
Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

14 / 31

Lattice-based cryptography: fundamental idea

O

▶ good basis: private information, makes problem easy
▶ bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one
Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

14 / 31

An important optimization

We are chaining two reductions:
▶ b′ = b − Affts̃fft comes from search to decision reduction
▶ x1, . . . , xN is a list of dual vectors
▶ αj = xj

T b′ comes from uniform/LWE to uniform/Gaussian red.

To distinguish between unidimensional uniform/Gaussian, we compute

F (s̃fft) =
N∑

j=1

e
2iπ
q αj

=
N∑

j=1

e
2iπ
q xj

T (b−Affts̃fft) =
N∑

j=1

e
2iπ
q xj

T b · e−
2iπ
q xj

T Affts̃fft

and we want to find s̃fft such that ℜ(F (s̃fft)) > threshold

15 / 31

An important optimization

We are chaining two reductions:
▶ b′ = b − Affts̃fft comes from search to decision reduction
▶ x1, . . . , xN is a list of dual vectors
▶ αj = xj

T b′ comes from uniform/LWE to uniform/Gaussian red.

To distinguish between unidimensional uniform/Gaussian, we compute

F (s̃fft) =
N∑

j=1

e
2iπ
q αj =

N∑
j=1

e
2iπ
q xj

T (b−Affts̃fft) =
N∑

j=1

e
2iπ
q xj

T b · e−
2iπ
q xj

T Affts̃fft

and we want to find s̃fft such that ℜ(F (s̃fft)) > threshold

15 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

Naive complexity:
O(qkfft · N)

Classical algorithm with optimisation:

▶ T ← kfft-dimensional array set to zero
▶ T [xj]← T [xj] + wj for all j

▶ compute FFT T̂ of T (Fact: T̂ [s] = F (s))
▶ check all T̂ [s] against threshold

Complexity:

array filling time + FFT time + search time = Õ(N + qkfft)

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

Naive complexity:
O(qkfft · N)

Classical algorithm with optimisation:

▶ T ← kfft-dimensional array set to zero
▶ T [xj]← T [xj] + wj for all j

▶ compute FFT T̂ of T (Fact: T̂ [s] = F (s))
▶ check all T̂ [s] against threshold

Complexity:

array filling time + FFT time + search time = Õ(N + qkfft)

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

Naive complexity:
O(qkfft · N)

Classical algorithm with optimisation:

▶ T ← kfft-dimensional array set to zero
▶ T [xj]← T [xj] + wj for all j

▶ compute FFT T̂ of T (Fact: T̂ [s] = F (s))
▶ check all T̂ [s] against threshold

Complexity:

array filling time + FFT time + search time = Õ(N + qkfft)

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

What about quantum? initial idea: use the QFT

▶ create superposition

▶ impossible without QRAM?

ψ =
1
Z

∑N

j=1
wj

∣∣xj
〉

▶ apply QFT to get

▶ polynomial time

ψ̂ =
1
Z

∑
s∈Zk

q
F (s) |s⟩

▶ check if any amplitude in the superposition is above the threshold

▶ extremely expensive?

Open question: can this approach be made efficient?

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

What about quantum? initial idea: use the QFT
▶ create superposition

▶ impossible without QRAM?

ψ =
1
Z

∑N

j=1
wj

∣∣xj
〉

▶ apply QFT to get

▶ polynomial time

ψ̂ =
1
Z

∑
s∈Zk

q
F (s) |s⟩

▶ check if any amplitude in the superposition is above the threshold

▶ extremely expensive?

Open question: can this approach be made efficient?

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

What about quantum? initial idea: use the QFT
▶ create superposition

▶ impossible without QRAM?

ψ =
1
Z

∑N

j=1
wj

∣∣xj
〉

▶ apply QFT to get

▶ polynomial time

ψ̂ =
1
Z

∑
s∈Zk

q
F (s) |s⟩

▶ check if any amplitude in the superposition is above the threshold

▶ extremely expensive?

Open question: can this approach be made efficient?

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

What about quantum? initial idea: use the QFT
▶ create superposition

▶ impossible without QRAM?

ψ =
1
Z

∑N

j=1
wj

∣∣xj
〉

▶ apply QFT to get

▶ polynomial time

ψ̂ =
1
Z

∑
s∈Zk

q
F (s) |s⟩

▶ check if any amplitude in the superposition is above the threshold

▶ extremely expensive?

