Computing the Charlap-Coley-Robbins modular polynomials

F. Morain

Laboratoire d'Informatique de l'École polytechnique

Nancy, 2023/01/13

Contents

I. Introduction and motivation.
II. Classical theory and computations.
III. Elkies's approach to the isogeny problem.
IV. Charlap-Coley-Robbins.
V. Conclusions.

Motivations for computing isogenies in ANT/crypto:

- original one (1989ff): Schoof-Elkies-Atkin (SEA);
- later (circa 2000): Kohel, Galbraith, Fouquet/FM (volcanoes);
- more recently (2006ff): Galbraith/Hess/Smart; Smart; Jao/Miller/Venkatesan; Teske; Couveignes, Rostovtsev/Stolbunov.
- post-quantum cryptography (2011ff): Defeo/Jao, etc.

Bibliography:

- Silverman; Lang's Elliptic functions.
- green book (Blake/Seroussi/Smart). Don't forget to read the original papers, when available...
- Gathen \& Gerhard, etc.

Elliptic curves and isogenies

$$
E: y^{2}=x^{3}+A x+B \text { over } \mathbf{K}, \operatorname{char}(\mathbf{K}) \notin\{2,3\} .
$$

Def. (torsion points) For $n \in \mathbb{N}, E[n]=\left\{P \in E(\overline{\mathbb{K}}),[n] P=O_{E}\right\}$.
Division polynomials:

$$
\begin{aligned}
{[n](x, y) } & =\left(\frac{\varphi_{n}(x, y)}{\psi_{n}(x, y)^{2}}, \frac{\omega_{n}(x, y)}{\psi_{n}(x, y)^{3}}\right) \\
\varphi_{n} & =x \psi_{n}^{2}-\psi_{n+1} \psi_{n-1} \\
4 y \omega_{n} & =\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}
\end{aligned}
$$

In $\mathbf{K}[x, y] /\left(y^{2}-\left(x^{3}+A x+B\right)\right)$, one has:

$$
\psi_{2 m+1}(x, y)=f_{2 m+1}(x), \quad \psi_{2 m}=2 y f_{2 m}(x)
$$

for some $f_{m}(x) \in \mathbf{K}[A, B, x]$.

Isogenies

Def. $\phi: E \rightarrow E^{*}, \phi\left(O_{E}\right)=O_{E^{*}}$; induces a morphism of groups.
First examples

1. Separable:

$$
[k](x, y)=\left(\frac{\varphi_{k}}{\psi_{k}^{2}}, \frac{\omega_{k}}{\psi_{k}^{3}}\right)
$$

2. Complex multiplication: $[i](x, y)=(-x, i y)$ on $E: y^{2}=x^{3}-x$.
3. Inseparable: $\varphi(x, y)=\left(x^{p}, y^{p}\right), \mathbf{K}=\mathbb{F}_{p}$.

In the sequel:

- only separable isogenies;
- finite fields of large characteristic (see comments at the end).

Finding isogenies

Thm. If F is a finite subgroup of $E(\overline{\mathbf{K}})$, there exists ϕ and E^{*} s.t.

$$
\phi: E \rightarrow E^{*}=E / F, \quad \operatorname{ker}(\phi)=F .
$$

Facts:

- An equation of E^{*} can be computed using Vélu's formulas;
- the kernel polynomial (== denominator of ϕ) is $\mathscr{K}_{F}=X^{d}-\sigma_{1} X^{d-1}+\cdots$ is a factor of $f_{\ell}(X)$ (in case ℓ odd and $d=(\ell-1) / 2)$.

Thm. All isogenous curves of degree ℓ to a given E are characterized by $\Phi_{\ell}\left(j\left(E^{*}\right), j(E)\right)=0$, where Φ_{ℓ} is the traditional modular equation.

But: having $j\left(E^{*}\right)$ is not enough to find an equation for E^{*} (quadratic twists), nor the explicit isogeny.

Basic algorithm

Function FindAlllsogenies (E, ℓ) :
Input : $E / \mathbb{F}_{q}=[A, B]$ an elliptic curve, ℓ an odd prime Output: $\left\{\left(\sigma, A^{*}, B^{*}\right)\right\}$ parameters of curves E^{*} that are ℓ-isogenous to E if any

1. $\mathscr{L} \leftarrow$ roots of $\Phi_{\ell}(X, j(E))=0$ over \mathbf{K}
2. $\mathscr{R} \leftarrow \emptyset$
3. for $j^{*} \in \mathscr{L}$ do
$\mathscr{R} \leftarrow \mathscr{R} \cup\left\{\left(\sigma, A^{*}, B^{*}\right)\right\}$, the parameters of E^{*}
4. return \mathscr{R}.

Rem. $\# \mathscr{L} \in\{0,2,1, \ell+1\}$; more is known on the splitting of $\Phi_{\ell}(X, j(E))$ over \mathbf{K}.

