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Learning with errors (LWE)
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Learning with errors (LWE)

Letn=4, m=6and g=17.
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Given A and b, find s.

~ Very easy (e.g. Gaussian elimination) and in polynomial time



Learning with errors (LWE)

Letn=4, m=6and g=17.
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Learning with errors (LWE)

Letn=4, m=6and g=17.
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Given A and

, find s.

~ Suspected hard problem, even for quantum algorithms



Learning with errors (LWE)

Let n,m, g € Z and xe, xs two distributions over Zg.
LWE(n, m, g, xe, xs): probability distribution on Zg™" x Zg'
> sample A < U(Zg™")
> sample s « x§
> sample e < xJ
> output (A, As + e).

Intuition: As + e is very close to a uniform distribution.

/31



Learning with errors (LWE)

Let n,m, g € Z and xe, xs two distributions over Zg.
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> sample A < U(Zg™")
> sample s « x§
> sample e < xJ
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distinguish LWE(n, m, g, xe, xs) from U(Zg™" x Zg).



Learning with errors (LWE)

Let n,m, g € Z and xe, xs two distributions over Zg.
LWE(n, m, g, xe, xs): probability distribution on Zg™" x Zg'
> sample A < U(Zg™")
> sample s < x4
> sample e < xJ
> output (A, As + e).

Intuition: As + e is very close to a uniform distribution.
Search LWE problem: given (A, b) <+ LWE(n, m, q, xe, xs), recover s.

Decision LWE problem:
distinguish LWE(n, m, g, xe, xs) from U(Zg™" x Zg).

Lemma: Search LWE is easy if and only if decision LWE is easy.



Learning with errors (LWE)

LWE(n, m, g, xe, xs): probability distribution on Zg™" x Zg
> sample A < U(Zg™")
> sample s « x4
> sample e < x7
> output (A, As + e).



Learning with errors (LWE)

LWE(n, m, q, xe, xs): probability distribution on ZZ’X” X Zg’
> sample A < U(Zg™")
> sample s « x4
> sample e < x7
> output (A, As + e).

Secret distributions xs:

» originally uniform in Zq, now some distribution of small deviation
os (e.g. discrete Gaussian/centered Binormial, {—1,0,1} whp)

» Fact: small secret is as hard as uniform secret
» small secret allows more efficient schemes



Learning with errors (LWE)

LWE(n, m, g, xe, xs): probability distribution on Zg™" x Zg
> sample A < U(Zg™")
> sample s « x4
> sample e < x7
> output (A, As + e).

Noise distributions xe:
» usually discrete Gaussian/centered Binormial of deviation o¢
» most schemes (Kyber/Saber/...): e small (= 1)



LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
» several lattice-based NIST PQC candidates rely on LWE
> extensive literature
» all evidence points to resistance against quantum attacks



LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
» several lattice-based NIST PQC candidates rely on LWE
> extensive literature
» all evidence points to resistance against quantum attacks

Two types of attacks:
» Primal attacks:
» more efficient in most cases
> no quantum speed-up known (besides BKZ)
» Dual attacks:

> originally less efficient, now catching up
> no quantum speed-up known (besides BKZ) up to now

Contributions:
» first quantum speed-up on dual attacks
» improvement on dual attacks using ideas from codes



Search to distinguish

Very naive attack:
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Very naive attack:

e
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Search to distinguish

Very naive attack:

e
8 [9[10]12 7] Attack:
53113>< n _|2] > get (4, 0)
0 [15]10] 4 3] > quess
15| 9 [16]15 15
1]2]10] 8 1] > output o = 0 —
11[16]13] 9 8]

Good guess (s = 9):
=e

follows a discrete Gaussian
of small deviation



Search to distinguish

Very naive attack:

e

8|9 l10]/12 Z Attack:
S[3[11]8] n _|2] > get (4, 0)
0(15(10{ 4 3 > guess
15[ 9 [16[15 15,
1[2[10]8 1] > output o = 0 —
11[16[13] 9 18
Good guess (s = 9): Bad guess (s # ):

e = e+ A(s—5)
follows a discrete Gaussian follows a uniform! distribution
of small deviation (/ uniform in Zg™")