Open question: can this approach be made efficient?

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

What about quantum? initial idea: use the QFT
▶ create superposition ▶ impossible without QRAM?

ψ =
1
Z

∑N

j=1
wj

∣∣xj
〉

▶ apply QFT to get

▶ polynomial time

ψ̂ =
1
Z

∑
s∈Zk

q
F (s) |s⟩

▶ check if any amplitude in the superposition is above the threshold

▶ extremely expensive?

Open question: can this approach be made efficient?

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

What about quantum? initial idea: use the QFT
▶ create superposition ▶ impossible without QRAM?

ψ =
1
Z

∑N

j=1
wj

∣∣xj
〉

▶ apply QFT to get ▶ polynomial time

ψ̂ =
1
Z

∑
s∈Zk

q
F (s) |s⟩

▶ check if any amplitude in the superposition is above the threshold

▶ extremely expensive?

Open question: can this approach be made efficient?

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

What about quantum? initial idea: use the QFT
▶ create superposition ▶ impossible without QRAM?

ψ =
1
Z

∑N

j=1
wj

∣∣xj
〉

▶ apply QFT to get ▶ polynomial time

ψ̂ =
1
Z

∑
s∈Zk

q
F (s) |s⟩

▶ check if any amplitude in the superposition is above the threshold
▶ extremely expensive?

Open question: can this approach be made efficient?

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

Alternative quantum algorithm:
▶ search over s ∈ Zkfft

q with Grover
▶ compute F (s) and check against threshold

Complexity: O(
√

qkfft · N) ▶ worse than classical unless N <
√

qkfft

▶ we can do better with a QRAM

Theorem (Simplified)

There is a quantum algorithm that computes F (s)± ε given oracle
access by making O(1/ε) queries to OX :

OX : |j⟩ |0⟩ → |j⟩
∣∣xj

〉
.

How can we build such an oracle? ; QRAM

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

Alternative quantum algorithm:
▶ search over s ∈ Zkfft

q with Grover
▶ compute F (s) and check against threshold

Complexity: O(
√

qkfft · N) ▶ worse than classical unless N <
√

qkfft

▶ we can do better with a QRAM

Theorem (Simplified)

There is a quantum algorithm that computes F (s)± ε given oracle
access by making O(1/ε) queries to OX :

OX : |j⟩ |0⟩ → |j⟩
∣∣xj

〉
.

How can we build such an oracle? ; QRAM

16 / 31

FFT search with threshold

Problem: given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ find s ∈ Zkfft
q s.t. ℜ(F (s)) > δ where F (s) =

∑N

j=1
wj · e−2iπxj

T s/q

Alternative quantum algorithm:
▶ search over s ∈ Zkfft

q with Grover
▶ compute F (s) and check against threshold

Complexity: O(
√

qkfft · N) ▶ worse than classical unless N <
√

qkfft

▶ we can do better with a QRAM

Theorem (Simplified)

There is a quantum algorithm that computes F (s)± ε given oracle
access by making O(1/ε) queries to OX :

OX : |j⟩ |0⟩ → |j⟩
∣∣xj

〉
.

How can we build such an oracle? ; QRAM
16 / 31

Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i⟩
|y⟩
xn

...

x1

|y ⊕ xi⟩
|i⟩

potentially strong assumption

plain

i
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩

standard

QRAQM

|i⟩
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩
|i⟩

strong assumption

Assumption: O(1) time cost
17 / 31

Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i⟩
|y⟩
xn

...

x1

|y ⊕ xi⟩
|i⟩

potentially strong assumption

plain

i
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩

standard

QRAQM

|i⟩
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩
|i⟩

strong assumption

Assumption: O(1) time cost
17 / 31

Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i⟩
|y⟩
xn

...

x1

|y ⊕ xi⟩
|i⟩

potentially strong assumption

plain

i
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩

standard

QRAQM

|i⟩
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩
|i⟩

strong assumption

Assumption: O(1) time cost
17 / 31

Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i⟩
|y⟩
xn

...

x1

|y ⊕ xi⟩
|i⟩

potentially strong assumption

plain

i
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩

standard

QRAQM

|i⟩
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩
|i⟩

strong assumption

Assumption: O(1) time cost
17 / 31

FFT search with threshold (quantum)

Given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ put (xj ,wj) in a QRAM OX

▶ search over s ∈ Zk
q with Grover

▶ compute F (s) using theorem with OX and check against threshold δ

Theorem (Simplified)

There is a quantum algorithm that computes F (s)± ε given oracle
access by making O(1/ε) queries to OX .

