Computing the Charlap-Coley-Robbins modular polynomials

F. Morain

Laboratoire d'Informatique de l'École polytechnique

Nancy, 2023/01/13

Contents

- I. Introduction and motivation.
- II. Classical theory and computations.
- III. Elkies's approach to the isogeny problem.
- IV. Charlap-Coley-Robbins.
- V. Conclusions.

I. Introduction

Motivations for computing isogenies in ANT/crypto:

- original one (1989ff): Schoof-Elkies-Atkin (SEA);
- later (circa 2000): Kohel, Galbraith, Fouquet/FM (volcanoes);
- more recently (2006ff): Galbraith/Hess/Smart; Smart; Jao/Miller/Venkatesan; Teske; Couveignes, Rostovtsev/Stolbunov.
- post-quantum cryptography (2011ff): Defeo/Jao, etc.

Bibliography:

- Silverman; Lang's *Elliptic functions*.
- green book (Blake/Seroussi/Smart). Don't forget to read the original papers, when available...
- Gathen & Gerhard, etc.

Elliptic curves and isogenies

$$E: y^2 = x^3 + Ax + B$$
 over \mathbf{K} , char(\mathbf{K}) $\notin \{2, 3\}$.

Def. (torsion points) For $n \in \mathbb{N}$, $E[n] = \{P \in E(\overline{\mathbb{K}}), [n]P = O_E\}$.

Division polynomials:

$$[n](x,y) = \left(\frac{\varphi_n(x,y)}{\psi_n(x,y)^2}, \frac{\omega_n(x,y)}{\psi_n(x,y)^3}\right)$$

$$\varphi_n = x \psi_n^2 - \psi_{n+1} \psi_{n-1}$$

$$4y \omega_n = \psi_{n+2} \psi_{n-1}^2 - \psi_{n-2} \psi_{n+1}^2$$

ln **K**[x,y]/(y² - (x³ + Ax + B)), one has:

$$\psi_{2m+1}(x,y) = f_{2m+1}(x), \quad \psi_{2m} = 2yf_{2m}(x)$$

for some $f_m(x) \in \mathbf{K}[A, B, x]$.

Isogenies

Def. $\phi : E \to E^*$, $\phi(O_E) = O_{E^*}$; induces a morphism of groups.

First examples

1. Separable:

$$[k](x,y) = \left(\frac{\varphi_k}{\psi_k^2}, \frac{\omega_k}{\psi_k^3}\right)$$

- 2. Complex multiplication: [i](x,y) = (-x,iy) on $E: y^2 = x^3 x$.
- 3. Inseparable: $\varphi(x, y) = (x^p, y^p)$, $\mathbf{K} = \mathbb{F}_p$.

In the sequel:

- only separable isogenies;
- finite fields of large characteristic (see comments at the end).

Finding isogenies

Thm. If *F* is a finite subgroup of $E(\overline{\mathbf{K}})$, there exists ϕ and E^* s.t.

$$\phi: E \to E^* = E/F, \quad \ker(\phi) = F.$$

Facts:

- ► An equation of *E*^{*} can be computed using Vélu's formulas;
- the kernel polynomial (== denominator of φ) is
 ℋ_F = X^d − σ₁X^{d−1} + · · · is a factor of f_ℓ(X) (in case ℓ odd and d = (ℓ − 1)/2).

Thm. All isogenous curves of degree ℓ to a given *E* are characterized by $\Phi_{\ell}(j(E^*), j(E)) = 0$, where Φ_{ℓ} is the traditional modular equation.

But: having $j(E^*)$ is not enough to find an equation for E^* (quadratic twists), nor the explicit isogeny.

(C) F. Morain

Basic algorithm

Function FindAllIsogenies(E, ℓ):Input : $E/\mathbb{F}_q = [A, B]$ an elliptic curve, ℓ an odd primeOutput: $\{(\sigma, A^*, B^*)\}$ parameters of curves E^* that are
 ℓ -isogenous to E if any1. $\mathscr{L} \leftarrow$ roots of $\Phi_\ell(X, j(E)) = 0$ over K2. $\mathscr{R} \leftarrow \emptyset$ 3. for $j^* \in \mathscr{L}$ do
 $\lfloor \ \mathscr{R} \leftarrow \mathscr{R} \cup \{(\sigma, A^*, B^*)\}$, the parameters of E^* 4. return \mathscr{R} .