"Technically only true for fixed s, random / and



Uniform/Gaussian distinguisher

Given a sampler for x, decide if x = U(Zq) or Dy 4 (discrete
Gaussian)



Uniform/Gaussian distinguisher

Given a sampler for x, decide if x = U(Zq) or Dy 4 (discrete
Gaussian)

The entries are independent: given a sample from x” we obtain m

independent samples from y.
~ if m large enough, we know how to distinguish.
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Uniform/Gaussian distinguisher

Given a sampler for x, decide if x = U(Zq) or D, 4 (discrete Gaussian)
Essentially optimal distingusher: let Y = ®(e2/7X/9)
0 if x = U(Zg)
()
e "\4a if x=Dsgq

EX(—X[Y] ~ {



Uniform/Gaussian distinguisher

Given a sampler for x, decide if x = U(Zq) or D, 4 (discrete Gaussian)
Essentially optimal distingusher: let Y = ®(e2/7X/9)

0 if x = U(Zq)
Exey[Y] = p(z2)
e q if X = Do—Vq

Attack:
> sample N = Q (1/22) values Xy, ..., xy from x
> compute
N
Z 2/7rx,/q

o 2
> Checkif § > Je 2(%)
2

The quantity ¢ = 972(7) is called the advantage.



Very naive attack: summary

Very naive attack:
> guess -: q" possiblities
» compute sum of 1/c2 samples to check guess
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Very naive attack: summary

Very naive attack:

> guess -: Q" possiblities

» compute sum of 1/¢2 samples to check guess
Complexity estimate:

TTOe

2
q”~e4( q ) = too much

Can do better by guessing s in decreasing order of probability:

TOe TOe

2 2
G(xs) - e!("3") < (1.22\/2?03)”-e4< 2°) = too much
where o deviation of s, G(-) = guessing complexity

"The complexity is now the expected running time
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Very naive attack: summary

Very naive attack:

> guess -: Q" possiblities

» compute sum of 1/¢2 samples to check guess
Complexity estimate:

TTOe

4 2
q"-e ( q ) = too much
Can do better by guessing s in decreasing order of probability:

TOe TOe

2 2
G(xs) - e!("3") < (1.22\/2?03)”-e4< 2°) = too much
where o deviation of s, G(-) = guessing complexity

Dual attacks: provide an efficient way to only guess a part of the secret

"The complexity is now the expected running time



Search to Decision LWE
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Search to Decision LWE

Split secret: n = kg + Kiae
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Split secret: n = kg + Kiae
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Search to Decision LWE
Split secret: n = kg + Kag , JUc55 ooy output (A, 0 =0 = Ap o)

Aric Sfft Sttt Alat Sat
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Search to Decision LWE

Split secret: n = K + Kiag »

Good guess (

E-0)-

= );
+e

so (4., ) follows an LWE

distribution

, output (4.,

1

[o[e]=][~]=]«]<]
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Search to Decision LWE

Split secret: n = kg + K , ,output (4,0 =5 — )

@0

>
=3
>
=2
[oe[~[~]e]a]o]

Good guess (si = 5i1): Bad guess (si # 5i):
= +e = ( — )+

so (/.., ") follows an LWE so (., 1) follows a uniform
distribution distribution (/. uniform)
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Uniform/LWE distinguisher

Given a sampler for y, decide if x = uniform or LWE.
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Given a sampler for y, decide if x = uniform or LWE.
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> compute x € Z7 such that x7 4 =0
> output x 7
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Uniform/LWE distinguisher

Given a sampler for y, decide if xy = uniform or LWE

» sample (/., ) from x
> compute x € Z7 such that x7 4 =0
> output x 7

<B+
[T > |bf| = ] | | Ava

= [T
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Uniform/LWE distinguisher

Given a sampler for y, decide if x = uniform or LWE.

