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|. Introduction

Motivations for computing isogenies in ANT/crypto:
» original one (1989ff): Schoof-Elkies-Atkin (SEA);

» later (circa 2000): Kohel, Galbraith, Fouquet/FM
(volcanoes);

» more recently (2006ff): Galbraith/Hess/Smart; Smart;
Jao/Miller/Venkatesan; Teske; Couveignes,
Rostovtsev/Stolbunov.

» post-quantum cryptography (2011ff): Defeo/Jao, etc.

Bibliography:
» Silverman; Lang’s Elliptic functions.

» green book (Blake/Seroussi/Smart). Don'’t forget to read
the original papers, when available. ..

» Gathen & Gerhard, etc.
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Elliptic curves and isogenies

E:y* =x*+Ax+ B over K, char(K) ¢ {2,3}.

Def. (torsion points) For n € N, E[n] = {P € E(K), [n]P = Og}.

Division polynomials:

_ (o) on(xy)
[n]<x7y) - <[//n(x,y)2, l[/n()C,y)3>

On = xl//,% —VYnr1V¥n-1
dyw, = V’n+2‘/1371 - II/'I—ZIVr%Jrl
In K[x,y]/(y* — (x* +Ax+ B)), one has:
Vom+1 (x,y) :f2m+1 (X), YVom = nyzm(x)

for some f,,(x) € K[A, B, x].
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Isogenies
Def. ¢ : E — E*, ¢(Og) = Og-; induces a morphism of groups.

First examples
1. Separable:

en=(38)

2. Complex multiplication: [i](x,y) = (—x,iy) on E : y* = x> — x.
3. Inseparable: ¢(x,y) = (x”,)"), K=TF,.

In the sequel:
» only separable isogenies;

» finite fields of large characteristic (see comments at the
end).
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Finding isogenies
Thm. If F is a finite subgroup of E(K), there exists ¢ and E*
s.t.
¢:E—E"=E/F, ker(¢)=F.
Facts:
» An equation of E* can be computed using Vélu'’s formulas;
» the kernel polynomial (== denominator of ¢) is

Hp =X — o X471 + ... is a factor of f;(X) (in case ¢ odd
andd=(¢{—1)/2).

Thm. All isogenous curves of degree ¢ to a given E are
characterized by ®,(j(E*),j(E)) = 0, where @, is the traditional
modular equation.

But: having j(E*) is not enough to find an equation for E*

(quadratic twists), nor the explicit isogeny.
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Basic algorithm

Function FindAlllsogenies(E, {):
Input : E/F, = [A,B] an elliptic curve, ¢ an odd prime
Output: {(c,A*,B*)} parameters of curves E* that are
(-isogenous to E if any
1. £ « roots of ®y(X,j(E)) = 0 over K
2. %+ 0
3. forj* € Z do
| %« %#U{(c,A",B")}, the parameters of E*

L 4. return Z.

Rem. #.¢ € {0,2,1,£+ 1}; more is known on the splitting of
P/(X,j(E)) over K.
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Isogeny algorithms
Key ingredients:

» modular equations:

> choose nice equations;

> compute equations over Z[X] + instantiation over K:
e series over Z (or Z/pZ): (..., CCR, Atkin, ...);
e evaluation/interpolation: with floating points
(Dupont/Enge); with curves modulo p (Charles + Lauter).

> Compute ®,(X,j(E)) directly using isogeny volcanoes
(Sutherland et al.).

» compute /-isogenies:
» compute isgenous curve: magical (ugly) formulas by
Atkin; alternatively: CCR.
» compute isogeny: depends on ¢ and p, BMSS,
Lercier/Sirvent, etc.
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Il. Classical theory and computations

Eisenstein series: 6,(n) =Y, d"
Ey(q)=1-24) 8i(n)q",
n=1
E4(q) = 14240 Z o3(n)q",
n=1

Es(q) =1-504 )" 85(n)q",
n=1

Fact: E, and E¢ are modular forms of weight 4 and 6
respectively, E; is almost modular.

