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I. Introduction

Motivations for computing isogenies in ANT/crypto:
I original one (1989ff): Schoof-Elkies-Atkin (SEA);
I later (circa 2000): Kohel, Galbraith, Fouquet/FM

(volcanoes);
I more recently (2006ff): Galbraith/Hess/Smart; Smart;

Jao/Miller/Venkatesan; Teske; Couveignes,
Rostovtsev/Stolbunov.

I post-quantum cryptography (2011ff): Defeo/Jao, etc.

Bibliography:
I Silverman; Lang’s Elliptic functions.
I green book (Blake/Seroussi/Smart). Don’t forget to read

the original papers, when available. . .
I Gathen & Gerhard, etc.
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Elliptic curves and isogenies

E : y2 = x3 +Ax+B over K,char(K) 6∈ {2,3}.

Def. (torsion points) For n ∈ N, E[n] = {P ∈ E(K), [n]P = OE}.

Division polynomials:

[n](x,y) =
(

ϕn(x,y)
ψn(x,y)2 ,

ωn(x,y)
ψn(x,y)3

)

ϕn = xψ
2
n −ψn+1ψn−1

4yωn = ψn+2ψ
2
n−1−ψn−2ψ

2
n+1

In K[x,y]/(y2− (x3 +Ax+B)), one has:

ψ2m+1(x,y) = f2m+1(x), ψ2m = 2yf2m(x)

for some fm(x) ∈K[A,B,x].
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Isogenies

Def. φ : E→ E∗, φ(OE) = OE∗ ; induces a morphism of groups.

First examples
1. Separable:

[k](x,y) =
(

ϕk

ψ2
k
,

ωk

ψ3
k

)
2. Complex multiplication: [i](x,y) = (−x, iy) on E : y2 = x3− x.

3. Inseparable: ϕ(x,y) = (xp,yp), K = Fp.

In the sequel:
I only separable isogenies;
I finite fields of large characteristic (see comments at the

end).
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Finding isogenies

Thm. If F is a finite subgroup of E(K), there exists φ and E∗

s.t.
φ : E→ E∗ = E/F, ker(φ) = F.

Facts:
I An equation of E∗ can be computed using Vélu’s formulas;
I the kernel polynomial (== denominator of φ ) is

KF = Xd−σ1Xd−1 + · · · is a factor of f`(X) (in case ` odd
and d = (`−1)/2).

Thm. All isogenous curves of degree ` to a given E are
characterized by Φ`(j(E∗), j(E)) = 0, where Φ` is the traditional
modular equation.

But: having j(E∗) is not enough to find an equation for E∗

(quadratic twists), nor the explicit isogeny.
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Basic algorithm

Function FindAllIsogenies(E, `):
Input : E/Fq = [A,B] an elliptic curve, ` an odd prime
Output: {(σ ,A∗,B∗)} parameters of curves E∗ that are

`-isogenous to E if any
1. L ← roots of Φ`(X, j(E)) = 0 over K
2. R← /0
3. for j∗ ∈L do

R←R ∪{(σ ,A∗,B∗)}, the parameters of E∗

4. return R.

Rem. #L ∈ {0,2,1, `+1}; more is known on the splitting of
Φ`(X, j(E)) over K.
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Isogeny algorithms

Key ingredients:

I modular equations:
I choose nice equations;
I compute equations over Z[X] + instantiation over K:
• series over Z (or Z/pZ): (. . . , CCR, Atkin, . . . );
• evaluation/interpolation: with floating points
(Dupont/Enge); with curves modulo p (Charles + Lauter).

I Compute Φ`(X, j(E)) directly using isogeny volcanoes
(Sutherland et al.).

I compute `-isogenies:
I compute isgenous curve: magical (ugly) formulas by

Atkin; alternatively: CCR.
I compute isogeny: depends on q and p, BMSS,

Lercier/Sirvent, etc.
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II. Classical theory and computations

Eisenstein series: δr(n) = ∑d|n dr

E2(q) = 1−24
∞

∑
n=1

δ1(n)qn,

E4(q) = 1+240
∞

∑
n=1

δ3(n)qn,

E6(q) = 1−504
∞

∑
n=1

δ5(n)qn,

Fact: E4 and E6 are modular forms of weight 4 and 6
respectively, E2 is almost modular.