Isogeny algorithms

Key ingredients:

- modular equations:
- choose nice equations;
- compute equations over $\mathbb{Z}[X]+$ instantiation over \mathbf{K} :
- series over \mathbb{Z} (or $\mathbb{Z} / p \mathbb{Z}):(\ldots$, CCR, Atkin, ...);
- evaluation/interpolation: with floating points
(Dupont/Enge); with curves modulo p (Charles + Lauter).
- Compute $\Phi_{\ell}(X, j(E))$ directly using isogeny volcanoes (Sutherland et al.).
- compute ℓ-isogenies:
- compute isgenous curve: magical (ugly) formulas by Atkin; alternatively: CCR.
- compute isogeny: depends on q and p, BMSS, Lercier/Sirvent, etc.

II. Classical theory and computations

Eisenstein series: $\delta_{r}(n)=\sum_{d \mid n} d^{r}$

$$
\begin{aligned}
& E_{2}(q)=1-24 \sum_{n=1}^{\infty} \delta_{1}(n) q^{n} \\
& E_{4}(q)=1+240 \sum_{n=1}^{\infty} \delta_{3}(n) q^{n} \\
& E_{6}(q)=1-504 \sum_{n=1}^{\infty} \delta_{5}(n) q^{n}
\end{aligned}
$$

Fact: E_{4} and E_{6} are modular forms of weight 4 and 6 respectively, E_{2} is almost modular.

$$
\begin{gathered}
\Delta(q)=\frac{E_{4}^{3}-E_{6}^{2}}{1718}=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}=\eta(q)^{24} \\
j(q)=\frac{E_{4}^{3}}{\Delta}=\frac{1}{q}+744+\sum_{n \geq 1} c_{n} q^{n}, c_{n} \in \mathbb{N} .
\end{gathered}
$$

Identities involving Eisenstein's series

When $F(q)=\sum_{n \geq n_{0}} a_{n} q^{n}$, we introduce the operator

$$
\begin{gather*}
F^{\prime}(q)=\frac{1}{2 i \pi} \frac{d F}{d \tau}=q \frac{d F}{d q}=\sum_{n \geq n_{0}} n a_{n} q^{n} . \\
\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}, \quad \frac{\Delta^{\prime}}{\Delta}=E_{2}, \quad j=\frac{E_{4}^{3}}{\Delta}, \quad j-1728=\frac{E_{6}^{2}}{\Delta}, \tag{1}\\
\frac{j^{\prime}}{\bar{j}}=-\frac{E_{6}}{E_{4}}, \quad \frac{j^{\prime}}{j-1728}=-\frac{E_{4}^{2}}{E_{6}}, \quad j^{\prime}=-\frac{E_{4}^{2} E_{6}}{\Delta}, \tag{2}\\
3 E_{4}^{\prime}=E_{2} E_{4}-E_{6}, \quad 2 E_{6}^{\prime}=E_{2} E_{6}-E_{4}^{2}, \quad 12 E_{2}^{\prime}=E_{2}^{2}-E_{4} . \tag{3}
\end{gather*}
$$

(The last line is due to Ramanujan.)
A) Lattices

Def. $\mathscr{L}=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ and $\mathscr{L}^{\prime}=\mathbb{Z} \omega_{1}^{\prime}+\mathbb{Z} \omega_{2}^{\prime}$ are isomorphic iff there exists P in $S L_{2}(\mathbb{Z})$ s.t.

$$
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=P\binom{\omega_{1}}{\omega_{2}} .
$$

Thm. \mathscr{L} and \mathscr{L}^{\prime} are isomorphic iff $j(\mathscr{L})=j\left(\mathscr{L}^{\prime}\right)$.
Def. \mathscr{L} and \mathscr{M} are isogenous iff $\exists \alpha \in \mathbb{C}, \alpha \mathscr{L} \subset \mathscr{M}$.
Most interesting case: \mathscr{M} is a sublattice of \mathscr{L} s.t. $\mathscr{L} / \mathscr{M}$ is cyclic of finite index. In other words:

$$
\mathscr{M}=\left(a \omega_{1}+b \omega_{2}\right) \mathbb{Z}+\left(c \omega_{1}+d \omega_{2}\right) \mathbb{Z}
$$

and $a d-b c=m$ with $\operatorname{gcd}(a, b, c, d)=1$.

Fundamental theorem (modular polynomial):

Thm. $\exists \alpha \in \mathbb{C}$ s.t. $\alpha \mathscr{M} \subset \mathscr{L}$ iff $\exists m$ s.t. $\Phi_{m}(j(\mathscr{M}), j(\mathscr{L}))=0$ s.t. with $\tau=\omega_{2} / \omega_{1}$ (imag. part >0), $q=\exp (2 i \pi \tau)$:

$$
\begin{gathered}
\Phi_{m}(X, \tau)=\prod_{A \in \mathscr{S}_{m}}(X-j(A \tau))=\sum_{k=0}^{\mu_{0}(m)} C_{k}(\tau) X^{k}, \\
\mathscr{S}_{m}=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right), a d=m, \operatorname{gcd}(a, b, d)=1, a>0, d>b \geq 0\right\}
\end{gathered}
$$

of cardinality $\mu_{0}(m)=m \prod_{p \mid m}(1+1 / p)$.
When $m=\ell$ is prime:

$$
\mathscr{S}_{\ell}=\left\{\left(\begin{array}{ll}
1 & b \\
0 & \ell
\end{array}\right), 0 \leq b<\ell\right\} \cup\left\{\left(\begin{array}{ll}
\ell & 0 \\
0 & 1
\end{array}\right)\right\}
$$

of cardinality $\ell+1$.