Rem. $#\mathscr{L} \in \{0, 2, 1, \ell + 1\}$; more is known on the splitting of $\Phi_{\ell}(X, j(E))$ over **K**.

Isogeny algorithms

Key ingredients:

- modular equations:
 - choose nice equations;
 - compute equations over $\mathbb{Z}[X]$ + instantiation over **K**:
 - series over \mathbb{Z} (or $\mathbb{Z}/p\mathbb{Z}$): (..., CCR, Atkin, ...);
 - evaluation/interpolation: with floating points (Dupont/Enge); with curves modulo *p* (Charles + Lauter).
 - Compute $\Phi_{\ell}(X, j(E))$ directly using isogeny volcanoes (Sutherland *et al.*).
- ► compute ℓ-isogenies:
 - compute isgenous curve: magical (ugly) formulas by Atkin; alternatively: CCR.
 - compute isogeny: depends on q and p, BMSS, Lercier/Sirvent, etc.

II. Classical theory and computations

Eisenstein series: $\delta_r(n) = \sum_{d|n} d^r$

$$E_2(q) = 1 - 24 \sum_{n=1}^{\infty} \delta_1(n) q^n,$$

$$E_4(q) = 1 + 240 \sum_{n=1}^{\infty} \delta_3(n) q^n,$$

$$E_6(q) = 1 - 504 \sum_{n=1}^{\infty} \delta_5(n) q^n,$$

Fact: E_4 and E_6 are modular forms of weight 4 and 6 respectively, E_2 is almost modular.

$$\Delta(q) = \frac{E_4^3 - E_6^2}{1718} = q \prod_{n \ge 1} (1 - q^n)^{24} = \eta(q)^{24}$$
$$j(q) = \frac{E_4^3}{\Delta} = \frac{1}{q} + 744 + \sum_{n \ge 1} c_n q^n, c_n \in \mathbb{N}.$$

Identities involving Eisenstein's series

When $F(q) = \sum_{n \ge n_0} a_n q^n$, we introduce the operator

$$F'(q) = \frac{1}{2i\pi} \frac{dF}{d\tau} = q \frac{dF}{dq} = \sum_{n \ge n_0} na_n q^n.$$

$$\Delta = \frac{E_4^3 - E_6^2}{1728}, \quad \frac{\Delta'}{\Delta} = E_2, \quad j = \frac{E_4^3}{\Delta}, \quad j - 1728 = \frac{E_6^2}{\Delta}, \quad (1)$$
$$\frac{j'}{j} = -\frac{E_6}{E_4}, \quad \frac{j'}{j - 1728} = -\frac{E_4^2}{E_6}, \quad j' = -\frac{E_4^2 E_6}{\Delta}, \quad (2)$$
$$3E_4' = E_2 E_4 - E_6, \quad 2E_6' = E_2 E_6 - E_4^2, \quad 12E_2' = E_2^2 - E_4. \quad (3)$$
(The last line is due to Ramanujan.)

A) Lattices

Def. $\mathscr{L} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ and $\mathscr{L}' = \mathbb{Z}\omega'_1 + \mathbb{Z}\omega'_2$ are isomorphic iff there exists *P* in $SL_2(\mathbb{Z})$ s.t.

$$\left(\begin{array}{c}\omega_1'\\\omega_2'\end{array}\right)=P\left(\begin{array}{c}\omega_1\\\omega_2\end{array}\right).$$

Thm. \mathscr{L} and \mathscr{L}' are isomorphic iff $j(\mathscr{L}) = j(\mathscr{L}')$.

Def. \mathscr{L} and \mathscr{M} are isogenous iff $\exists \alpha \in \mathbb{C}, \alpha \mathscr{L} \subset \mathscr{M}$.

Most interesting case: \mathscr{M} is a sublattice of \mathscr{L} s.t. \mathscr{L}/\mathscr{M} is cyclic of finite index. In other words:

$$\mathscr{M} = (a\omega_1 + b\omega_2)\mathbb{Z} + (c\omega_1 + d\omega_2)\mathbb{Z}$$

and ad - bc = m with gcd(a, b, c, d) = 1.