∆(q) =
E3

4−E2
6

1718
= q ∏

n≥1
(1−qn)24 = η(q)24

j(q) =
E3

4
∆

=
1
q
+744+ ∑

n≥1
cn qn,cn ∈ N.
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Identities involving Eisenstein’s series

When F(q) = ∑n≥n0
anqn, we introduce the operator

F′(q) =
1

2iπ
dF
dτ

= q
dF
dq

= ∑
n≥n0

nanqn.

∆ =
E3

4−E2
6

1728
,

∆′

∆
= E2, j =

E3
4

∆
, j−1728 =

E2
6

∆
, (1)

j′

j
=−E6

E4
,

j′

j−1728
=−E2

4
E6

, j′ =−E2
4E6

∆
, (2)

3E4
′ = E2E4−E6, 2E6

′ = E2E6−E2
4, 12E2

′ = E2
2−E4. (3)

(The last line is due to Ramanujan.)
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A) Lattices

Def. L = Zω1 +Zω2 and L ′ = Zω ′1 +Zω ′2 are isomorphic iff
there exists P in SL2(Z) s.t.(

ω ′1
ω ′2

)
= P

(
ω1
ω2

)
.

Thm. L and L ′ are isomorphic iff j(L ) = j(L ′).

Def. L and M are isogenous iff ∃α ∈ C,αL ⊂M .

Most interesting case: M is a sublattice of L s.t. L /M is
cyclic of finite index. In other words:

M = (aω1 +bω2)Z+(cω1 +dω2)Z

and ad−bc = m with gcd(a,b,c,d) = 1.
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Fundamental theorem (modular polynomial):

Thm. ∃α ∈ C s.t. αM ⊂L iff ∃m s.t. Φm(j(M ), j(L )) = 0 s.t.
with τ = ω2/ω1 (imag. part > 0), q = exp(2iπτ):

Φm(X,τ) = ∏
A∈Sm

(X− j(Aτ)) =
µ0(m)

∑
k=0

Ck(τ)Xk,

Sm =

{(
a b
0 d

)
,ad = m,gcd(a,b,d) = 1,a > 0,d > b≥ 0

}
of cardinality µ0(m) = m∏p|m(1+1/p).

When m = ` is prime:

S` =

{(
1 b
0 `

)
,0≤ b < `

}
∪
{(

` 0
0 1

)}
of cardinality `+1.

c© F. Morain 12/39



Modular polynomials

Thm.
I Φm(X,Y) ∈ Z[X,Y];
I Φm(Y,X) = Φm(X,Y);
I if m is squarefree, then the coefficient of highest degree of

Φm(X,X) is ±1.

Prop. (“Cyclotomic” properties)
(a) If (m1,m2) = 1, then

Φm1m2(X,J) = ResultantZ(Φm1(X,Z),Φm2(Z,J)).

(b) If m = `e with e > 1, then

Φ`e(X,J) = ResultantZ(Φ`(X,Z),Φ`e−1(Z,J))/Φ`e−2(Z,J)`.

Thm. (Kronecker) If ` is prime, then

Φ`(X,Y)≡ (X`−Y)(Y`−X) mod `.
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Height

Thm. (P. Cohen)
H(Φm) = 6µ0(m)(logm−2∑p|m(logp)/p+O(1)).

` 101 211 503 1009 2003
H(Φ`) 3985 9256 24736 53820 115125

PCohen 2768 6743 18736 41832 91320

Thm. (Bröker & Sutherland)

H(Φ`)≤ 6` log`+16`+14
√
` log`.

⇒ Φ` has O(`2) coefficients of size ` log`, or a Õ(`3)-bit object.