(q) O =41 -¢")* =n(9)*

LB 1 "

jl@=—"—=—-+4+744+ chq ,cn €N,
A q n>1
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|dentities involving Eisenstein’s series

When F(q) = ¥,>, anq", We introduce the operator

1 dF dF
F/ = =g — = n n'
(9) 2im dt qdq Z Hnd

n>ngo

E—E N E} Eg
= S oE, j=-% j-1728=-5, (1

17287 A 27 A? j A’ ()
P B ) B, BE o,
i ES j—1728 Es A

3E) = EyE4— Eg, 2Es = EyEg—E;, 12E) =E5 —Ey. (3)

(The last line is due to Ramanujan.)
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A) Lattices

Def. . = Zw, +Zw, and &' = Zw; + Zw), are isomorphic iff
there exists P in SLy(Z) s.t.

(a)=r(a)
o, 103
Thm. ¥ and ¢’ are isomorphic iff j(.£) =j(£").

Def. . and .# are isogenous iff Ja € C,a.¥ C ..

Most interesting case: ./ is a sublattice of £ s.t. £/ .# is
cyclic of finite index. In other words:

M= (a0 +bw)Z+ (co, +dw)Z

and ad — bc = m with ged(a,b,c,d) = 1.
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Fundamental theorem (modular polynomial):

Thm. 3a € Csit. a# C Ziff Amst. &,(j(A),j( L)) =0s.t.
with 7 = @, /@, (imag. part > 0), g = exp(2in7):

(m)
w07 T <x—j<Ar>>—fzo Cu(oXt,
AeS )y —

S = {( g Z >,ad:m,gcd(a,b,d): 1,a>0,d>b20}

of cardinality po(m) = m[T,.(1+1/p).

When m = ¢ is prime:

a={(4 Ywssdo{ (5 )

of cardinality ¢+ 1.
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Modular polynomials

Thm.
> &,(X,Y) € ZX,Y];
> q)m(YvX) = q)m(X’ Y);
» if m is squarefree, then the coefficient of highest degree of
@, (X,X) is £1.

Prop. (“Cyclotomic” properties)
(@) If (my,my) =1, then

Dy, m, (X,J) = Resultantz (P, (X, Z), Dy, (Z,J)).
(b) If m = ¢¢ with e > 1, then
@ (X,J) = Resultant, (P¢(X, Z), @1 (Z,J)) /Do (Z,J)".

Thm. (Kronecker) If £ is prime, then
@)X, Y) = (X' —Y) (Y —X) mod £.
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Height

Thm. (P. Cohen)
H(®,) = 6uo(m)(logm—2Y,,,,(logp)/p+O(1)).

l 101 | 211 | 503 | 1009 | 2003
H(®y) || 3985 | 9256 | 24736 | 53820 | 115125
PCohen || 2768 | 6743 | 18736 | 41832 | 91320

Thm. (Broker & Sutherland)
H(®;) < 6L1ogl+ 160+ 14/ log/.

= @, has 0(¢?) coefficients of size flog¢, or a O(/*)-bit object.

Ex.
Dy (X,Y) =X+ X? (—Y? + 1488 Y — 162000)

+X (1488 Y2 4 40773375 Y +8748000000)
+Y? — 162000 Y2 4 8748000000 Y — 157464000000000.
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B) Computing modular polynomials over Z|[X]

Remember that

1
Jj(q) = 5—1—744—1— chq", cn €T

n>1

Then @,(X,Y) is such that ®,(j(¢).j(¢")) vanishes identically.

Naive method: indeterminate coefficients (over Q or small
p’s); at least O((¢*)®) operations over Q.

Ex.
D,(X,Y) =X +X* (Y + 1488 Y — 162000)

+X (1488 Y2 40773375 Y + 8748000000)
+Y? — 162000 Y2 4 8748000000 Y — 157464000000000.
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a) Series computations

Enneper (1890) use g-expansion of j and j(g") with O(¢?)
terms; Atkin used this modulo CRT primes (embarassingly
parallel). O(F*M(p))

a) Compute power sums for 1 < r < ¢:

j(ery +f (”") — S0(g) + S ()

with w = ¢'/%; 8,1 a prioriin Q(&,), but in fact over Q, hence
Sr,l(w) = Sr,l (Q)s
b) recognize S.(q) = S, (J).