What about ε? For dual attacks: ε = Ω(1/
√

N)

Quantum complexity

O(
√

qkfft · N)

Classical complexity

O(qkfft + N)

▶ quantum never worse than classical
▶ gain when N ≪ qkfft or N ≫ qkfft

18 / 31

FFT search with threshold (quantum)

Given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ put (xj ,wj) in a QRAM OX

▶ search over s ∈ Zk
q with Grover

▶ compute F (s) using theorem with OX and check against threshold δ

Theorem (Simplified)

There is a quantum algorithm that computes F (s)± ε given oracle
access by making O(1/ε) queries to OX .

What about ε?

For dual attacks: ε = Ω(1/
√

N)

Quantum complexity

O(
√

qkfft · N)

Classical complexity

O(qkfft + N)

▶ quantum never worse than classical
▶ gain when N ≪ qkfft or N ≫ qkfft

18 / 31

FFT search with threshold (quantum)

Given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ put (xj ,wj) in a QRAM OX

▶ search over s ∈ Zk
q with Grover

▶ compute F (s) using theorem with OX and check against threshold δ

Theorem (Simplified)

There is a quantum algorithm that computes F (s)± ε given oracle
access by making O(1/ε) queries to OX .

What about ε? For dual attacks: ε = Ω(1/
√

N)

Quantum complexity

O(
√

qkfft · N)

Classical complexity

O(qkfft + N)

▶ quantum never worse than classical
▶ gain when N ≪ qkfft or N ≫ qkfft

18 / 31

FFT search with threshold (quantum)

Given (x1,w1), . . . , (xN ,wN) ∈ Zkfft
q ×C with N large and δ > 0

▶ put (xj ,wj) in a QRAM OX

▶ search over s ∈ Zk
q with Grover

▶ compute F (s) using theorem with OX and check against threshold δ

Theorem (Simplified)

There is a quantum algorithm that computes F (s)± ε given oracle
access by making O(1/ε) queries to OX .

What about ε? For dual attacks: ε = Ω(1/
√

N)

Quantum complexity

O(
√

qkfft · N)

Classical complexity

O(qkfft + N)

▶ quantum never worse than classical
▶ gain when N ≪ qkfft or N ≫ qkfft

18 / 31

Dual attack: summary

▶ split secret n = kfft + klat

▶ compute many dual vectors x
▶ find s̃fft using FFT/quantum mean estimation

Pick x short in lattice L using BKZ:

L =
{

x ∈ Zm : xT Alat = 0 mod q
}

Complexity estimate:

qkfft + e
4
(
π∥x∥σe

q

)2

+ TBKZ

Classical

√
qkffte

4
(
π∥x∥σe

q

)2

+ TBKZ

Quantum with QRAM

▶ BKZ trade-off: short x ; more expensive algorithm
▶ best dual attack parameters (kfft, ...) found by optimization

19 / 31

Dual attack: summary

▶ split secret n = kfft + klat

▶ compute many dual vectors x
▶ find s̃fft using FFT/quantum mean estimation

Pick x short in lattice L using BKZ:

L =
{

x ∈ Zm : xT Alat = 0 mod q
}

Complexity estimate:

qkfft + e
4
(
π∥x∥σe

q

)2

+ TBKZ

Classical

√
qkffte

4
(
π∥x∥σe

q

)2

+ TBKZ

Quantum with QRAM

▶ BKZ trade-off: short x ; more expensive algorithm
▶ best dual attack parameters (kfft, ...) found by optimization

19 / 31

Dual attack: summary

▶ split secret n = kfft + klat

▶ compute many dual vectors x
▶ find s̃fft using FFT/quantum mean estimation

Pick x short in lattice L using BKZ:

L =
{

x ∈ Zm : xT Alat = 0 mod q
}

Complexity estimate:

qkfft + e
4
(
π∥x∥σe

q

)2

+ TBKZ

Classical

√
qkffte

4
(
π∥x∥σe

q

)2

+ TBKZ

Quantum with QRAM

▶ BKZ trade-off: short x ; more expensive algorithm
▶ best dual attack parameters (kfft, ...) found by optimization

19 / 31

Advanced dual attacks

Modulus switching: only guess part of secret modulo p (p ≪ q)
▶ reduce guessing complexity
▶ increase distinguishing cost due to modulo remainders
▶ makes reduced secret dense

Hybrid attack: split secret into three parts
▶ senum: brute force enumeration by decreasing probability
▶ sfft: guess by FFT
▶ slat: removed by dual attack

BKZ with sieving
▶ obtain many dual vectors at once
▶ reducing the number of BKZ reductions

20 / 31

Advanced dual attacks

Modulus switching: only guess part of secret modulo p (p ≪ q)
▶ reduce guessing complexity
▶ increase distinguishing cost due to modulo remainders
▶ makes reduced secret dense

Hybrid attack: split secret into three parts
▶ senum: brute force enumeration by decreasing probability
▶ sfft: guess by FFT
▶ slat: removed by dual attack

BKZ with sieving
▶ obtain many dual vectors at once
▶ reducing the number of BKZ reductions

20 / 31

Advanced dual attacks

Modulus switching: only guess part of secret modulo p (p ≪ q)
▶ reduce guessing complexity
▶ increase distinguishing cost due to modulo remainders
▶ makes reduced secret dense

Hybrid attack: split secret into three parts
▶ senum: brute force enumeration by decreasing probability
▶ sfft: guess by FFT
▶ slat: removed by dual attack

BKZ with sieving
▶ obtain many dual vectors at once
▶ reducing the number of BKZ reductions

20 / 31

Hybrid dual attack

Combine enumeration with dual attack:

▶ enumerate senum ∈ Zkenum
q sampled from χkenum

s

▶ enumerate all sfft ∈ Zkfft
p uniform in Zkfft

p
▶ compute a DFT-like sum
▶ check if it is above the threshold

▶ guessing complexity: try senum in decreasing order of probability
▶ FFT: compute all DFT-sums in one go with a FFT
▶ dual vectors: compute them once, reuse for all senum

Gain: reduce klat ; decrease BKZ cost

21 / 31

Hybrid dual attack

Combine enumeration with dual attack:

▶ enumerate senum ∈ Zkenum
q sampled from χkenum

s

▶ enumerate all sfft ∈ Zkfft
p uniform in Zkfft

p
▶ compute a DFT-like sum
▶ check if it is above the threshold

▶ guessing complexity: try senum in decreasing order of probability
▶ FFT: compute all DFT-sums in one go with a FFT
▶ dual vectors: compute them once, reuse for all senum

Gain: reduce klat ; decrease BKZ cost

21 / 31

Hybrid dual attack

Combine enumeration with dual attack:

▶ enumerate senum ∈ Zkenum
q sampled from χkenum

s

▶ enumerate all sfft ∈ Zkfft
p uniform in Zkfft

p
▶ compute a DFT-like sum
▶ check if it is above the threshold

▶ guessing complexity: try senum in decreasing order of probability
▶ FFT: compute all DFT-sums in one go with a FFT
▶ dual vectors: compute them once, reuse for all senum

Gain: reduce klat ; decrease BKZ cost

Classical:

G(χkenum
s) ·

pkfft + e
4
(
π∥x∥σe

q

)2
+ TBKZ

21 / 31

Hybrid dual attack

Combine enumeration with dual attack:

▶ enumerate senum ∈ Zkenum
q sampled from χkenum

s

▶ enumerate all sfft ∈ Zkfft
p uniform in Zkfft

p
▶ compute a DFT-like sum
▶ check if it is above the threshold

▶ guessing complexity: try senum in decreasing order of probability
▶ FFT: compute all DFT-sums in one go with a FFT
▶ dual vectors: compute them once, reuse for all senum

Gain: reduce klat ; decrease BKZ cost

Quantum with QRAM:

Gqc(χkenum
s) ·

√
pkfft · e

4
(
π∥x∥σe

q

)2

+ TBKZ

21 / 31

Dual attack cost estimates (logarithms to base two)
Classical Quantum Our work

Scheme CC CN C0 QN Q0 QN Q0
Kyber 512 139.2 134.4 115.4 124.4 102.7 119.3 99.6
Kyber 768 196.1 190.6 173.7 175.3 154.6 168.2 149.8
Kyber 1024 262.4 256.1 241.8 234.5 215.0 226.0 208.5
LightSaber 138.5 133.1 113.7 122.7 101.1 118.6 98.5
Saber 201.4 195.9 179.2 179.9 159.4 175.6 155.7
FireSaber 263.5 258.2 243.8 235.9 216.7 228.3 210.7
TFHE630 118.2 113.3 93.0 105.2 83.0 102.6 81.6
TFHE1024 122.0 117.2 95.4 108.5 84.8 106.6 83.5
▶ QN: quantum version of CN
▶ Q0: quantum version of C0
▶ CC: classical circuit model (most detailed)
▶ CN: intermediate model
▶ C0: Core-SVP model (very pessimistic)

22 / 31

Recall: split secret + dual vector

Combine: split secret

b

=

A

×

s

+

e

=

Afft

Afft

×

sfft

+

Alat

Alat

×

slat

+

e

23 / 31

Recall: split secret + dual vector

Combine: split secret

b

=

A

×

s

+

e

=

Afft

Afft

×

sfft

+

Alat

Alat

×

slat

+

e

With: dual vector x such that xT Alat = 0

xT × b = xT × Afft × sfft + xT × e

23 / 31

Fundamental equation of dual attack

▶ split secret, find (x , y) such that xT Alat = 0 and yT = xT Afft

▶ guess secret s̃ and subtract

xT × b = yT × sfft + xT × e

Good guess (sfft = s̃fft):

xT e

follows a discrete Gaussian of
small deviation (depends on ∥x∥)

Bad guess (sfft ̸= s̃fft):

yT (sfft − s̃fft) + xT e

follows a uniform distribution
(y ≈ uniform in Zkfft

q)

Problem: cost of distinguishing grows as qkfft

; can we change to a modulo p ≪ q to reduce the cost?

24 / 31

Fundamental equation of dual attack

▶ split secret, find (x , y) such that xT Alat = 0 and yT = xT Afft

▶ guess secret s̃ and subtract

xT × b − yT × s̃fft = yT ×
(

sfft − s̃fft

)
+ xT × e

Good guess (sfft = s̃fft):

xT e

follows a discrete Gaussian of
small deviation (depends on ∥x∥)

Bad guess (sfft ̸= s̃fft):

yT (sfft − s̃fft) + xT e

follows a uniform distribution
(y ≈ uniform in Zkfft

q)

Problem: cost of distinguishing grows as qkfft

; can we change to a modulo p ≪ q to reduce the cost?

24 / 31

Fundamental equation of dual attack

▶ split secret, find (x , y) such that xT Alat = 0 and yT = xT Afft

▶ guess secret s̃ and subtract

xT × b − yT × s̃fft = yT ×
(

sfft − s̃fft

)
+ xT × e

Good guess (sfft = s̃fft):

xT e

follows a discrete Gaussian of
small deviation (depends on ∥x∥)

Bad guess (sfft ̸= s̃fft):

yT (sfft − s̃fft) + xT e

follows a uniform distribution
(y ≈ uniform in Zkfft

q)

Problem: cost of distinguishing grows as qkfft

; can we change to a modulo p ≪ q to reduce the cost?

24 / 31

Fundamental equation of dual attack

▶ split secret, find (x , y) such that xT Alat = 0 and yT = xT Afft

▶ guess secret s̃ and subtract

xT × b − yT × s̃fft = yT ×
(

sfft − s̃fft

)
+ xT × e

Good guess (sfft = s̃fft):

xT e

follows a discrete Gaussian of
small deviation (depends on ∥x∥)

Bad guess (sfft ̸= s̃fft):

yT (sfft − s̃fft) + xT e

follows a uniform distribution
(y ≈ uniform in Zkfft

q)

Problem: cost of distinguishing grows as qkfft

; can we change to a modulo p ≪ q to reduce the cost?