Fundamental theorem (modular polynomial):

Thm. $\exists \alpha \in \mathbb{C}$ s.t. $\alpha \mathscr{M} \subset \mathscr{L}$ iff $\exists m$ s.t. $\Phi_m(j(\mathscr{M}), j(\mathscr{L})) = 0$ s.t. with $\tau = \omega_2/\omega_1$ (imag. part > 0), $q = \exp(2i\pi\tau)$:

$$\Phi_m(X,\tau) = \prod_{A \in \mathscr{S}_m} (X - j(A\tau)) = \sum_{k=0}^{\mu_0(m)} C_k(\tau) X^k,$$

$$\mathscr{S}_m = \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right), ad = m, \gcd(a, b, d) = 1, a > 0, d > b \ge 0 \right\}$$

of cardinality $\mu_0(m) = m \prod_{p|m} (1+1/p)$.

When $m = \ell$ is prime:

$$\mathscr{S}_{\ell} = \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & \ell \end{array} \right), 0 \leq b < \ell \right\} \cup \left\{ \left(\begin{array}{cc} \ell & 0 \\ 0 & 1 \end{array} \right) \right\}$$

of cardinality $\ell + 1$.

Modular polynomials

Thm.

•
$$\Phi_m(X,Y) \in \mathbb{Z}[X,Y];$$

- $\blacktriangleright \Phi_m(Y,X) = \Phi_m(X,Y);$
- If *m* is squarefree, then the coefficient of highest degree of Φ_m(X,X) is ±1.

Prop. ("Cyclotomic" properties) (a) If $(m_1, m_2) = 1$, then

 $\Phi_{m_1m_2}(X,J) = \operatorname{Resultant}_Z(\Phi_{m_1}(X,Z),\Phi_{m_2}(Z,J)).$

(b) If $m = \ell^e$ with e > 1, then

 $\Phi_{\ell^e}(X,J) = \operatorname{Resultant}_Z(\Phi_{\ell}(X,Z), \Phi_{\ell^{e-1}}(Z,J)) / \Phi_{\ell^{e-2}}(Z,J)^{\ell}.$

Thm. (Kronecker) If ℓ is prime, then

 $\Phi_{\ell}(X,Y) \equiv (X^{\ell} - Y)(Y^{\ell} - X) \bmod \ell.$

Height

Thm. (P. Cohen) $H(\Phi_m) = 6\mu_0(m)(\log m - 2\sum_{p|m}(\log p)/p + O(1)).$

l	101	211	503	1009	2003
$H(\Phi_\ell)$	3985	9256	24736	53820	115125
PCohen	2768	6743	18736	41832	91320

Thm. (Bröker & Sutherland)

$$H(\Phi_{\ell}) \leq 6\ell \log \ell + 16\ell + 14\sqrt{\ell} \log \ell.$$

 $\Rightarrow \Phi_{\ell}$ has $O(\ell^2)$ coefficients of size $\ell \log \ell$, or a $\tilde{O}(\ell^3)$ -bit object. Ex.

$$\Phi_2(X, Y) = X^3 + X^2 \left(-Y^2 + 1488 Y - 162000\right)$$
$$+X \left(1488 Y^2 + 40773375 Y + 8748000000\right)$$
$$+Y^3 - 162000 Y^2 + 8748000000 Y - 157464000000000.$$

_

B) Computing modular polynomials over $\mathbb{Z}[X]$

Remember that

$$j(q) = \frac{1}{q} + 744 + \sum_{n \ge 1} c_n q^n, \quad c_n \in \mathbb{Z}^+$$

Then $\Phi_{\ell}(X,Y)$ is such that $\Phi_{\ell}(j(q),j(q^{\ell}))$ vanishes identically.

Naive method: indeterminate coefficients (over \mathbb{Q} or small *p*'s); at least $\tilde{O}((\ell^2)^{\omega})$ operations over \mathbb{Q} .