Modular polynomials

Thm.

- $\Phi_{m}(X, Y) \in \mathbb{Z}[X, Y]$;
- $\Phi_{m}(Y, X)=\Phi_{m}(X, Y)$;
- if m is squarefree, then the coefficient of highest degree of $\Phi_{m}(X, X)$ is ± 1.
Prop. ("Cyclotomic" properties)
(a) If $\left(m_{1}, m_{2}\right)=1$, then

$$
\Phi_{m_{1} m_{2}}(X, J)=\operatorname{Resultant}_{Z}\left(\Phi_{m_{1}}(X, Z), \Phi_{m_{2}}(Z, J)\right)
$$

(b) If $m=\ell^{e}$ with $e>1$, then

$$
\Phi_{\ell^{e}}(X, J)=\operatorname{Resultant}_{Z}\left(\Phi_{\ell}(X, Z), \Phi_{\ell^{e^{-1}}}(Z, J)\right) / \Phi_{\ell^{-2}}(Z, J)^{\ell} .
$$

Thm. (Kronecker) If ℓ is prime, then

$$
\Phi_{\ell}(X, Y) \equiv\left(X^{\ell}-Y\right)\left(Y^{\ell}-X\right) \bmod \ell
$$

Height

Thm. (P. Cohen)
$H\left(\Phi_{m}\right)=6 \mu_{0}(m)\left(\log m-2 \sum_{p \mid m}(\log p) / p+O(1)\right)$.

ℓ	101	211	503	1009	2003
$H\left(\Phi_{\ell}\right)$	3985	9256	24736	53820	115125
PCohen	2768	6743	18736	41832	91320

Thm. (Bröker \& Sutherland)

$$
H\left(\Phi_{\ell}\right) \leq 6 \ell \log \ell+16 \ell+14 \sqrt{\ell} \log \ell
$$

$\Rightarrow \Phi_{\ell}$ has $O\left(\ell^{2}\right)$ coefficients of size $\ell \log \ell$, or a $\tilde{O}\left(\ell^{3}\right)$-bit object.
Ex.

$$
\begin{gathered}
\Phi_{2}(X, Y)=X^{3}+X^{2}\left(-Y^{2}+1488 Y-162000\right) \\
+X\left(1488 Y^{2}+40773375 Y+8748000000\right) \\
+Y^{3}-162000 Y^{2}+8748000000 Y-157464000000000
\end{gathered}
$$

B) Computing modular polynomials over $\mathbb{Z}[X]$

Remember that

$$
j(q)=\frac{1}{q}+744+\sum_{n \geq 1} c_{n} q^{n}, \quad c_{n} \in \mathbb{Z}^{+}
$$

Then $\Phi_{\ell}(X, Y)$ is such that $\Phi_{\ell}\left(j(q), j\left(q^{\ell}\right)\right)$ vanishes identically.
Naive method: indeterminate coefficients (over \mathbb{Q} or small p 's); at least $\tilde{O}\left(\left(\ell^{2}\right)^{\omega}\right)$ operations over \mathbb{Q}.

Ex.

$$
\begin{gathered}
\Phi_{2}(X, Y)=X^{3}+X^{2}\left(-Y^{2}+1488 Y-162000\right) \\
+X\left(1488 Y^{2}+40773375 Y+8748000000\right) \\
+Y^{3}-162000 Y^{2}+8748000000 Y-157464000000000
\end{gathered}
$$

a) Series computations

Enneper (1890) use q-expansion of j and $j\left(q^{\ell}\right)$ with $O\left(\ell^{2}\right)$ terms; Atkin used this modulo CRT primes (embarassingly parallel). $\tilde{O}\left(\ell^{3} \mathrm{M}(p)\right)$

1. a) Compute power sums for $1 \leq r \leq \ell$:

$$
S_{r}(q)=j(\ell \tau)^{r}+\sum_{k=0}^{\ell-1} j\left(\frac{\tau+k}{\ell}\right)^{r}=S_{r, 0}(q)+S_{r, 1}(w)
$$

with $w=q^{1 / \ell} ; S_{r, 1}$ a priori in $\mathbb{Q}\left(\zeta_{\ell}\right)$, but in fact over \mathbb{Q}, hence $S_{r, 1}(w)=S_{r, 1}(q)$;
b) recognize $S_{r}(q)=S_{r}(J)$.
2. Go back to $\Phi(X, J)$ using Newton formulas.
b) Evaluation/interpolation (Enge; Dupont)

$$
\Phi_{\ell}(X, J)=X^{\ell+1}+\sum_{u=0}^{\ell} C_{u}(J) X^{u}, \quad C_{u}(J) \in \mathbb{Z}[J], \operatorname{deg}\left(C_{u}(J)\right) \leq \ell+1 .
$$