24 / 31

Fundamental equation of dual attack

▶ split secret, find (x , y) such that xT Alat = 0 and yT = xT Afft

▶ guess secret s̃ and subtract

xT × b − yT × s̃fft = yT ×
(

sfft − s̃fft

)
+ xT × e

Good guess (sfft = s̃fft):

xT e

follows a discrete Gaussian of
small deviation (depends on ∥x∥)

Bad guess (sfft ̸= s̃fft):

yT (sfft − s̃fft) + xT e

follows a uniform distribution
(y ≈ uniform in Zkfft

q)

Problem: cost of distinguishing grows as qkfft

; can we change to a modulo p ≪ q to reduce the cost?
24 / 31

Modulus switching from a high level

Let p < q, write
py = qu + t

where u ∈ Zklat
p and t ∈ Zklat

q .

Then

p xT · b − q uT · s̃fft = q uT ·
(

sfft − s̃fft

)
+ ε

where ε = tT · sfft + p xT · e

This is a trade-off (details omitted):
▶ only need to guess sfft mod p: FFT over Zkfft

p instead of Zkfft
q

▶ the error ε has increased: the number of samples increases

from 4
(
π∥x∥σe

q

)2
to 4

(
π∥x∥σe

q

)2
+ 1

3

(
π∥sfft∥q

p

)2

25 / 31

Modulus switching from a high level

Let p < q, write
py = qu + t

where u ∈ Zklat
p and t ∈ Zklat

q . Then

p xT · b − q uT · s̃fft = q uT ·
(

sfft − s̃fft

)
+ ε

where ε = tT · sfft + p xT · e

This is a trade-off (details omitted):
▶ only need to guess sfft mod p: FFT over Zkfft

p instead of Zkfft
q

▶ the error ε has increased: the number of samples increases

from 4
(
π∥x∥σe

q

)2
to 4

(
π∥x∥σe

q

)2
+ 1

3

(
π∥sfft∥q

p

)2

25 / 31

Modulus switching from a high level

Let p < q, write
py = qu + t

where u ∈ Zklat
p and t ∈ Zklat

q . Then

p xT · b − q uT · s̃fft = q uT ·
(

sfft − s̃fft

)
+ ε

where ε = tT · sfft + p xT · e

This is a trade-off (details omitted):
▶ only need to guess sfft mod p: FFT over Zkfft

p instead of Zkfft
q

▶ the error ε has increased: the number of samples increases

from 4
(
π∥x∥σe

q

)2
to 4

(
π∥x∥σe

q

)2
+ 1

3

(
π∥sfft∥q

p

)2

25 / 31

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Modulus switching: approximate a vector y ∈ Zn
q by

y = q
p · [

p
q y] + q

p{
p
q y} = q

p · u + t

▶ u ∈ Zn
p: smaller domain (field is smaller)

▶ ∥t∥ ⩽ q
p : “small error”

Our observation: this looks like a special case of lattice codes

y = Gu + t

▶ G ∈ Zn×k
q : defines a code

▶ u ∈ Zk
q: smaller domain (dimension is smaller)

▶ ∥t∥ is small (depends on G)

26 / 31

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Modulus switching: approximate a vector y ∈ Zn
q by

y = q
p · [

p
q y] + q

p{
p
q y} = q

p · u + t

▶ u ∈ Zn
p: smaller domain (field is smaller)

▶ ∥t∥ ⩽ q
p : “small error”

Our observation: this looks like a special case of lattice codes

y = Gu + t

▶ G ∈ Zn×k
q : defines a code

▶ u ∈ Zk
q: smaller domain (dimension is smaller)

▶ ∥t∥ is small (depends on G)

26 / 31

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Modulus switching: approximate a vector y ∈ Zn
q by

y = q
p · [

p
q y] + q

p{
p
q y} = q

p · u + t

▶ u ∈ Zn
p: smaller domain (field is smaller)

▶ ∥t∥ ⩽ q
p : “small error”

Our observation: this looks like a special case of lattice codes

y = Gu + t

▶ G ∈ Zn×k
q : defines a code

▶ u ∈ Zk
q: smaller domain (dimension is smaller)

▶ ∥t∥ is small (depends on G)