Ex.

$$\Phi_2(X, Y) = X^3 + X^2 \left(-Y^2 + 1488 Y - 162000\right)$$
$$+X \left(1488 Y^2 + 40773375 Y + 8748000000\right)$$
$$+Y^3 - 162000 Y^2 + 8748000000 Y - 157464000000000.$$

a) Series computations

Enneper (1890) use *q*-expansion of *j* and $j(q^{\ell})$ with $O(\ell^2)$ terms; Atkin used this modulo CRT primes (embarassingly parallel). $\tilde{O}(\ell^3 M(p))$

1. a) Compute power sums for $1 \le r \le \ell$:

$$S_r(q) = j(\ell\tau)^r + \sum_{k=0}^{\ell-1} j\left(\frac{\tau+k}{\ell}\right)^r = S_{r,0}(q) + S_{r,1}(w)$$

with $w = q^{1/\ell}$; $S_{r,1}$ a priori in $\mathbb{Q}(\zeta_{\ell})$, but in fact over \mathbb{Q} , hence $S_{r,1}(w) = S_{r,1}(q)$;

b) recognize $S_r(q) = S_r(J)$.

2. Go back to $\Phi(X,J)$ using Newton formulas.

b) Evaluation/interpolation (Enge; Dupont)

$$\Phi_{\ell}(X,J) = X^{\ell+1} + \sum_{u=0}^{\ell} C_u(J)X^u, \quad C_u(J) \in \mathbb{Z}[J], \deg(C_u(J)) \le \ell+1.$$

All computations are done using precision $H = O(\ell \log \ell)$.

Function COMPUTEPHI $(\ell, f, (f_r), \deg_X)$: **Input** : ℓ an odd prime; f a function, f_r conjugates **Output:** $\Phi_{\ell}[f](X,J)$ with degree deg_X in X for $\deg_x + 1$ values of z_i do compute $f_r(z_i)$ to precision H and build $\prod_{r=1}^{\ell+1} (X - f_r(z_i)) = X^{\ell+1} + \sum_{u=0}^{\ell} C_u(j(z_i)) X^u;$ $O(\mathsf{M}(\ell)\log\ell)$ ops for $u \leftarrow 0$ to ℓ do interpolate C_u from $(j(z_i), C_u(j(z_i)))$ for $1 \le i \le \deg_X + 1$ return $\Phi_{\ell}[f](X,J)$

All 1.2 + 2 has cost $O(\ell \mathsf{M}(\ell)(\log \ell)\mathsf{M}(H)) = \tilde{O}(\ell^3)$.

C) Isogeny volcanoes

Bröker, Lauter, Sutherland (2010): Under the Generalized Riemann Hypothesis (GRH), expected running time of $O(\ell^3(\log \ell)^3 \log \log \ell)$, and compute $\Phi_\ell \mod p$ using $O(\ell^2(\log \ell)^2 + \ell^2 \log p)$ space.

- ▶ Need class polynomials $H_D(X)$ (sometimes $H_{\ell^2 D}(X)$).
- Interpolate the values of all quantities modulo p.
- Extensible to partial differentials.
- Works also in Sutherland's algo for direct evaluation over K using explicit CRT.

III. Elkies's approach to the isogeny problem

Using power series for the Tate curve

$$Y^2 = X^3 - \frac{E_4(q)}{48}X + \frac{E_6(q)}{864}$$

is ℓ -isogenous to

$$Y^2 = X^3 - \frac{E_4(q^\ell)}{48}X + \frac{E_6(q^\ell)}{864}$$

 σ_r = power sums of the roots of the kernel polynomial:

$$\sigma_1(q) = \frac{\ell}{2} (\ell E_2(q^\ell) - E_2(q)).$$

Use series identities to get formulas for $E_4(q^{\ell})$ and $E_6(q^{\ell})$, $\sigma_1(q)$ from known values. Also:

 $A - A^* = 5(6\sigma_2 + 2A\sigma_0), \qquad B - B^* = 7(10\sigma_3 + 6A\sigma_1 + 4B\sigma_0),$

+ induction relation for σ_k with k > 3.

Consequence: A^* and B^* belong to $\mathbb{Q}[\sigma_1, A, B]$.

(C) F. Morain

The case of $\Phi_{\ell}(X, Y)$

Thm. (Schoof95) With $\tilde{j} = j(q^{\ell})$: 1) $\Phi_{\ell}(j,\tilde{j}) = 0$. 2) $j'\partial_X + \ell \tilde{j}'\partial_Y = 0$. 3) $\frac{j''}{i'} - \ell \frac{\tilde{j}''}{\tilde{i}'} = -\frac{j'^2 \partial_{XX} + \cdots}{i' \partial_Y}$.

All this yields $E_4(q^\ell)$, $E_6(q^\ell)$, σ_1 .

Cost: $O(\ell^2)$ operations in **K**.