» sample (/., ) from x
> compute x € Z7 such that x7 4 =0
> output x 7

XI+
I ||~ I | | A — I -

When y = LWE:

xTh =xTe

follows an approximate

Gaussian distribution
11/31



Uniform/LWE distinguisher

Given a sampler for y, decide if x = uniform or LWE.

» sample (/., ) from x
> compute x € Z7 such that x7 4 =0
> output x 7

XI+
T ||~ T | | A I‘—I

When y = LWE: When x = Uniform:
xTh =xTe xT
follows an approximate follows a uniform distribution (

Gaussian distribution uniform, independent from 4, )
11/31



Dual attack: naive complexity

Naive dual attack:
> split secret n = kg, + Kia
> guess -, subtract guess
» compute dual vectors x and dot products x "
» compute 1/2 samples to check guess
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> guess -, subtract guess
» compute dual vectors x and dot products x "
» compute 1/2 samples to check guess
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» e approx Gaussian deviation oe
» xT1 = xTe approx Gaussian deviation || x||oe

Complexity estimate:
|| x|[oe

2
4
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Dual attack: naive complexity

Naive dual attack:
> split secret n = kg, + Kia
> guess -, subtract guess
» compute dual vectors x and dot products x "
» compute 1/2 samples to check guess

What is ¢ ?
» e approx Gaussian deviation oe
» xT1 = xTe approx Gaussian deviation || x||oe

Complexity estimate:
|| x|[oe

2
4
gkt . e ( q ) + (time to compute many x)

~» we want x to be short ~ lattice reduction
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What is a (Euclidean) lattice?

L(by,...,by) = {3, xib;: x; € Z} where by,..., b, is abasis of R".
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Lattice-based cryptography: fundamental idea

» good basis: private information, makes problem easy

» bad basis: public information, makes problem hard
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Lattice-based cryptography: fundamental idea

..,...‘/\.T,::/wk,.

» good basis: private information, makes problem easy
» bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one
Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.
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An important optimization

We are chaining two reductions:

> =b-— comes from search to decision reduction
> xi,...,xy is a list of dual vectors
> = x;T1' comes from uniform/LWE to uniform/Gaussian red.

To distinguish between unidimensional uniform/Gaussian, we compute
N 2ir
F(o)=> ed
j=1
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An important optimization

We are chaining two reductions:

> =b-— comes from search to decision reduction
> xi,...,xy is a list of dual vectors
> = x;T1' comes from uniform/LWE to uniform/Gaussian red.

N
F( ):ZeT :Zeq (= ):ZeT e q
j=1 j=1 j=1
and we want to find = such that ®(F(-.)) > threshold

To distinguish between unidimensional uniform/Gaussian, we compute
2ir N 2ir ¢ N 2ir -

15/31



FFT search with threshold
Problem: given (i, wq), ..., (XN, Wy) € foﬁ x C with N large and 0 > 0

. Kete : _ N
> find = € Zg" s.t. R(F(=)) > 0 where F(=) = Zj:1

VVj . e—2i7‘(’XjT /q
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N .
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Naive complexity:
O(qkfft - N)
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Problem: given (i, wq), ..., (XN, Wy) € Zf{“ x C with N large and 0 > 0

. Kete : _ N
> find = € Zg" s.t. R(F(=)) > 0 where F(=) = Zj:1

VVj . e—2i7TXjT /q

Naive complexity:
O(g"" - N)
Classical algorithm with optimisation:
» T + kg-dimensional array set to zero
> T[x] < T[x]+ w; forall j
» compute FFT T of T (Fact: T[] = F(2))
> check all T[] against threshold

16/31



FFT search with threshold
Problem: given (i, wq), ..., (XN, Wy) € Zf{“ x C with N large and 0 > 0

. Kete : _ N
> find = € Zg" s.t. R(F(=)) > 0 where F(=) = Zj:1

VVj . e—2i7TXjT /q

Naive complexity:
O(qkfft - N)

Classical algorithm with optimisation:

» T + kg-dimensional array set to zero

> T[x] < T[x]+ w; forall j

> compute FFT T of T (Fact: T[] = F(*))

» check all 7’[ ] against threshold
Complexity:

array filling time + FFT time + search time = O(N + gk)
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1 N
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» apply QFT to get

I=3 Y L FOL

» check if any amplitude in the superposition is above the threshold
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FFT search with threshold
Problem: given (i, wq), ..., (XN, Wy) € Zf{“ x C with N large and 0 > 0

. Kete : _ N
> find = € Zg" s.t. R(F(=)) > 0 where F(=) = Zj:1

VVj . e—2i7TXjT /q

What about quantum? initial idea: use the QFT
> create superposition » impossible without QRAM?