All computations are done using precision $H=O(\ell \log \ell)$.
Function ComputePhi $\left(\ell, f,\left(f_{r}\right), \operatorname{deg}_{X}\right)$:
Input : ℓ an odd prime; f a function, f_{r} conjugates
Output: $\Phi_{\ell}[f](X, J)$ with degree deg_{X} in X
for $\operatorname{deg}_{X}+1$ values of z_{i} do
compute $f_{r}\left(z_{i}\right)$ to precision H and build $\prod_{r=1}^{\ell+1}\left(X-f_{r}\left(z_{i}\right)\right)=X^{\ell+1}+\sum_{u=0}^{\ell} C_{u}\left(j\left(z_{i}\right)\right) X^{u} ;$
$O(\mathrm{M}(\ell) \log \ell)$ ops
for $u \leftarrow 0$ to ℓ do
L interpolate C_{u} from $\left(j\left(z_{i}\right), C_{u}\left(j\left(z_{i}\right)\right)\right.$ for $1 \leq i \leq \operatorname{deg}_{X}+1$
return $\Phi_{\ell}[f](X, J)$
All $1.2+2$ has cost $O(\ell \mathrm{M}(\ell)(\log \ell) \mathrm{M}(H))=\tilde{O}\left(\ell^{3}\right)$.
C) Isogeny volcanoes

Bröker, Lauter, Sutherland (2010): Under the Generalized Riemann Hypothesis (GRH), expected running time of $O\left(\ell^{3}(\log \ell)^{3} \log \log \ell\right)$, and compute $\Phi_{\ell} \bmod p$ using $O\left(\ell^{2}(\log \ell)^{2}+\ell^{2} \log p\right)$ space.

- Need class polynomials $H_{D}(X)$ (sometimes $H_{\ell^{2} D}(X)$).
- Interpolate the values of all quantities modulo p.
- Extensible to partial differentials.
- Works also in Sutherland's algo for direct evaluation over K using explicit CRT.

III. Elkies's approach to the isogeny problem

Using power series for the Tate curve

$$
Y^{2}=X^{3}-\frac{E_{4}(q)}{48} X+\frac{E_{6}(q)}{864}
$$

is ℓ-isogenous to

$$
Y^{2}=X^{3}-\frac{E_{4}\left(q^{\ell}\right)}{48} X+\frac{E_{6}\left(q^{\ell}\right)}{864}
$$

$\sigma_{r}=$ power sums of the roots of the kernel polynomial:

$$
\sigma_{1}(q)=\frac{\ell}{2}\left(\ell E_{2}\left(q^{\ell}\right)-E_{2}(q)\right) .
$$

Use series identities to get formulas for $E_{4}\left(q^{\ell}\right)$ and $E_{6}\left(q^{\ell}\right)$, $\sigma_{1}(q)$ from known values.
Also:

$$
A-A^{*}=5\left(6 \sigma_{2}+2 A \sigma_{0}\right), \quad B-B^{*}=7\left(10 \sigma_{3}+6 A \sigma_{1}+4 B \sigma_{0}\right),
$$

+ induction relation for σ_{k} with $k>3$.
Consequence: A^{*} and B^{*} belong to $\mathbb{Q}\left[\sigma_{1}, A, B\right]$.

The case of $\Phi_{\ell}(X, Y)$

Thm. (Schoof95)
With $\tilde{j}=j\left(q^{\ell}\right)$:

1) $\Phi_{\ell}(j, \tilde{j})=0$.
2) $j^{\prime} \partial_{X}+\ell^{\prime} \partial_{Y}=0$.
3)

$$
\frac{j^{\prime \prime}}{j^{\prime}}-\ell \frac{\tilde{j^{\prime \prime}}}{\tilde{j^{\prime}}}=-\frac{\dot{j}^{\prime 2} \partial_{X X}+\cdots}{j^{\prime} \partial_{X}}
$$

All this yields $E_{4}\left(q^{\ell}\right), E_{6}\left(q^{\ell}\right), \sigma_{1}$.
Cost: $O\left(\ell^{2}\right)$ operations in \mathbf{K}.

Finding smaller equations and their formulas

- Traditional approach: $\Phi_{\ell}(X, Y)$. Formulas given by Schoof.
- Elkies 1992: ad hoc modular equations + formulas for each ℓ; cumbersome.
- Atkin: canonical with η-products, laundry method (conjecturally smallest); magical formulas using differentials of order 1 and 2.
- Müller (Enge): Hecke operators + somewhat ad hoc tables. Same Atkin formulas.
- Smallest models for $X_{0}(\ell)$ in two variables, not related to j; formulas?