2. Go back to ®(X,J) using Newton formulas.
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b) Evaluation/interpolation (Enge; Dupont)

Dy(X, ) =X+ f) CuD)X",  CulJ) € Z[J), deg(Cu(J)) < £+ 1.
u=0

All computations are done using precision H = O(¢log?).
Function COMPUTEPHI(, £, (f;), degy):
Input : /7 an odd prime; f a function, f, conjugates
Output: ®&,[f](X,J) with degree degy in X
for degy + 1 values of z; do
compute f,(z;) to precision H and build
IT51 (X —fr(zi) = X+ Xl Culi(2)XY;
O(M(¢)logt) ops
for u < 0to ¢/ do
| interpolate C, from (j(z;), Cu(j(z:)) for 1 <i < degy +1
| return &[f](X,J)
All 1.2 + 2 has cost O(/M(¢)(log()M(H)) = O(£3).
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C) Isogeny volcanoes

o S

Broker, Lauter, Sutherland (2010): Under the Generalized
Riemann Hypothesis (GRH), expected running time of
0(£3(logl)3loglog?), and compute &, mod p using
O(f*(log?)? + ¢*1ogp) space.

» Need class polynomials Hp(X) (sometimes H:p(X)).
> Interpolate the values of all quantities modulo p.
» Extensible to partial differentials.

» Works also in Sutherland’s algo for direct evaluation over
K using explicit CRT.
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lll. Elkies’s approach to the isogeny problem

Using power series for the Tate curve

Ey(q) ,, , Es(q)
2 3 4\q 6\q
=X — X
rr=x 48 * 864
is ¢-isogenous to
Es(q") ., | Es(q")
yr=x3— X
48 + 864

o, = power sums of the roots of the kernel polynomial:

o1(g) = 5 (tEalq') ~ Er(g)).

Use series identities to get formulas for E4(¢") and E¢(q"),
o1(g) from known values.
Also:

A—A* 25(662+2A60), B—B* :7(1063 +6A61+4BG()),
+ induction relation for o, with k > 3.

Consequence: A* and B* belong to Q[o},A, B].
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The case of &y(X,Y)

Thm. (Schoof95)

With 7 =j(q"):

2) j'ox +4j dy = 0.

3)
VAT A o & i
Jo7 Jj'ox

All this yields Es(¢"), Es(q"), o1.

Cost: O(¢?) operations in K.
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Finding smaller equations and their formulas

» Traditional approach: ®,(X,Y). Formulas given by Schoof.

» Elkies 1992: ad hoc modular equations + formulas for
each ¢; cumbersome.

» Atkin: canonical with n-products, laundry method
(conjecturally smallest); magical formulas using
differentials of order 1 and 2.

» Miuller (Enge): Hecke operators + somewhat ad hoc
tables. Same Atkin formulas.

» Smallest models for Xy (¢) in two variables, not related to j;
formulas?

Alternative: Charlap-Coley-Robbins (1991).
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IV. Charlap-Coley-Robbins

A) Theory

Q(A,B)X)/ (fi(X.A,B))
(6—1)/2
Q(A,B)X]/(Us(X.A,B))

{41

Q(4,B)

@© F. Morain 22/39



Using traces

Classical: use the trace T of an element in

Q(A, B)[X]/(fe(X,A,B)).

Let P = (x1,y1) # Og. Other points are P; = [j]P = (x;,y;) can be
expressed using division polynomials.

ForO<k</¢+1

Ty = i"x]]‘C = Z <x1 — lIlj_l(Xl)‘l’jJrl(xl))k

Wj(x1)?

sothatT) =x;+---+x;and Tp =d = (¢ —1)/2. The minimal
polynomial Uy(X) = X' +u1 X’ + - -- 4 ug of T defines the
lower extension.

Use Newton’s identities to reconstruct the factor
[, (X —x) =X —T1X4"' +... over the intermediate
extension.
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Using traces

Classical: use the trace T of an element in

Q(A, B)[X]/(fe(X,A,B)).

Let P = (x1,y1) # Og. Other points are P; = [j]P = (x;,y;) can be
expressed using division polynomials.

ForO<k</¢+1

Ty = i"x]]‘C = Z <x1 — lIlj_l(Xl)‘l’jJrl(xl))k

Wj(x1)?

sothatT) =x;+---+x;and Tp =d = (¢ —1)/2. The minimal
polynomial Uy(X) = X' +u1 X’ + - -- 4 ug of T defines the
lower extension. T = o!