1 N
=2 wl)
> apply QFT to get » polynomial time

I=3 Y L FO

» check if any amplitude in the superposition is above the threshold
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FFT search with threshold

Problem: given (i, wq), ..., (XN, Wy) € Zf{“ x C with N large and 0 > 0

N
> find < € ngft s.t. R(F(2)) > 0 where F(2) = Z

» VVJ . e—2i7TXjT /q
j=

What about quantum? initial idea: use the QFT
> create superposition » impossible without QRAM?

1 N
b=zl
> apply QFT to get » polynomial time
~ 1
b=23 PO

» check if any amplitude in the superposition is above the threshold
» extremely expensive?

Open question: can this approach be made efficient?
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FFT search with threshold

Problem: given (xq, wy), ..., (XN, Wy) € 7k« C with N large and 6 > 0
q g

. Kete : _ N
> find = € Zg" s.t. R(F(=)) > 0 where F(=) = Zj:1

VVj . e—2i7‘(’XjT /q

Alternative quantum algorithm:

> search over - € Z&" with Grover
» compute F(:) and check against threshold

Complexity: O(+/gm - N) » worse than classical unless N < 4/ gk
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FFT search with threshold

Problem: given (i, wq), ..., (XN, Wy) € Zf{“ x C with N large and 0 > 0

. Kete : _ N
> find = € Zg" s.t. R(F(=)) > 0 where F(=) = Zj:1

VVj . e—2i7TXjT /q

Alternative quantum algorithm:

> search over - € Z&" with Grover
» compute F(:) and check against threshold

Complexity: O(+/gm - N) » worse than classical unless N < 4/ gk

» we can do better with a QRAM
Theorem (Simplified)

There is a quantum algorithm that computes F () 4+ ¢ given oracle
access by making O(1/¢) queries to Ox:

Ox 1§} [0) = 1j) %) -

How can we build such an oracle? ~» QRAM
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Interlude: quantum memory models

classical access quantum access
(@)
o X{1 —
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= . [N X
S Xn— RAM i
a i —
Q9
Q

standard

e}
C
Q
=1
c
3
o
QO
Q

Assumption: O(1) time cost
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classical access quantum access
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standard

Assumption: O(1) time cost
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Interlude: quantum memory models

classical access
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standard
o X)) — — |x1)
S : :
0 : . :
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3 ly) — — |y © X;)
g i
Q

standard

Assumption: O(1) time cost

quantum access

X1 —
Xn —
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— |y @ X))
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potentially strong assumption
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Interlude: quantum memory models

classical access

g’—, X1 —
A :
&—,- Xy — RAM — X
a j —
o
Q

standard
o X)) — — [Xy)
S . .
0 : . :
= |xn) —{ plain  — |xn)
3 y) — — |y @ x)
g i
Q

standard

Assumption: O(1) time cost

quantum access

X1 —
Xn —
) —

) —

QRACM

— |y @ X))
— |i)

potentially strong assumption

|X1) —

|Xn) —f

) —

i) —

QRAQM

— 1)

s [ Xp)
— |y ©X;)
— [i)

strong assumption
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FFT search with threshold (quantum)

Given (x1,wq), ..., (xn, wy) € Z’C‘,“‘ x C with N large and 6 > 0
> put (x;, w;) ina QRAM Oy
> search over < € Z§ with Grover
» compute F(<) using theorem with Ox and check against threshold ¢

Theorem (Simplified)

There is a quantum algorithm that computes F () &+ ¢ given oracle
access by making O(1/¢) queries to Ox.
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FFT search with threshold (quantum)

Given (x1,wq), ..., (xn, wy) € Z’C‘,“‘ x C with N large and 6 > 0
> put (x;, w;) ina QRAM Oy
> search over < € Z§ with Grover
» compute F(<) using theorem with Ox and check against threshold ¢

Theorem (Simplified)

There is a quantum algorithm that computes F () &+ ¢ given oracle
access by making O(1/¢) queries to Ox.