26 / 31

Applying lattice codes

Recall: find (x , y) such that xT Alat = 0 and yT = xT Afft

xT × b = yT × sfft + xT × e

Choose a code G ∈ Zkfft×kcod
q , decode y as

y = G
× u +

t

New fundamental equation:

xT · b = uT · GT · sfft + tT · sfft + xT · e

27 / 31

Applying lattice codes

Recall: find (x , y) such that xT Alat = 0 and yT = xT Afft

xT × b = yT × sfft + xT × e

Choose a code G ∈ Zkfft×kcod
q , decode y as

y = G
× u +

t

New fundamental equation:

xT · b = uT · GT · sfft + tT · sfft + xT · e

27 / 31

Applying lattice codes

Recall: find (x , y) such that xT Alat = 0 and yT = xT Afft

xT × b = yT × sfft + xT × e

Choose a code G ∈ Zkfft×kcod
q , decode y as

y = G
× u +

t

New fundamental equation:

xT · b = uT · GT · sfft + tT · sfft + xT · e

27 / 31

Lattice codes: fundamental equation
▶ find (x , y) such that xT Alat = 0 and yT = xT Afft
▶ choose a code G ∈ Zkfft×kcod

q , decode y = Gu + t

xT · b = uT · GT · sfft + tT · sfft + xT · e

Observations:
▶ we directly guess scod instead of sfft
▶ scod = GT sfft ∈ Zkcod

q has smaller dimension kcod ≪ kfft

▶ ε′ = tT sfft + xT e follows a discrete Gaussian whose deviation
depends on ∥x∥, ∥sfft∥, ∥e∥ and ∥t∥

▶ ∥t∥ is small for a good code G

28 / 31

Lattice codes: fundamental equation
▶ find (x , y) such that xT Alat = 0 and yT = xT Afft
▶ choose a code G ∈ Zkfft×kcod

q , decode y = Gu + t

xT · b = uT · scod + ε′

where

scod = GT · sfft ε′ = tT · sfft + xT · e

Observations:
▶ we directly guess scod instead of sfft
▶ scod = GT sfft ∈ Zkcod

q has smaller dimension kcod ≪ kfft

▶ ε′ = tT sfft + xT e follows a discrete Gaussian whose deviation
depends on ∥x∥, ∥sfft∥, ∥e∥ and ∥t∥

▶ ∥t∥ is small for a good code G

28 / 31

Lattice codes: fundamental equation
▶ find (x , y) such that xT Alat = 0 and yT = xT Afft
▶ choose a code G ∈ Zkfft×kcod

q , decode y = Gu + t

xT · b = uT · scod + ε′

where

scod = GT · sfft ε′ = tT · sfft + xT · e

Observations:
▶ we directly guess scod instead of sfft
▶ scod = GT sfft ∈ Zkcod

q has smaller dimension kcod ≪ kfft

▶ ε′ = tT sfft + xT e follows a discrete Gaussian whose deviation
depends on ∥x∥, ∥sfft∥, ∥e∥ and ∥t∥

▶ ∥t∥ is small for a good code G

28 / 31

Lattice codes: fundamental equation
▶ find (x , y) such that xT Alat = 0 and yT = xT Afft
▶ choose a code G ∈ Zkfft×kcod

q , decode y = Gu + t

xT · b = uT · scod + ε′

where

scod = GT · sfft ε′ = tT · sfft + xT · e

Observations:
▶ we directly guess scod instead of sfft
▶ scod = GT sfft ∈ Zkcod

q has smaller dimension kcod ≪ kfft

▶ ε′ = tT sfft + xT e follows a discrete Gaussian whose deviation
depends on ∥x∥, ∥sfft∥, ∥e∥ and ∥t∥

▶ ∥t∥ is small for a good code G
28 / 31

Lattice codes vs modulo switching
Lattice codes

xT · b = uT · scod + ε′

▶ FFT cost: qkcod

▶ error ε′: Gaussian of stddev

τ2
LC = ∥x∥2 · σ2

e + ∥sfft∥2 · q
2−2

kcod
kfft

2πe

for an asymptotically optimal code

Modulus switching

xT · b =
[

p
q yT

]
· sfft + ε modp

▶ FFT cost: pkfft

▶ error ε: Gaussian of stddev

τ2
MS = ∥x∥2 · σ2

e + ∥sfft∥2 · q2

12p2

Comparison for same FFT cost: qkcod = pkfft

q
2−2

kcod
kfft

2πe = q
2πep ≈

q
17p ≪

q
12p

; lattice codes are always better than modulo switching!