Ex.
Φ2(X,Y) = X3 +X2 (−Y2 +1488Y−162000

)
+X

(
1488Y2 +40773375Y +8748000000

)
+Y3−162000Y2 +8748000000Y−157464000000000.
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B) Computing modular polynomials over Z[X]

Remember that

j(q) =
1
q
+744+ ∑

n≥1
cnqn, cn ∈ Z+

Then Φ`(X,Y) is such that Φ`(j(q), j(q`)) vanishes identically.

Naive method: indeterminate coefficients (over Q or small
p’s); at least Õ((`2)ω) operations over Q.

Ex.
Φ2(X,Y) = X3 +X2 (−Y2 +1488Y−162000

)
+X

(
1488Y2 +40773375Y +8748000000

)
+Y3−162000Y2 +8748000000Y−157464000000000.
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a) Series computations

Enneper (1890) use q-expansion of j and j(q`) with O(`2)
terms; Atkin used this modulo CRT primes (embarassingly
parallel). Õ(`3M(p))

1. a) Compute power sums for 1≤ r ≤ `:

Sr(q) = j(`τ)r +
`−1

∑
k=0

j
(

τ + k
`

)r

= Sr,0(q)+Sr,1(w)

with w = q1/`; Sr,1 a priori in Q(ζ`), but in fact over Q, hence
Sr,1(w) = Sr,1(q);

b) recognize Sr(q) = Sr(J).

2. Go back to Φ(X,J) using Newton formulas.
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b) Evaluation/interpolation (Enge; Dupont)

Φ`(X,J) = X`+1 +
`

∑
u=0

Cu(J)Xu, Cu(J) ∈ Z[J],deg(Cu(J))≤ `+1.

All computations are done using precision H = O(` log`).
Function COMPUTEPHI(`, f , (fr), degX):

Input : ` an odd prime; f a function, fr conjugates
Output: Φ`[f ](X,J) with degree degX in X
for degX +1 values of zi do

compute fr(zi) to precision H and build
∏

`+1
r=1(X− fr(zi)) = X`+1 +∑

`
u=0 Cu(j(zi))Xu;

O(M(`) log`) ops

for u← 0 to ` do
interpolate Cu from (j(zi),Cu(j(zi)) for 1≤ i≤ degX +1

return Φ`[f ](X,J)

All 1.2 + 2 has cost O(`M(`)(log`)M(H)) = Õ(`3).
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C) Isogeny volcanoes

•
•••

•
•••

•
•
•••

•
•••

•

Bröker, Lauter, Sutherland (2010): Under the Generalized
Riemann Hypothesis (GRH), expected running time of
O(`3(log`)3 log log`), and compute Φ` mod p using
O(`2(log`)2 + `2 logp) space.

I Need class polynomials HD(X) (sometimes H`2D(X)).
I Interpolate the values of all quantities modulo p.
I Extensible to partial differentials.

I Works also in Sutherland’s algo for direct evaluation over
K using explicit CRT.
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III. Elkies’s approach to the isogeny problem
Using power series for the Tate curve

Y2 = X3− E4(q)
48

X+
E6(q)
864

is `-isogenous to

Y2 = X3− E4(q`)
48

X+
E6(q`)

864
σr = power sums of the roots of the kernel polynomial:

σ1(q) =
`

2
(`E2(q`)−E2(q)).

Use series identities to get formulas for E4(q`) and E6(q`),
σ1(q) from known values.
Also:

A−A∗ = 5(6σ2 +2Aσ0), B−B∗ = 7(10σ3 +6Aσ1 +4Bσ0),

+ induction relation for σk with k > 3.

Consequence: A∗ and B∗ belong to Q[σ1,A,B].
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The case of Φ`(X,Y)

Thm. (Schoof95)
With j̃ = j(q`):

1) Φ`(j, j̃) = 0.

2) j′∂X + `j̃′∂Y = 0.

3)
j′′

j′
− `

j̃′′

j̃′
=− j′2∂XX + · · ·

j′∂X
.