Use Newton’s identities to reconstruct the factor
[, (X —x) =X —T1X4"' +... over the intermediate
extension. < kernel polynomial!
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CCR polynomials

Thm. There exists three polynomials U,(X,Y,Z), Vi(X,Y,Z),
Wi(X,Y,Z)in Z[X,Y,Z,1/¢] of degree ¢+ 1 in X such that
U/(c,A,B) =0, V,(A*,A,B) =0, W;(B*,A,B) = 0.

Thm. When ¢ > 3, U, V,, Wy live in Z[X,Y,Z)].

Prop. Assigning respective weights 1, 2, 3to X, Y, Z, the
monomials in U;, V, and W, have generalized degree ¢+ 1.

Computations of U,: use power sums of roots; numerical
computation possible via E, (which can be expressed using a
hypergeometric function and theta functions — see A. Bostan).

Ex. Us(X,Y,Z) = X® +20YX* + 160ZX3 — 80Y?X? — 128YZX — 80Z°.

Prop. Maximal size of integer during computation of U, (resp.
Ve, Wp) is = 2/ (resp. 44, 6/).

@© F. Morain 25/39



Function UseCCR(E, ¢):
Input : E/F, =[A,B] an elliptic curve, ¢ an odd prime
Output: (0,A*,B*) parameters of a curve E* that is
(-isogenous to E
1. %y < roots of Uy(X,A,B) over F,
2. if £y # 0 then
2.0. Let o be an element of %y
2.1. %y < roots of V,(X,A,B) over F,
2.2. Zw « roots of W,(X,A,B) over F,
forve % do
for w € %y do
L if (o,v,w) is an (-isogeny then
| return (c,v,w).

Cost: 3 polynomial exponentiations + < 4 isogeny tests.
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Purely algebraic approaches
Triangular sets: Schost ef al.; change of order algorithm.

Noro/Yasuda/Yokoyama (2020):
In particular (representation a la Hecke):
AT = 77 , B = 7 !
Uy(X) Uy(X)

(Only here: Uj(X) = %)

Nya (resp. N;p) are polynomials with integer coefficients and
of generalized weight 2/ + 4 (resp. 2/ + 6). Computations by

any evaluation/interpolation method.

Ex. (with a sign flip)
Ns.4 = 630AX° — 9360BX* — 8240A%X°> +24480BAX>

+(11204° — 28800B*)X — 3200BA>.
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B) Atkin’s more powerful variant

We also discuss here the alternative modular
equation suggested by (CCR). They use an equation
of degree (g+l) in E2x,whose coefficients are
forms of appropriate weights expressible in terms
of E4 and E6 (or,by applying Wqg, in terms of E4q
and E6qg) . In the equivalent of cases 1 and 3
above, they find a value of E2x in GF (p) .
The procedure with which they then continue is
however intolerably long,and a better continuation
is as follows.
Differentiate their equation twice at the cusp
infinity(i.e.with E2%x,E4,E6);the first time we
get E4g,and the second E6q.
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Homogeneous properties of U

Notation: SU s Jos
85 == %,&4 — E,a(, — T&,etc..
U is homogeneous with weights, so that (generalized Euler
theorem)
(f—i—l)U: 005 +2E404 +3Es0s. (4)

Note that partial derivatives are also homogeneous:

s = 0056+ 2E4054+3E60ss6, (5)
(—1)ds = 00ga+2E40u4 + 3Es0ss, (6)
(@ — 2)86 = 0056+ 2E4046 1+ 3E60es6. (7)
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Getting the isogenous curve (1/4)

Differentiate U(o,E4,Es) = 0 to get
005 +Ega4 +Eg86 =0, (8)

=L (¢E, — E») leading to
14 - Y4 - -
o' = 3 (PE)—E3) = 2 (P(E3 — E4) — (E3 — E4)).
Replace ¢E, by 26 /¢ + E; to get
¢ [(40% 4o
= (fz—l— 7 —FE, — (€2E4—E4)>

that we plug in (8) together with the expressions for E;" and E¢’
from equation (3) to get a polynomial of degree 1 in E, whose
coefficient of E; is

00 +2E404 +3E¢0s,

which we recognize in (4).
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Getting the isogenous curve (2/4)