Alternative: Charlap-Coley-Robbins (1991).
IV. Charlap-Coley-Robbins
A) Theory

$$
\begin{aligned}
& \mathbb{Q}(A, B)[X] /\left(f_{\ell}(X, A, B)\right) \\
& \\
& \mathbb{Q}(A, B)[X] /\left(U_{\ell}(X, A, B)\right) \\
& \\
& \left\lvert\, \begin{array}{l}
\ell-1) / 2 \\
\mathbb{Q}(A, B)
\end{array}\right. \\
& \mathbb{Q}+1
\end{aligned}
$$

Using traces

Classical: use the trace T_{1} of an element in $\mathbb{Q}(A, B)[X] /\left(f_{\ell}(X, A, B)\right)$.
Let $P=\left(x_{1}, y_{1}\right) \neq O_{E}$. Other points are $P_{j}=[j] P=\left(x_{j}, y_{j}\right)$ can be expressed using division polynomials.
For $0 \leq k \leq \ell+1$

$$
T_{k}=\sum_{j=1}^{d} x_{j}^{k}=\sum_{j=1}^{d}\left(x_{1}-\frac{\psi_{j-1}\left(x_{1}\right) \psi_{j+1}\left(x_{1}\right)}{\psi_{j}\left(x_{1}\right)^{2}}\right)^{k}
$$

so that $T_{1}=x_{1}+\cdots+x_{d}$ and $T_{0}=d=(\ell-1) / 2$. The minimal polynomial $U_{\ell}(X)=X^{\ell+1}+u_{1} X^{\ell}+\cdots+u_{0}$ of T_{1} defines the lower extension.

Use Newton's identities to reconstruct the factor $\prod_{i=1}^{d}\left(X-x_{i}\right)=X^{d}-T_{1} X^{d-1}+\cdots$ over the intermediate extension.

Using traces

Classical: use the trace T_{1} of an element in $\mathbb{Q}(A, B)[X] /\left(f_{\ell}(X, A, B)\right)$.
Let $P=\left(x_{1}, y_{1}\right) \neq O_{E}$. Other points are $P_{j}=[j] P=\left(x_{j}, y_{j}\right)$ can be expressed using division polynomials.
For $0 \leq k \leq \ell+1$

$$
T_{k}=\sum_{j=1}^{d} x_{j}^{k}=\sum_{j=1}^{d}\left(x_{1}-\frac{\psi_{j-1}\left(x_{1}\right) \psi_{j+1}\left(x_{1}\right)}{\psi_{j}\left(x_{1}\right)^{2}}\right)^{k}
$$

so that $T_{1}=x_{1}+\cdots+x_{d}$ and $T_{0}=d=(\ell-1) / 2$. The minimal polynomial $U_{\ell}(X)=X^{\ell+1}+u_{1} X^{\ell}+\cdots+u_{0}$ of T_{1} defines the lower extension. $T_{1}=\sigma$!

Use Newton's identities to reconstruct the factor $\prod_{i=1}^{d}\left(X-x_{i}\right)=X^{d}-T_{1} X^{d-1}+\cdots$ over the intermediate extension. \leftarrow kernel polynomial!

CCR polynomials

Thm. There exists three polynomials $U_{\ell}(X, Y, Z), V_{\ell}(X, Y, Z)$, $W_{\ell}(X, Y, Z)$ in $\mathbb{Z}[X, Y, Z, 1 / \ell]$ of degree $\ell+1$ in X such that $U_{\ell}(\sigma, A, B)=0, V_{\ell}\left(A^{*}, A, B\right)=0, W_{\ell}\left(B^{*}, A, B\right)=0$.

Thm. When $\ell>3, U_{\ell}, V_{\ell}, W_{\ell}$ live in $\mathbb{Z}[X, Y, Z]$.
Prop. Assigning respective weights $1,2,3$ to X, Y, Z, the monomials in U_{ℓ}, V_{ℓ} and W_{ℓ} have generalized degree $\ell+1$.

Computations of U_{ℓ} : use power sums of roots; numerical computation possible via E_{2} (which can be expressed using a hypergeometric function and theta functions - see A. Bostan).

Ex. $U_{5}(X, Y, Z)=X^{6}+20 Y X^{4}+160 Z X^{3}-80 Y^{2} X^{2}-128 Y Z X-80 Z^{2}$.
Prop. Maximal size of integer during computation of U_{ℓ} (resp. V_{ℓ}, W_{ℓ}) is $\approx 2 \ell$ (resp. $4 \ell, 6 \ell$).

Function UseCCR(E, $\ell)$:
Input : $E / \mathbb{F}_{q}=[A, B]$ an elliptic curve, ℓ an odd prime
Output: $\left(\sigma, A^{*}, B^{*}\right)$ parameters of a curve E^{*} that is ℓ-isogenous to E

1. $\mathscr{L}_{U} \leftarrow$ roots of $U_{\ell}(X, A, B)$ over \mathbb{F}_{q}
2. if $\mathscr{L}_{U} \neq \emptyset$ then
2.0. Let σ be an element of \mathscr{L}_{U}
2.1. $\mathscr{L}_{V} \leftarrow$ roots of $V_{\ell}(X, A, B)$ over \mathbb{F}_{q} 2.2. $\mathscr{L}_{W} \leftarrow$ roots of $W_{\ell}(X, A, B)$ over \mathbb{F}_{q} for $v \in \mathscr{L}_{V}$ do for $w \in \mathscr{L}_{W}$ do if (σ, v, w) is an ℓ-isogeny then return (σ, v, w).