All this yields E4(q`), E6(q`), σ1.

Cost: O(`2) operations in K.
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Finding smaller equations and their formulas

I Traditional approach: Φ`(X,Y). Formulas given by Schoof.

I Elkies 1992: ad hoc modular equations + formulas for
each `; cumbersome.

I Atkin: canonical with η-products, laundry method
(conjecturally smallest); magical formulas using
differentials of order 1 and 2.

I Müller (Enge): Hecke operators + somewhat ad hoc
tables. Same Atkin formulas.

I Smallest models for X0(`) in two variables, not related to j;
formulas?

Alternative: Charlap-Coley-Robbins (1991).

c© F. Morain 21/39



IV. Charlap-Coley-Robbins

A) Theory

Q(A,B)[X]/(f`(X,A,B))

Q(A,B)[X]/(U`(X,A,B))

Q(A,B)

(`−1)/2

`+1
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Using traces

Classical: use the trace T1 of an element in
Q(A,B)[X]/(f`(X,A,B)).
Let P = (x1,y1) 6= OE. Other points are Pj = [j]P = (xj,yj) can be
expressed using division polynomials.
For 0≤ k ≤ `+1

Tk =
d

∑
j=1

xk
j =

d

∑
j=1

(
x1−

ψj−1(x1)ψj+1(x1)

ψj(x1)2

)k

so that T1 = x1 + · · ·+ xd and T0 = d = (`−1)/2. The minimal
polynomial U`(X) = X`+1 +u1X`+ · · ·+u0 of T1 defines the
lower extension.

T1 = σ !

Use Newton’s identities to reconstruct the factor
∏

d
i=1(X− xi) = Xd−T1Xd−1 + · · · over the intermediate

extension.

← kernel polynomial!
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CCR polynomials

Thm. There exists three polynomials U`(X,Y,Z), V`(X,Y,Z),
W`(X,Y,Z) in Z[X,Y,Z,1/`] of degree `+1 in X such that
U`(σ ,A,B) = 0, V`(A∗,A,B) = 0, W`(B∗,A,B) = 0.

Thm. When ` > 3, U`, V`, W` live in Z[X,Y,Z].

Prop. Assigning respective weights 1, 2, 3 to X, Y, Z, the
monomials in U`, V` and W` have generalized degree `+1.

Computations of U`: use power sums of roots; numerical
computation possible via E2 (which can be expressed using a
hypergeometric function and theta functions – see A. Bostan).

Ex. U5(X,Y,Z) = X6 +20YX4 +160ZX3−80Y2X2−128YZX−80Z2.

Prop. Maximal size of integer during computation of U` (resp.
V`, W`) is ≈ 2` (resp. 4`, 6`).
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Function UseCCR(E, `):
Input : E/Fq = [A,B] an elliptic curve, ` an odd prime
Output: (σ ,A∗,B∗) parameters of a curve E∗ that is

`-isogenous to E
1. LU ← roots of U`(X,A,B) over Fq

2. if LU 6= /0 then
2.0. Let σ be an element of LU

2.1. LV ← roots of V`(X,A,B) over Fq

2.2. LW ← roots of W`(X,A,B) over Fq

for v ∈LV do
for w ∈LW do

if (σ ,v,w) is an `-isogeny then
return (σ ,v,w).

Cost: 3 polynomial exponentiations + ≤ 4 isogeny tests.
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Purely algebraic approaches

Triangular sets: Schost et al.; change of order algorithm.

Noro/Yasuda/Yokoyama (2020):
In particular (representation à la Hecke):

A∗ =
N`,A(X,A,B)

U′`(X)
, B∗ =

N`,B(X,A,B)
U′`(X)

(Only here: U′`(X) =
∂U`
∂X .)

N`,A (resp. N`,B) are polynomials with integer coefficients and
of generalized weight 2`+4 (resp. 2`+6). Computations by
any evaluation/interpolation method.