Finding smaller equations and their formulas

- ► Traditional approach: $\Phi_{\ell}(X, Y)$. Formulas given by Schoof.
- Elkies 1992: ad hoc modular equations + formulas for each l; cumbersome.
- Atkin: canonical with η-products, laundry method (conjecturally smallest); magical formulas using differentials of order 1 and 2.
- Müller (Enge): Hecke operators + somewhat ad hoc tables. Same Atkin formulas.
- Smallest models for X₀(*l*) in two variables, not related to *j*; formulas?

Alternative: Charlap-Coley-Robbins (1991).

IV. Charlap-Coley-Robbins

A) Theory

 $\mathbb{Q}(A,B)[X]/(f_{\ell}(X,A,B))$ $\left| (\ell-1)/2 \\ \mathbb{Q}(A,B)[X]/(U_{\ell}(X,A,B)) \\ \ell+1 \\ \mathbb{Q}(A,B) \end{aligned} \right|$

Using traces

Classical: use the trace T_1 of an element in $\mathbb{Q}(A,B)[X]/(f_{\ell}(X,A,B))$. Let $P = (x_1,y_1) \neq O_E$. Other points are $P_j = [j]P = (x_j,y_j)$ can be expressed using division polynomials. For $0 \le k \le \ell + 1$

$$T_k = \sum_{j=1}^d x_j^k = \sum_{j=1}^d \left(x_1 - \frac{\psi_{j-1}(x_1)\psi_{j+1}(x_1)}{\psi_j(x_1)^2} \right)^k$$

so that $T_1 = x_1 + \cdots + x_d$ and $T_0 = d = (\ell - 1)/2$. The minimal polynomial $U_{\ell}(X) = X^{\ell+1} + u_1 X^{\ell} + \cdots + u_0$ of T_1 defines the lower extension.

Use Newton's identities to reconstruct the factor $\prod_{i=1}^{d} (X - x_i) = X^d - T_1 X^{d-1} + \cdots$ over the intermediate extension.

Using traces

Classical: use the trace T_1 of an element in $\mathbb{Q}(A,B)[X]/(f_{\ell}(X,A,B))$. Let $P = (x_1,y_1) \neq O_E$. Other points are $P_j = [j]P = (x_j,y_j)$ can be expressed using division polynomials. For $0 \le k \le \ell + 1$

$$T_k = \sum_{j=1}^d x_j^k = \sum_{j=1}^d \left(x_1 - \frac{\psi_{j-1}(x_1)\psi_{j+1}(x_1)}{\psi_j(x_1)^2} \right)^k$$

so that $T_1 = x_1 + \dots + x_d$ and $T_0 = d = (\ell - 1)/2$. The minimal polynomial $U_{\ell}(X) = X^{\ell+1} + u_1 X^{\ell} + \dots + u_0$ of T_1 defines the lower extension. $T_1 = \sigma!$

Use Newton's identities to reconstruct the factor $\prod_{i=1}^{d} (X - x_i) = X^d - T_1 X^{d-1} + \cdots$ over the intermediate extension. \leftarrow kernel polynomial!

CCR polynomials

Thm. There exists three polynomials $U_{\ell}(X, Y, Z)$, $V_{\ell}(X, Y, Z)$, $W_{\ell}(X, Y, Z)$ in $\mathbb{Z}[X, Y, Z, 1/\ell]$ of degree $\ell + 1$ in X such that $U_{\ell}(\sigma, A, B) = 0$, $V_{\ell}(A^*, A, B) = 0$, $W_{\ell}(B^*, A, B) = 0$.

Thm. When $\ell > 3$, U_{ℓ} , V_{ℓ} , W_{ℓ} live in $\mathbb{Z}[X, Y, Z]$.

Prop. Assigning respective weights 1, 2, 3 to *X*, *Y*, *Z*, the monomials in U_{ℓ} , V_{ℓ} and W_{ℓ} have generalized degree $\ell + 1$.

Computations of U_{ℓ} : use power sums of roots; numerical computation possible via E_2 (which can be expressed using a hypergeometric function and theta functions – see A. Bostan).

Ex. $U_5(X, Y, Z) = X^6 + 20YX^4 + 160ZX^3 - 80Y^2X^2 - 128YZX - 80Z^2$.