Cost: 3 polynomial exponentiations $+\leq 4$ isogeny tests.

Purely algebraic approaches

Triangular sets: Schost et al.; change of order algorithm.
Noro/Yasuda/Yokoyama (2020): In particular (representation à la Hecke):

$$
A^{*}=\frac{N_{\ell, A}(X, A, B)}{U_{\ell}^{\prime}(X)}, \quad B^{*}=\frac{N_{\ell, B}(X, A, B)}{U_{\ell}^{\prime}(X)}
$$

(Only here: $U_{\ell}^{\prime}(X)=\frac{\partial U_{\ell}}{\partial X}$.)
$N_{\ell, A}$ (resp. $N_{\ell, B}$) are polynomials with integer coefficients and of generalized weight $2 \ell+4$ (resp. $2 \ell+6$). Computations by any evaluation/interpolation method.
Ex. (with a sign flip)

$$
\begin{aligned}
N_{5, A}= & 630 A X^{5}-9360 B X^{4}-8240 A^{2} X^{3}+24480 B A X^{2} \\
& +\left(1120 A^{3}-28800 B^{2}\right) X-3200 B A^{2} .
\end{aligned}
$$

B) Atkin's more powerful variant

We also discuss here the alternative modular equation suggested by (CCR). They use an equation of degree (q+1) in E2*,whose coefficients are forms of appropriate weights expressible in terms of E4 and E6 (or,by applying Wq, in terms of E4q and E6q). In the equivalent of cases 1 and 3 above, they find a value of E 2 * in $\mathrm{GF}(\mathrm{p})$. The procedure with which they then continue is however intolerably long, and a better continuation is as follows.

Differentiate their equation twice at the cusp infinity(i.e.with E2*,E4,E6); the first time we get E4q, and the second E6q.

Homogeneous properties of U

Notation:

$$
\partial_{\sigma}=\frac{\partial U}{\partial \sigma}, \partial_{4}=\frac{\partial U}{\partial E_{4}}, \partial_{6}=\frac{\partial U}{\partial E_{6}}, \text { etc.. }
$$

U is homogeneous with weights, so that (generalized Euler theorem)

$$
\begin{equation*}
(\ell+1) U=\sigma \partial_{\sigma}+2 E_{4} \partial_{4}+3 E_{6} \partial_{6} . \tag{4}
\end{equation*}
$$

Note that partial derivatives are also homogeneous:

$$
\begin{align*}
\ell \partial_{\sigma} & =\sigma \partial_{\sigma \sigma}+2 E_{4} \partial_{\sigma 4}+3 E_{6} \partial_{\sigma 6} \tag{5}\\
(\ell-1) \partial_{4} & =\sigma \partial_{\sigma 4}+2 E_{4} \partial_{44}+3 E_{6} \partial_{46} \tag{6}\\
(\ell-2) \partial_{6} & =\sigma \partial_{\sigma 6}+2 E_{4} \partial_{46}+3 E_{6} \partial_{66} \tag{7}
\end{align*}
$$

Getting the isogenous curve (1/4)

Differentiate $U\left(\sigma, E_{4}, E_{6}\right)=0$ to get

$$
\begin{equation*}
\sigma^{\prime} \partial_{\sigma}+E_{4}^{\prime} \partial_{4}+E_{6}^{\prime} \partial_{6}=0 \tag{8}
\end{equation*}
$$

$\sigma=\frac{\ell}{2}\left(\ell \tilde{E}_{2}-E_{2}\right)$ leading to

$$
\sigma^{\prime}=\frac{\ell}{2}\left(\ell^{2} \tilde{E}_{2}^{\prime}-E_{2}^{\prime}\right)=\frac{\ell}{24}\left(\ell^{2}\left(\tilde{E}_{2}^{2}-\tilde{E}_{4}\right)-\left(E_{2}^{2}-E_{4}\right)\right)
$$

Replace $\ell \tilde{E}_{2}$ by $2 \sigma / \ell+E_{2}$ to get

$$
\sigma^{\prime}=\frac{\ell}{24}\left(\frac{4 \sigma^{2}}{\ell^{2}}+\frac{4 \sigma}{\ell} E_{2}-\left(\ell^{2} \tilde{E}_{4}-E_{4}\right)\right)
$$

that we plug in (8) together with the expressions for $E_{4}{ }^{\prime}$ and $E_{6}{ }^{\prime}$ from equation (3) to get a polynomial of degree 1 in E_{2} whose coefficient of E_{2} is

$$
\sigma \partial_{\sigma}+2 E_{4} \partial_{4}+3 E_{6} \partial_{6}
$$

which we recognize in (4).