0+ 1)UE2+§ (4062 /0% — ((?E4 — E4)) 05 —2E¢ds —3E304 =0 (9)
from which we deduce E, since U(o,E4,Es) = 0.
Finding Es: we differentiate (8)
0”06 +6'(06'056 + E}0s4 + Eg056)
+ E404+ Ey(0' 046 + EjOss + E¢0ss)
+ Egde+E¢(0'des + E4es + Eges) =0
We compute in sequence
12EY = 2E)E, —E), = E; (E3 — E4) /6 — (E2E4 — Eg) /3,
12E) = 2B, Y — Ey = Ey (E3 — E4) /6 — (EyE4—Eg)/3

0, 5
— 0" == (PE)—EY)

5 (
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Getting the isogenous curve (3/4)
Differentiate Ramanujan’s relations:

1 1
Ej= 3 (EyEs+E2E} — Eg), Eg = 3 (EyE¢ + E2Eg — 2E4Ey),

Finally yields an expression as polynomial in E;:
CZE% +C1Er+Co=0.

The unknown Eg is to be found in Cy only.

Prop. (By luck ?) The coefficients C; and C, vanish for a
triplet such that U,(o,Es,E¢) = 0.

Sketch of the proof: Replace dss, dia and dgg by their values
from (5). Factoring the resulting expressions yields the same
factor 0ds +2E404 + 3E¢ds, Which cancels C; and C,.00
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Getting the isogenous curve (4/4)

We are left with
- N

E —_—
°7 T 1693
where N is a polynomial in degree 3 in ¢
N = —Egd0? + c2* +12026(3E3 96 + 2Egdy )l — 930>,

The coefficient ¢, has an ugly expression (that may be
simplified??).
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C) The case /=11 mod 12

The number and size of the terms in their modular
equation are also larger than those in mine,
especially when g=11(mod 12). In that case, the
cuspform etax*2 (tau) xetax*2 (grxtau) could be used
instead of E2x to form the modular equation. This
both saves on size and number of coefficients,and
has convenient derivatives; the reader can by now
easily work out the precise algorithm.
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Properties

In this case, Atkin suggests to replace o with
f(g) =n(g9)*>n(¢")?* another modular form of weight 2.

Ex.
CCRA | (X) = X'2 —990AX® + 440 AE4 X* — 165AEs X>

+22AEIX? — AE4EgX — 11 A%,

which is sparser U, (X).
CCRA is homogeneous:

({4+1)CCRA, :f8f+2E484+3E686. (10)
We have f!2 = A(z)A(¢z) and therefore we deduce the
discriminant A = £12 /A, yielding a relation for £, and E.
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Computing o
Write P . .,
n n
=2 42 =
f n
from which we deduce f'.

|
E@Ez +Ey),

Starting from f'd; + E},d4 + E¢ds = 0, and replacing by the
known values, we find

(faf + 4E484 + 6E686) E> +f£E28f 6E 86 — 4E6c94 =

which is
[ (LEy — Ey) — 6E50g — 4Egdy = 0,

which gives us

_ ((30sE3+204E)
fo '
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Computing E,4
We differentiate /' to obtain:
1 - -
= 3 '(CE>+ E>) +f((PE) + ES))
_ ]
122
We inject this together with E, = (E, +20/¢) /¢ into
T +£'(f' I + E40p4 + Egre)
+ EZ(94 +Ef4(f’84f +Eﬁ‘a44 +E/6846)
+ Egaﬁ +Eé(f/a6f +E2864 +E,6866) =0
This yields a polynomial of degree 2 in E, whose coefficients
of degree 2 and 1 turn out to vanish. We are left with

5 M
Y PPEED;

((CE> + E)* + (B3 — Eq) + (E3 — Eu))).

with a bulky expression for M.
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Computing Eg

Prop. (applying Atkin-Lehner involution)
Uyl(—lo,A",B*) =0, V,({*A,A* B")=0, W,({°B,A*,B*)=0,
with A* = f4E4, B* = €6E6.

Also:

L BB
1728

So that Eg is a root of the gcd of the two polynomials.

In practice, there is one root. Otherwise, use a heavy further

differential!!!
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V. Conclusions

When is this useful?

» you don'’t like using Atkin’s laundry hammer;
» (technical, rare) when some dy = 0, the triplet (U,V,W) is
useful;

» for small ¢, either use sparse formulas (Uy, Ny 4,D¢4) OF
only U, and the ugly formulas.

Working ugly formulas can be done using multipliers for
Borweins’ like modular polynomials as explained by
R. Dupont. But this is another story. . . !
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