Prop. Maximal size of integer during computation of U_{ℓ} (resp. V_{ℓ}, W_{ℓ}) is $\approx 2\ell$ (resp. $4\ell, 6\ell$).

```
Function UseCCR(E, \ell):
     Input : E/\mathbb{F}_q = [A, B] an elliptic curve, \ell an odd prime
     Output: (\sigma, A^*, B^*) parameters of a curve E^* that is
                   \ell-isogenous to E
     1. \mathscr{L}_U \leftarrow roots of U_\ell(X, A, B) over \mathbb{F}_a
     2. if \mathscr{L}_U \neq \emptyset then
          2.0. Let \sigma be an element of \mathscr{L}_{U}
          2.1. \mathscr{L}_V \leftarrow roots of V_\ell(X, A, B) over \mathbb{F}_q
          2.2. \mathscr{L}_W \leftarrow roots of W_\ell(X, A, B) over \mathbb{F}_q
           for v \in \mathscr{L}_V do
               for w \in \mathscr{L}_W do
          if (\sigma, v, w) is an \ell-isogeny then 

\lfloor return (\sigma, v, w).
```

Cost: 3 polynomial exponentiations $+ \le 4$ isogeny tests.

Purely algebraic approaches

Triangular sets: Schost *et al.*; change of order algorithm.

Noro/Yasuda/Yokoyama (2020):

In particular (representation à la Hecke):

$$A^* = rac{N_{\ell,A}(X,A,B)}{U'_{\ell}(X)}, \quad B^* = rac{N_{\ell,B}(X,A,B)}{U'_{\ell}(X)}$$

(Only here: $U'_{\ell}(X) = \frac{\partial U_{\ell}}{\partial X}$.) $N_{\ell,A}$ (resp. $N_{\ell,B}$) are polynomials with integer coefficients and of generalized weight $2\ell + 4$ (resp. $2\ell + 6$). Computations by any evaluation/interpolation method.

Ex. (with a sign flip)

$$N_{5,A} = 630AX^5 - 9360BX^4 - 8240A^2X^3 + 24480BAX^2 + (1120A^3 - 28800B^2)X - 3200BA^2.$$

B) Atkin's more powerful variant

We also discuss here the alternative modular equation suggested by (CCR). They use an equation of degree (q+1) in E2*, whose coefficients are forms of appropriate weights expressible in terms of E4 and E6 (or, by applying Wq, in terms of E4q and E6q). In the equivalent of cases 1 and 3 above, they find a value of E2* in GF(p). The procedure with which they then continue is however intolerably long, and a better continuation is as follows.

Differentiate their equation twice at the cusp infinity(i.e.with E2*, E4, E6); the first time we get E4q, and the second E6q.

Homogeneous properties of U

Notation:

$$\partial_{\sigma} = \frac{\partial U}{\partial \sigma}, \partial_4 = \frac{\partial U}{\partial E_4}, \partial_6 = \frac{\partial U}{\partial E_6},$$
 etc..

 \boldsymbol{U} is homogeneous with weights, so that (generalized Euler theorem)

$$(\ell+1)U = \sigma \partial_{\sigma} + 2E_4 \partial_4 + 3E_6 \partial_6.$$
(4)

Note that partial derivatives are also homogeneous:

$$\ell \partial_{\sigma} = \sigma \partial_{\sigma\sigma} + 2E_4 \partial_{\sigma4} + 3E_6 \partial_{\sigma6}, \qquad (5)$$

$$(\ell-1)\partial_4 = \sigma \partial_{\sigma 4} + 2E_4 \partial_{44} + 3E_6 \partial_{46}, \qquad (6)$$

$$(\ell - 2)\partial_6 = \sigma \partial_{\sigma 6} + 2E_4 \partial_{46} + 3E_6 \partial_{66}.$$
(7)

Getting the isogenous curve (1/4)

Differentiate $U(\sigma, E_4, E_6) = 0$ to get

$$\sigma'\partial_{\sigma} + E'_4\partial_4 + E'_6\partial_6 = 0, \tag{8}$$

 $\sigma = rac{\ell}{2} \left(\ell ilde{E}_2 - E_2
ight)$ leading to

$$\sigma' = \frac{\ell}{2} \left(\ell^2 \tilde{E}_2' - E_2' \right) = \frac{\ell}{24} \left(\ell^2 (\tilde{E}_2^2 - \tilde{E}_4) - (E_2^2 - E_4) \right).$$