Ex. (with a sign flip)

N5,A = 630AX5−9360BX4−8240A2X3 +24480BAX2

+(1120A3−28800B2)X−3200BA2.
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B) Atkin’s more powerful variant

We also discuss here the alternative modular
equation suggested by (CCR). They use an equation
of degree (q+1) in E2*,whose coefficients are
forms of appropriate weights expressible in terms
of E4 and E6 (or,by applying Wq, in terms of E4q
and E6q). In the equivalent of cases 1 and 3
above,they find a value of E2* in GF(p).
The procedure with which they then continue is
however intolerably long,and a better continuation
is as follows.
Differentiate their equation twice at the cusp
infinity(i.e.with E2*,E4,E6);the first time we
get E4q,and the second E6q.
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Homogeneous properties of U

Notation:
∂σ =

∂U
∂σ

,∂4 =
∂U
∂E4

,∂6 =
∂U
∂E6

,etc..

U is homogeneous with weights, so that (generalized Euler
theorem)

(`+1)U = σ∂σ +2E4∂4 +3E6∂6. (4)

Note that partial derivatives are also homogeneous:

`∂σ = σ∂σσ +2E4∂σ4 +3E6∂σ6, (5)
(`−1)∂4 = σ∂σ4 +2E4∂44 +3E6∂46, (6)
(`−2)∂6 = σ∂σ6 +2E4∂46 +3E6∂66. (7)
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Getting the isogenous curve (1/4)

Differentiate U(σ ,E4,E6) = 0 to get

σ
′
∂σ +E′4∂4 +E′6∂6 = 0, (8)

σ = `
2 (`Ẽ2−E2) leading to

σ
′ =

`

2
(`2Ẽ′2−E′2) =

`

24
(`2(Ẽ2

2− Ẽ4)− (E2
2−E4)).

Replace `Ẽ2 by 2σ/`+E2 to get

σ
′ =

`

24

(
4σ2

`2 +
4σ

`
E2− (`2Ẽ4−E4)

)
,

that we plug in (8) together with the expressions for E4
′ and E6

′

from equation (3) to get a polynomial of degree 1 in E2 whose
coefficient of E2 is

σ∂σ +2E4∂4 +3E6∂6,

which we recognize in (4).
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Getting the isogenous curve (2/4)

(`+1)UE2+
`

4
(
4σ

2/`2− (`2Ẽ4−E4)
)

∂σ−2E6∂6−3E2
4∂4 = 0 (9)

from which we deduce Ẽ4 since U(σ ,E4,E6) = 0.

Finding Ẽ6: we differentiate (8)

σ
′′
∂σ +σ

′(σ ′∂σσ +E′4∂σ4 +E′6∂σ6)

+ E′′4∂4 +E′4(σ
′
∂4σ +E′4∂44 +E′6∂46)

+ E′′6∂6 +E′6(σ
′
∂6σ +E′4∂64 +E′6∂66) = 0

We compute in sequence

12E′′2 = 2E2E′2−E′4 = E2 (E2
2−E4)/6− (E2E4−E6)/3,

12Ẽ′′2 = 2Ẽ2Ẽ′2− Ẽ′4 = Ẽ2 (Ẽ2
2− Ẽ4)/6− (Ẽ2Ẽ4− Ẽ6)/3,

→ σ
′′ =

`

2
(`3Ẽ′′2 −E′′2)
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Getting the isogenous curve (3/4)

Differentiate Ramanujan’s relations:

E′′4 =
1
3
(E′2E4 +E2E′4−E′6), E′′6 =

1
2
(E′2E6 +E2E′6−2E4E′4),

Finally yields an expression as polynomial in E2:

C2E2
2 +C1E2 +C0 = 0.

The unknown Ẽ6 is to be found in C0 only.

Prop. (By luck ?) The coefficients C1 and C2 vanish for a
triplet such that U`(σ ,E4,E6) = 0.