Getting the isogenous curve (2/4)

$$
\begin{equation*}
(\ell+1) U E_{2}+\frac{\ell}{4}\left(4 \sigma^{2} / \ell^{2}-\left(\ell^{2} \tilde{E}_{4}-E_{4}\right)\right) \partial_{\sigma}-2 E_{6} \partial_{6}-3 E_{4}^{2} \partial_{4}=0 \tag{9}
\end{equation*}
$$

from which we deduce \tilde{E}_{4} since $U\left(\sigma, E_{4}, E_{6}\right)=0$.
Finding \tilde{E}_{6} : we differentiate (8)

$$
\begin{aligned}
& \sigma^{\prime \prime} \partial_{\sigma}+\sigma^{\prime}\left(\sigma^{\prime} \partial_{\sigma \sigma}+E_{4}^{\prime} \partial_{\sigma 4}+E_{6}^{\prime} \partial_{\sigma 6}\right) \\
+ & E_{4}^{\prime \prime} \partial_{4}+E_{4}^{\prime}\left(\sigma^{\prime} \partial_{4 \sigma}+E_{4}^{\prime} \partial_{44}+E_{6}^{\prime} \partial_{46}\right) \\
+ & E_{6}^{\prime \prime} \partial_{6}+E_{6}^{\prime}\left(\sigma^{\prime} \partial_{6 \sigma}+E_{4}^{\prime} \partial_{64}+E_{6}^{\prime} \partial_{66}\right)=0
\end{aligned}
$$

We compute in sequence

$$
\begin{gathered}
12 E_{2}^{\prime \prime}=2 E_{2} E_{2}^{\prime}-E_{4}^{\prime}=E_{2}\left(E_{2}^{2}-E_{4}\right) / 6-\left(E_{2} E_{4}-E_{6}\right) / 3, \\
12 \tilde{E}_{2}^{\prime \prime}=2 \tilde{E}_{2} \tilde{E}_{2}^{\prime}-\tilde{E}_{4}^{\prime}=\tilde{E}_{2}\left(\tilde{E}_{2}^{2}-\tilde{E}_{4}\right) / 6-\left(\tilde{E}_{2} \tilde{E}_{4}-\tilde{E}_{6}\right) / 3, \\
\rightarrow \sigma^{\prime \prime}=\frac{\ell}{2}\left(\ell^{3} \tilde{E}_{2}^{\prime \prime}-E_{2}^{\prime \prime}\right)
\end{gathered}
$$

Getting the isogenous curve (3/4)

Differentiate Ramanujan's relations:

$$
E_{4}^{\prime \prime}=\frac{1}{3}\left(E_{2}^{\prime} E_{4}+E_{2} E_{4}^{\prime}-E_{6}^{\prime}\right), \quad E_{6}^{\prime \prime}=\frac{1}{2}\left(E_{2}^{\prime} E_{6}+E_{2} E_{6}^{\prime}-2 E_{4} E_{4}^{\prime}\right),
$$

Finally yields an expression as polynomial in E_{2} :

$$
C_{2} E_{2}^{2}+C_{1} E_{2}+C_{0}=0 .
$$

The unknown \tilde{E}_{6} is to be found in C_{0} only.
Prop. (By luck ?) The coefficients C_{1} and C_{2} vanish for a triplet such that $U_{\ell}\left(\sigma, E_{4}, E_{6}\right)=0$.
Sketch of the proof: Replace $\partial_{\sigma \sigma}, \partial_{44}$ and ∂_{66} by their values from (5). Factoring the resulting expressions yields the same factor $\sigma \partial_{\sigma}+2 E_{4} \partial_{4}+3 E_{6} \partial_{6}$, which cancels C_{1} and $C_{2} . \square$

Getting the isogenous curve (4/4)

We are left with

$$
\tilde{E}_{6}=-\frac{N}{\ell^{6} \partial_{\sigma}^{3}}
$$

where N is a polynomial in degree 3 in ℓ

$$
N=-E_{6} \partial_{\sigma}^{3} \ell^{3}+c_{2} \ell^{2}+12 \partial_{\sigma}^{2} \sigma\left(3 E_{4}^{2} \partial_{6}+2 E_{6} \partial_{4}\right) \ell-\partial_{\sigma}^{3} \sigma^{3}
$$

The coefficient c_{2} has an ugly expression (that may be simplified??).

C) The case $\ell \equiv 11 \bmod 12$

The number and size of the terms in their modular equation are also larger than those in mine, especially when $q=11(\bmod 12)$. In that case, the cuspform eta**2 (tau) *eta**2 (q*tau) could be used instead of $E 2 *$ to form the modular equation. This both saves on size and number of coefficients, and has convenient derivatives; the reader can by now easily work out the precise algorithm.

Properties

In this case, Atkin suggests to replace σ with $f(q)=\eta(q)^{2} \eta\left(q^{\ell}\right)^{2}$ another modular form of weight 2 .