Replace $\ell \tilde{E}_2$ by $2\sigma/\ell + E_2$ to get

$$\sigma'=rac{\ell}{24}\,\left(rac{4\sigma^2}{\ell^2}+rac{4\sigma}{\ell}E_2-(\ell^2 ilde E_4-E_4)
ight),$$

that we plug in (8) together with the expressions for E_4' and E_6' from equation (3) to get a polynomial of degree 1 in E_2 whose coefficient of E_2 is

$$\sigma \partial_{\sigma} + 2E_4 \partial_4 + 3E_6 \partial_6$$

which we recognize in (4).

C F. Morain

Getting the isogenous curve (2/4)

$$(\ell+1)UE_2 + \frac{\ell}{4} \left(4\sigma^2/\ell^2 - (\ell^2 \tilde{E}_4 - E_4) \right) \partial_\sigma - 2E_6 \partial_6 - 3E_4^2 \partial_4 = 0$$
(9)

from which we deduce \tilde{E}_4 since $U(\sigma, E_4, E_6) = 0$. Finding \tilde{E}_6 : we differentiate (8)

$$\sigma'' \partial_{\sigma} + \sigma' (\sigma' \partial_{\sigma\sigma} + E'_4 \partial_{\sigma4} + E'_6 \partial_{\sigma6}) + E''_4 \partial_4 + E'_4 (\sigma' \partial_{4\sigma} + E'_4 \partial_{44} + E'_6 \partial_{46}) + E''_6 \partial_6 + E'_6 (\sigma' \partial_{6\sigma} + E'_4 \partial_{64} + E'_6 \partial_{66}) = 0$$

We compute in sequence

$$12E_2'' = 2E_2E_2' - E_4' = E_2 (E_2^2 - E_4)/6 - (E_2E_4 - E_6)/3,$$

$$12\tilde{E}_2'' = 2\tilde{E}_2\tilde{E}_2' - \tilde{E}_4' = \tilde{E}_2 (\tilde{E}_2^2 - \tilde{E}_4)/6 - (\tilde{E}_2\tilde{E}_4 - \tilde{E}_6)/3,$$

$$\rightarrow \sigma'' = \frac{\ell}{2} (\ell^3\tilde{E}_2'' - E_2'')$$

Getting the isogenous curve (3/4)

Differentiate Ramanujan's relations:

$$E_4'' = \frac{1}{3} \left(E_2' E_4 + E_2 E_4' - E_6' \right), \quad E_6'' = \frac{1}{2} \left(E_2' E_6 + E_2 E_6' - 2 E_4 E_4' \right),$$

Finally yields an expression as polynomial in E_2 :

$$C_2 E_2^2 + C_1 E_2 + C_0 = 0.$$

The unknown \tilde{E}_6 is to be found in C_0 only.

Prop. (By luck ?) The coefficients C_1 and C_2 vanish for a triplet such that $U_{\ell}(\sigma, E_4, E_6) = 0$.

Sketch of the proof: Replace $\partial_{\sigma\sigma}$, ∂_{44} and ∂_{66} by their values from (5). Factoring the resulting expressions yields the same factor $\sigma \partial_{\sigma} + 2E_4 \partial_4 + 3E_6 \partial_6$, which cancels C_1 and C_2 .

Getting the isogenous curve (4/4)

We are left with

$$\tilde{E}_6 = -\frac{N}{\ell^6 \,\partial_\sigma^3}$$

where N is a polynomial in degree 3 in ℓ

$$N = -E_6 \partial_\sigma^3 \ell^3 + c_2 \ell^2 + 12 \partial_\sigma^2 \sigma (3E_4^2 \partial_6 + 2E_6 \partial_4) \ell - \partial_\sigma^3 \sigma^3.$$

The coefficient c_2 has an ugly expression (that may be simplified??).

C) The case $\ell \equiv 11 \mod 12$

The number and size of the terms in their modular equation are also larger than those in mine, especially when q=11(mod 12). In that case, the cuspform eta**2(tau)*eta**2(q*tau) could be used instead of E2* to form the modular equation. This both saves on size and number of coefficients, and has convenient derivatives; the reader can by now easily work out the precise algorithm.