29 / 31

Lattice codes vs modulo switching
Lattice codes

xT · b = uT · scod + ε′

▶ FFT cost: qkcod

▶ error ε′: Gaussian of stddev

τ2
LC = ∥x∥2 · σ2

e + ∥sfft∥2 · q
2−2

kcod
kfft

2πe

for an asymptotically optimal code

Modulus switching

xT · b =
[

p
q yT

]
· sfft + ε modp

▶ FFT cost: pkfft

▶ error ε: Gaussian of stddev

τ2
MS = ∥x∥2 · σ2

e + ∥sfft∥2 · q2

12p2

Comparison for same FFT cost: qkcod = pkfft

q
2−2

kcod
kfft

2πe = q
2πep ≈

q
17p ≪

q
12p

; lattice codes are always better than modulo switching!

29 / 31

Lattice codes vs modulo switching
Lattice codes

xT · b = uT · scod + ε′

▶ FFT cost: qkcod

▶ error ε′: Gaussian of stddev

τ2
LC = ∥x∥2 · σ2

e + ∥sfft∥2 · q
2−2

kcod
kfft

2πe

for an asymptotically optimal code

Modulus switching

xT · b =
[

p
q yT

]
· sfft + ε modp

▶ FFT cost: pkfft

▶ error ε: Gaussian of stddev

τ2
MS = ∥x∥2 · σ2

e + ∥sfft∥2 · q2

12p2

Comparison for same FFT cost: qkcod = pkfft

q
2−2

kcod
kfft

2πe = q
2πep ≈

q
17p ≪

q
12p

; lattice codes are always better than modulo switching!
29 / 31

Other important details

▶ FFT is more efficient for powers of two
▶ qkcod has coarse granularity for big q

; use modulo switching to change q to p = 2m then use lattice codes:
best of both, allow more “continuous” parameter choice

▶ optimal codes are expensive but we need a fast decoder
▶ we only need to decode to a close codeword, not the closest

; we suggest to use polar codes which are asymptotically optimal

▶ many parameters to choose (p, kfft, kcod, BKZ block size, ...)
▶ no obvious way to choose them

; search for optimal parameters with an optimisation program

30 / 31

Other important details

▶ FFT is more efficient for powers of two
▶ qkcod has coarse granularity for big q

; use modulo switching to change q to p = 2m then use lattice codes:
best of both, allow more “continuous” parameter choice

▶ optimal codes are expensive but we need a fast decoder
▶ we only need to decode to a close codeword, not the closest

; we suggest to use polar codes which are asymptotically optimal

▶ many parameters to choose (p, kfft, kcod, BKZ block size, ...)
▶ no obvious way to choose them

; search for optimal parameters with an optimisation program

30 / 31

Other important details

▶ FFT is more efficient for powers of two
▶ qkcod has coarse granularity for big q

; use modulo switching to change q to p = 2m then use lattice codes:
best of both, allow more “continuous” parameter choice

▶ optimal codes are expensive but we need a fast decoder
▶ we only need to decode to a close codeword, not the closest

; we suggest to use polar codes which are asymptotically optimal

▶ many parameters to choose (p, kfft, kcod, BKZ block size, ...)
▶ no obvious way to choose them

; search for optimal parameters with an optimisation program

30 / 31

Results

▶ CC: classical circuit model (most detailed cost)
▶ CN: intermediate model
▶ C0: “Core-SVP” cost model

MATZOV Ours
Scheme CC CN C0 CC CN C0
Kyber 512 138.5 133.7 114.8 137.8 133.0 114.0
Kyber 768 195.7 190.4 173.1 192.5 187.2 170.2
Kyber 1024 261.4 255.4 240.7 256.2 250.5 235.7
LightSaber 137.1 132.3 113.1 136.8 131.5 112.3
Saber 201.1 195.1 178.3 199.7 194.9 177.0
FireSaber 263.6 257.7 242.8 259.9 254.4 239.4

▶ 1 to 5 bit gain over MATZOV
▶ further 1 bit gain with Prange bet (not in the talk)

31 / 31