Sketch of the proof: Replace ∂σσ , ∂44 and ∂66 by their values
from (5). Factoring the resulting expressions yields the same
factor σ∂σ +2E4∂4 +3E6∂6, which cancels C1 and C2.�
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Getting the isogenous curve (4/4)

We are left with
Ẽ6 =−

N
`6 ∂ 3

σ

where N is a polynomial in degree 3 in `

N =−E6∂
3
σ`

3 + c2`
2 +12∂

2
σ σ(3E2

4∂6 +2E6∂4)`−∂
3
σ σ

3.

The coefficient c2 has an ugly expression (that may be
simplified??).
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C) The case `≡ 11 mod 12

The number and size of the terms in their modular
equation are also larger than those in mine,
especially when q=11(mod 12). In that case, the
cuspform eta**2(tau)*eta**2(q*tau) could be used
instead of E2* to form the modular equation. This
both saves on size and number of coefficients,and
has convenient derivatives; the reader can by now
easily work out the precise algorithm.
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Properties

In this case, Atkin suggests to replace σ with
f (q) = η(q)2η(q`)2 another modular form of weight 2.

Ex.

CCRA11(X) = X12−990∆X6 +440∆E4 X4−165∆E6 X3

+22∆E2
4X2−∆E4 E6 X−11∆

2,

which is sparser U11(X).

CCRA is homogeneous:

(`+1)CCRA` = f ∂f +2E4∂4 +3E6∂6. (10)

We have f 12 = ∆(z)∆(`z) and therefore we deduce the
discriminant ∆̃ = f 12/∆, yielding a relation for Ẽ4 and Ẽ6.
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Computing σ

Write
f ′

f
= 2

η ′

η
+2`

η̃ ′

η̃
=

1
12

(`Ẽ2 +E2),

from which we deduce f ′.

Starting from f ′∂f +E′4∂4 +E′6∂6 = 0, and replacing by the
known values, we find

(f ∂f +4E4∂4 +6E6∂6)E2 + f `Ẽ2∂f −6E2
4∂6−4E6∂4 = 0,

which is
f `∂f (`Ẽ2−E2)−6E2

4∂6−4E6∂4 = 0,

which gives us

σ =
`
(
3∂6 E2

4 +2∂4 E6
)

f ∂f
.
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Computing Ẽ4

We differentiate f ′ to obtain:

f ′′ =
1
12

(
f ′(`Ẽ2 +E2)+ f (`2Ẽ′2 +E′2)

)
=

f
122

(
(`Ẽ2 +E2)

2 + `2(Ẽ2
2− Ẽ4)+(E2

2−E4))
)
.

We inject this together with Ẽ2 = (E2 +2σ/`)/` into

f ′′∂f + f ′(f ′∂ff +E′4∂f 4 +E′6∂f 6)

+ E′′4∂4 +E′4(f
′
∂4f +E′4∂44 +E′6∂46)

+ E′′6∂6 +E′6(f
′
∂6f +E′4∂64 +E′6∂66) = 0

This yields a polynomial of degree 2 in E2 whose coefficients
of degree 2 and 1 turn out to vanish. We are left with

Ẽ4 =−
M

`2f 2E4E6∂ 3
f

with a bulky expression for M.
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Computing Ẽ6

Prop. (applying Atkin-Lehner involution)

U`(−`σ ,A∗,B∗) = 0, V`(`
4A,A∗,B∗) = 0, W`(`

6B,A∗,B∗) = 0,

with A∗ = `4Ẽ4, B∗ = `6Ẽ6.

Also:

∆̃ =
Ẽ3

4− Ẽ2
6

1728

So that Ẽ6 is a root of the gcd of the two polynomials.
In practice, there is one root. Otherwise, use a heavy further
differential!!!
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V. Conclusions

When is this useful?

I you don’t like using Atkin’s laundry hammer;
I (technical, rare) when some ∂X = 0, the triplet (U,V,W) is

useful;
I for small `, either use sparse formulas (U`,N`,A,D`,A) or

only U` and the ugly formulas.

Working ugly formulas can be done using multipliers for
Borweins’ like modular polynomials as explained by
R. Dupont. But this is another story. . . !
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