Ex.

$$
\begin{aligned}
C C R A_{11}(X) & =X^{12}-990 \Delta X^{6}+440 \Delta E_{4} X^{4}-165 \Delta E_{6} X^{3} \\
& +22 \Delta E_{4}^{2} X^{2}-\Delta E_{4} E_{6} X-11 \Delta^{2},
\end{aligned}
$$

which is sparser $U_{11}(X)$.
CCRA is homogeneous:

$$
\begin{equation*}
(\ell+1) C C R A_{\ell}=f \partial_{f}+2 E_{4} \partial_{4}+3 E_{6} \partial_{6} . \tag{10}
\end{equation*}
$$

We have $f^{12}=\Delta(z) \Delta(\ell z)$ and therefore we deduce the discriminant $\tilde{\Delta}=f^{12} / \Delta$, yielding a relation for \tilde{E}_{4} and \tilde{E}_{6}.

Computing σ

Write

$$
\frac{f^{\prime}}{f}=2 \frac{\eta^{\prime}}{\eta}+2 \ell \frac{\tilde{\eta}^{\prime}}{\tilde{\eta}}=\frac{1}{12}\left(\ell \tilde{E}_{2}+E_{2}\right)
$$

from which we deduce f^{\prime}.
Starting from $f^{\prime} \partial_{f}+E_{4}^{\prime} \partial_{4}+E_{6}^{\prime} \partial_{6}=0$, and replacing by the known values, we find

$$
\left(f \partial_{f}+4 E_{4} \partial_{4}+6 E_{6} \partial_{6}\right) E_{2}+f \ell \tilde{E}_{2} \partial_{f}-6 E_{4}^{2} \partial_{6}-4 E_{6} \partial_{4}=0
$$

which is

$$
f \ell \partial_{f}\left(\ell \tilde{E}_{2}-E_{2}\right)-6 E_{4}^{2} \partial_{6}-4 E_{6} \partial_{4}=0
$$

which gives us

$$
\sigma=\frac{\ell\left(3 \partial_{6} E_{4}^{2}+2 \partial_{4} E_{6}\right)}{f \partial_{f}}
$$

Computing \tilde{E}_{4}

We differentiate f^{\prime} to obtain:

$$
\begin{gathered}
f^{\prime \prime}=\frac{1}{12}\left(f^{\prime}\left(\ell \tilde{E}_{2}+E_{2}\right)+f\left(\ell^{2} \tilde{E}_{2}^{\prime}+E_{2}^{\prime}\right)\right) \\
\left.=\frac{f}{12^{2}}\left(\left(\ell \tilde{E}_{2}+E_{2}\right)^{2}+\ell^{2}\left(\tilde{E}_{2}^{2}-\tilde{E}_{4}\right)+\left(E_{2}^{2}-E_{4}\right)\right)\right) .
\end{gathered}
$$

We inject this together with $\tilde{E}_{2}=\left(E_{2}+2 \sigma / \ell\right) / \ell$ into

$$
\begin{aligned}
& f^{\prime \prime} \partial_{f}+f^{\prime}\left(f^{\prime} \partial_{f f}+E_{4}^{\prime} \partial_{f 4}+E_{6}^{\prime} \partial_{f 6}\right) \\
+ & E_{4}^{\prime \prime} \partial_{4}+E_{4}^{\prime}\left(f^{\prime} \partial_{4 f}+E_{4}^{\prime} \partial_{44}+E_{6}^{\prime} \partial_{46}\right) \\
+ & E_{6}^{\prime \prime} \partial_{6}+E_{6}^{\prime}\left(f^{\prime} \partial_{6 f}+E_{4}^{\prime} \partial_{64}+E_{6}^{\prime} \partial_{66}\right)=0
\end{aligned}
$$

This yields a polynomial of degree 2 in E_{2} whose coefficients of degree 2 and 1 turn out to vanish. We are left with

$$
\tilde{E}_{4}=-\frac{M}{\ell^{2} f^{2} E_{4} E_{6} \partial_{f}^{3}}
$$

with a bulky expression for M.

Computing \tilde{E}_{6}

Prop. (applying Atkin-Lehner involution)

$$
U_{\ell}\left(-\ell \sigma, A^{*}, B^{*}\right)=0, \quad V_{\ell}\left(\ell^{4} A, A^{*}, B^{*}\right)=0, \quad W_{\ell}\left(\ell^{6} B, A^{*}, B^{*}\right)=0
$$

with $A^{*}=\ell^{4} \tilde{E}_{4}, B^{*}=\ell^{6} \tilde{E}_{6}$.
Also:

$$
\tilde{\Delta}=\frac{\tilde{E}_{4}^{3}-\tilde{E}_{6}^{2}}{1728}
$$

So that \tilde{E}_{6} is a root of the gcd of the two polynomials. In practice, there is one root. Otherwise, use a heavy further differential!!!

V. Conclusions

When is this useful?

- you don't like using Atkin's laundry hammer;
- (technical, rare) when some $\partial_{X}=0$, the triplet (U, V, W) is useful;
- for small ℓ, either use sparse formulas ($U_{\ell}, N_{\ell, A}, D_{\ell, A}$) or only U_{ℓ} and the ugly formulas.

Working ugly formulas can be done using multipliers for
Borweins' like modular polynomials as explained by
R. Dupont. But this is another story. . . !