What about ? For dual attacks: ¢ = Q(1/v/'N)

Quantum complexity

O(\/gn - N)
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FFT search with threshold (quantum)

Given (x1,wq), ..., (xn, wy) € Z’C‘,“‘ x C with N large and 6 > 0
> put (x;, w;) ina QRAM Oy
> search over < € Z§ with Grover
» compute F(<) using theorem with Ox and check against threshold ¢

Theorem (Simplified)

There is a quantum algorithm that computes F () &+ ¢ given oracle
access by making O(1/¢) queries to Ox.

What about ? For dual attacks: ¢ = Q(1/v/'N)
Quantum complexity Classical complexity

O(y/ gk - N) O(q"™ + N)

» quantum never worse than classical
> gain when N < gk or N > gfm

18/31



Dual attack: summary
> split secret n = kg + Kiae

» compute many dual vectors x
» find - using FFT/quantum mean estimation
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Dual attack: summary

> split secret n = kg + Kiar
» compute many dual vectors x
» find - using FFT/quantum mean estimation

Pick x short in lattice L using BKZ:
L:{XGZ’":XT :0modq}

Complexity estimate:

mllx]loe ) ?

gk + e4(T) + Tekz \/qkffte4(7rllx‘7%>2 + Tkz

Classical Quantum with QRAM
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Dual attack: summary

> split secret n = kg + Kiar
» compute many dual vectors x
» find - using FFT/quantum mean estimation

Pick x short in lattice L using BKZ:
L:{XGZ’":XT :0modq}

Complexity estimate:

. 4(7ruxq||oe)2 4(7ruxuae)2
g+ e + Tekz ghne q + Tekz
Classical Quantum with QRAM

» BKZ trade-off: short x ~ more expensive algorithm
» best dual attack parameters (K, ...) found by optimization
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Advanced dual attacks

Modulus switching: only guess part of secret modulo p (p < q)
» reduce guessing complexity
> increase distinguishing cost due to modulo remainders
> makes reduced secret dense
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Advanced dual attacks

Modulus switching: only guess part of secret modulo p (p < q)
» reduce guessing complexity
» increase distinguishing cost due to modulo remainders
> makes reduced secret dense

Hybrid attack: split secret into three parts
» S.num: Drute force enumeration by decreasing probability
> S guess by FFT
> s,: removed by dual attack

BKZ with sieving
» obtain many dual vectors at once
» reducing the number of BKZ reductions

20/31



Hybrid dual attack

Combine enumeration with dual attack:

> enumerate Senum € Z§™" sampled from e

> enumerate all sy, € Z" uniform in Z"

» compute a DFT-like sum
» check if it is above the threshold
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Combine enumeration with dual attack:

> enumerate Senum € Z§™" sampled from e
> enumerate all sy, € Z" uniform in Z"

» compute a DFT-like sum
» check if it is above the threshold

> guessing complexity: try Senum in decreasing order of probability
» FFT: compute all DFT-sums in one go with a FFT
» dual vectors: compute them once, reuse for all Senum

Gain: reduce ki, ~ decrease BKZ cost

Classical:
| xlloe

2
(M)
G(Xls(enum) . pkm + e q + TBKZ
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Hybrid dual attack

Combine enumeration with dual attack:

> enumerate Senum € Z§™" sampled from e
> enumerate all sy, € Z" uniform in Z"

» compute a DFT-like sum
» check if it is above the threshold

> guessing complexity: try Senum in decreasing order of probability
» FFT: compute all DFT-sums in one go with a FFT
» dual vectors: compute them once, reuse for all Senum

Gain: reduce ki, ~ decrease BKZ cost

Quantum with QRAM:

2
4 s | i |
GI°(gmm) - \/Pk‘“ e ( a9 ) + Tgkz
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Dual attack cost estimates (logarithms to base two)

Classical Quantum Our work
Scheme CC CN Co QN Qo QN Qo
Kyber 512 139.2 1344 1154 | 1244 102.7 | 119.3 99.6
Kyber 768 196.1 190.6 173.7 | 175.3 154.6 | 168.2 149.8
Kyber 1024 | 262.4 256.1 241.8 | 234.5 215.0 | 226.0 208.5
LightSaber 138.5 133.1 113.7 | 122.7 101.1 | 118.6 98.5
Saber 2014 1959 1792 | 1799 1594 | 175.6 155.7
FireSaber 263.5 258.2 243.8 | 2359 216.7 | 228.3 210.7
TFHE630 1182 113.3 93.0 | 1052 83.0 | 1026 81.6
TFHE1024 122.0 1172 954 | 1085 84.8 | 106.6 83.5

» QN: quantum version of CN

>
>
>
>

QO: quantum version of CO
CC: classical circuit model (most detailed)
CN: intermediate model
CO0: Core-SVP model (very pessimistic)
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Recall: split secret + dual vector

Combine: split secret

e Am S Alat St €
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Recall: split secret + dual vector

Combine: split secret

e Am S Alat Slat

With: dual vector x such that xT /. =
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Fundamental equation of dual attack

» split secret, find (x, y) suchthat x” 4 =0and y™ = xT

-XH-x[-xl
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Fundamental equation of dual attack

» split secret, find (x, y) suchthat x” 4 =0and y™ = xT
> guess and subtract
-XH-X-X(|)+-XI
Good guess (s = 5i1):
xTe

follows a discrete Gaussian of
small deviation (depends on || x||)
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Fundamental equation of dual attack

» split secret, find (x, y) suchthat x” 4 =0and y™ = xT
> guess and subtract

-XH-X-X()+-XI

Good guess (s = 5i1): Bad guess (s # 5i):
xTe y (s —5n)+xTe
follows a discrete Gaussian of follows a uniform distribution

small deviation (depends on || x||) (v ~ uniform in ZAm)
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Fundamental equation of dual attack

» split secret, find (x, y) suchthat x” 4 =0and y™ = xT
> guess and subtract

-XH-X-X()+-XI

Good guess (si = 51): Bad guess (s # Si11):

xTe y (s —5n)+xTe
follows a discrete Gaussian of follows a uniform distribution
small deviation (depends on || x||) (v ~ uniform in ZAm)

Problem: cost of distinguishing grows as g
~» can we change to a modulo p < g to reduce the cost?
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Modulus switching from a high level

Let p < g, write

py = qu+t
where 1 € Z" and t € Z§*.
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Modulus switching from a high level

Let p < g, write

py =qu+t
where v € Z’Sm and f € ng“. Then

p-‘|E| o] ': 7 (I _)+.

where l-|+p--l
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Modulus switching from a high level

Let p < g, write

py =qu+t
where v € Zﬁ” and f € Zgl“‘. Then

p-H o[ ~= o[ -( —)+l
where I--+p--l

This is a trade-off (details omitted):
> only need to guess s mod p: FFT over Z3" instead of Z{"
> the error = has increased: the number of samples increases

o a(4) 0 a(ebge g (250
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Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.
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Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.
Modulus switching: approximate a vector y € Zg by
y=11yl+ {0yl =1 u+t

> ue Zg: smaller domain (field is smaller)
> ||t < Z: “small error”

Our observation: this looks like a special case of lattice codes
y=Gu+t

> Ge Zng: defines a code

> uc Zg: smaller domain (dimension is smaller)
> ||t]| is small (depends on G)
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Applying lattice codes

Recall: find (x. y) such that x7 4 =0and y™ = xT

_><H-><I+_><
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Applying lattice codes

Recall: find (x. ) such that x7

=0and y" =x

T

Choose a code (- € ngkad, decode y as

G

XI+I

27/31



Applying lattice codes

Recall: find (x. ) such that x7

=0and y" =xT

Choose a code

New fundamental equation:

€ Z’;fﬂx"wd, decode y as

G ><IJ“I

GT

-I+--I+—~
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Lattice codes: fundamental equation

» find (x, y) such that x"

=0and y’ =xT

» choose acode (- € ZZ“‘X"CM, decode y = Cu+t

_H_.