Properties

In this case, Atkin suggests to replace σ with $f(q) = \eta(q)^2 \eta(q^\ell)^2$ another modular form of weight 2. **Ex.**

 $CCRA_{11}(X) = X^{12} - 990\Delta X^{6} + 440\Delta E_{4}X^{4} - 165\Delta E_{6}X^{3}$ $+ 22\Delta E_{4}^{2}X^{2} - \Delta E_{4}E_{6}X - 11\Delta^{2},$

which is sparser $U_{11}(X)$.

CCRA is homogeneous:

$$(\ell+1)CCRA_{\ell} = f\partial_f + 2E_4\partial_4 + 3E_6\partial_6.$$
(10)

We have $f^{12} = \Delta(z)\Delta(\ell z)$ and therefore we deduce the discriminant $\tilde{\Delta} = f^{12}/\Delta$, yielding a relation for \tilde{E}_4 and \tilde{E}_6 .

Computing σ

Write

$$\frac{f'}{f} = 2\frac{\eta'}{\eta} + 2\ell \frac{\tilde{\eta}'}{\tilde{\eta}} = \frac{1}{12}(\ell \tilde{E}_2 + E_2),$$

from which we deduce f'.

Starting from $f'\partial_f + E'_4\partial_4 + E'_6\partial_6 = 0$, and replacing by the known values, we find

$$(f\partial_f + 4E_4\partial_4 + 6E_6\partial_6)E_2 + f\ell\tilde{E}_2\partial_f - 6E_4^2\partial_6 - 4E_6\partial_4 = 0,$$

which is

$$f\ell\partial_f(\ell\tilde{E}_2-E_2)-6E_4^2\partial_6-4E_6\partial_4=0,$$

which gives us

$$\sigma = \frac{\ell \left(3 \partial_6 E_4^2 + 2 \partial_4 E_6 \right)}{f \partial_f}.$$

Computing \tilde{E}_4

We differentiate f' to obtain:

$$f'' = \frac{1}{12} \left(f'(\ell \tilde{E}_2 + E_2) + f(\ell^2 \tilde{E}'_2 + E'_2) \right)$$
$$= \frac{f}{12^2} \left((\ell \tilde{E}_2 + E_2)^2 + \ell^2 (\tilde{E}_2^2 - \tilde{E}_4) + (E_2^2 - E_4)) \right).$$

We inject this together with $\tilde{E}_2 = (E_2 + 2\sigma/\ell)/\ell$ into

$$f''\partial_{f} + f'(f'\partial_{ff} + E'_{4}\partial_{f4} + E'_{6}\partial_{f6}) + E''_{4}\partial_{4} + E'_{4}(f'\partial_{4f} + E'_{4}\partial_{44} + E'_{6}\partial_{46}) + E''_{6}\partial_{6} + E'_{6}(f'\partial_{6f} + E'_{4}\partial_{64} + E'_{6}\partial_{66}) = 0$$

This yields a polynomial of degree 2 in E_2 whose coefficients of degree 2 and 1 turn out to vanish. We are left with

$$\tilde{E}_4 = -\frac{M}{\ell^2 f^2 E_4 E_6 \partial_f^3}$$

with a bulky expression for M.

C F. Morain

Computing \tilde{E}_6

Prop. (applying Atkin-Lehner involution)

$$\begin{split} &U_\ell(-\ell\sigma,A^*,B^*)=0, \quad V_\ell(\ell^4A,A^*,B^*)=0, \quad W_\ell(\ell^6B,A^*,B^*)=0, \end{split}$$
 with $A^*=\ell^4\tilde{E}_4, B^*=\ell^6\tilde{E}_6.$

Also:

$$\tilde{\Delta} = \frac{\tilde{E}_4^3 - \tilde{E}_6^2}{1728}$$

So that \tilde{E}_6 is a root of the gcd of the two polynomials. In practice, there is one root. Otherwise, use a heavy further differential!!!

V. Conclusions

When is this useful?

- you don't like using Atkin's laundry hammer;
- ► (technical, rare) when some ∂_X = 0, the triplet (U, V, W) is useful;
- ▶ for small l, either use sparse formulas (U_l, N_{l,A}, D_{l,A}) or only U_l and the ugly formulas.

Working ugly formulas can be done using multipliers for Borweins' like modular polynomials as explained by R. Dupont. But this is another story...!