GT

-I+--I+—-
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Lattice codes: fundamental equation

» find (x,y)suchthat x" 4 =0and yT = x"

» choose acode (- € ngf‘x"”d, decode y = Cu+t

i s

where

b= ar I I--I+_-
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Lattice codes: fundamental equation

» find (x,y)suchthat x" 4 =0and yT = x"

» choose acode (- € ZZ“‘X"CM, decode y = Cu+t

i s

where

b= ar I I--I+_-

Observations:
> we directly S.oq instead of sy,
> 5.0 = CTsy € Z& has smaller dimension k.oq < K
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Lattice codes: fundamental equation

» find (x,y)suchthat x" 4 =0and yT = x"
> choose a code (- € Z&m% decode y = Cu +t

—-H--m
where

| o - I--+_I

Observations:
> we directly instead of
> = GTsy € Zg“’d has smaller dimension k.,q < kg

» o/ =75, + xTefollows a discrete Gaussian whose deviation
depends on |||, [si|l, [|ell and |||
» ||7|| is small for a good code
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Lattice codes vs modulo switching
Lattice codes Modulus switching

—-H--lm U [5-}-I+l
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Lattice codes vs modulo switching

Lattice codes
—H-lm

» FFT cost: gk

» error ¢ Gaussian of stddev
272kI§°d
2 2 2 2 i
e = IIXII° - o + 15 ll® - Lomgm

for an asymptotically optimal code

Modulus switching
—-H{s-}lm

» FFT cost: pk
» error ¢: Gaussian of stddev

2 2 2 2 2
s = X117 - oe + sl - 22
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Lattice codes vs modulo switching
Lattice codes Modulus switching

—-H-lm _-H[’é-} +

» FFT cost: gk » FFT cost: pk

» error ¢ Gaussian of stddev » error ¢: Gaussian of stddev
2 2 2 2 qz’zkl?f(;f
e = [IXI° o5 + [[s0ll® - F5g

for an asymptotically optimal code

2 2 2 2 2
s = X117 - oe + sl - 22

Comparison for same FFT cost: gkot = phm

2o K:od

k
¢ M _ g9 9 . a
ore  — Zrep ~ 17p K T2p

~ lattice codes are always better than modulo switching!
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Other important details

» FFT is more efficient for powers of two
» gk has coarse granularity for big g

~ use modulo switching to change g to p — 2" then use lattice codes:
best of both, allow more “continuous” parameter choice
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Other important details

» FFT is more efficient for powers of two
> gk has coarse granularity for big g

~ use modulo switching to change g to p — 2" then use lattice codes:
best of both, allow more “continuous” parameter choice

» optimal codes are expensive but we need a fast decoder
» we only need to decode to a close codeword, not the closest
~ We suggest to use polar codes which are asymptotically optimal

> many parameters to choose (p, K, ke.od, BKZ block size, ...)
» no obvious way to choose them
~ search for optimal parameters with an optimisation program
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Results

» CC: classical circuit model (most detailed cost)

» CN: intermediate model
» CO: “Core-SVP” cost model

MATZOV Ours

Scheme CC CN Co CC CN Co

Kyber 512 | 138.5 133.7 114.8 | 137.8 133.0 114.0
Kyber 768 195.7 1904 173.1 | 1925 187.2 170.2
Kyber 1024 | 261.4 2554 240.7 | 256.2 250.5 235.7
LightSaber | 137.1 132.3 113.1 | 136.8 131.5 1123
Saber 201.1 1951 178.3 | 199.7 1949 177.0
FireSaber | 263.6 257.7 242.8 | 259.9 2544 239.4

» 1 to 5 bit gain over MATZOV
» further 1 bit gain with Prange bet (not in the talk)
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