
Talk notes :
Theta functions and isogenies between abelian surfaces

Jean Kieffer (Harvard)
CARAMBA seminar, Nancy, France, 21 nov. 2022

1 Motivation : isogeny graphs

Base field : k = Fq or number field (Q or finite extension).
E,E′ elliptic curves /k.
Def : f : E → E′ is an `-isogeny (` prime) if

— f is a morphism of curves, given by algebraic formulas,

— f respects the group structure : f(P +Q) = f(P) + f(Q),

— deg(f) = ` : either degree of polynomials giving f , or degree as a map, i.e. ` = # ker(f).

Then ker(f) ⊂ E[`] is a cyclic subgroup ; this isogeny–subgroup correspondence is a bijection.
———-
Construct isogeny graph from a vertex E by taking all E′ linked to E by an `-isogeny defi-
ned over k as neighboring vertices, and continuing until the (finite) connected component is
exhausted :

E

E1 E2

E3
etc.

———-
This definition makes sense in a more general setting : abelian varieties.
A is an abelian variety of dim. g means : A is a “nice” variety of dimension g (smooth,
projective), with group law + : A→ A.
There is a notion of `-isogeny f : A→ A′, corresponding to subgroups ker(f) ⊂ A[`].
We can construct similar isogeny graphs.
“First case” after elliptic curves is that of Jacobians of genus 2 curves over k, a.k.a. principally
polarized abelian surfaces.

(Not said during the talk : there are oversimplifications here. The notion of `-isogeny is usually
formulated in the setting of abelian varieties endowed with principal polarizations (or at least
a polarization of degree prime to `), in which case ker(f) is assumed to be maximal isotropic
in A[`] for the Weil pairing, and isomorphic to (Z/`Z)2. These are the `-isogeny graphs we
consider in the talk. We ignore issues of twists, issues about genus 2 curves only defined over
a quadratic extension of k, and issues about field of definitions of isogenies in the presence of
extra automorphisms.)
———-
Why study these graphs ?
Case k = Fq : they appear in cryptography, in particular isogeny graphs of supersingular
elliptic curves.

1

— Expansion properties : small diameter, random walks mix rapidly.

— Small-degree isogenies (` = 2, 3) are cheap to compute.

— Hard problem is to find a path between two points. No attack is currently known, either
in classical or quantum setting, that is better than attacks against generic graphs.

— However : slower than other cryptographic families.

In dimensions g ≥ 2, probably no constructive cryptography. Isogeny graphs could still be
used for cryptanalysis : cf. recent destruction of SIDH.
Case k = Q : of interest to number theorists, cf. analogues of Mazur’s isogeny theorem. As we
will see, algorithmic results over Q can be useful over Fp by reduction.

2 Computing neighbors

Two basic problems :

1. (Neighbors) Given A, compute all neighbors in `-isogeny graph.

2. (Quotient) Given A and K ⊂ A[`], compute quotient A/K.

Writing down explicit formulas giving the isogeny is usually no harder than solving 1. or 2.
Many algorithms are known for 2. for abelian surfaces. In this talk, concentrate on 1.
Goals of this section :

— Explain usual method for elliptic curves using modular polynomials.

— Explain why the method cannot work as is in dimensions g ≥ 2.

— Explain how a reasonable algorithm reduces to the evaluation of theta functions.

———-
Modular polynomials. Isomorphism class of E/k is encoded by j-invariant j(E) ∈ k : “the
moduli space X(1) of elliptic curves is a line”.
We have a geometric picture :

X0(`)

X(1) X(1)

Take E Take E′

where X0(`) is a modular curve : points of X0(`) correspond to the data of E with an `-
isogeny E → E′.
The modular polynomial Φ` ∈ Z[X,Y] is an equation for X0(`) ⊂ X(1)×X(1), the same for
every field k. Therefore :

Φ`(j(E), j(E′)) = 0 ⇐⇒ E,E′ are neighbors in `-isogeny graph.

Algorithm to compute neighbors :

1. Get precomputed Φ` ; reduce to k.

2. Evaluate to get Φ`(j(E), Y) ∈ k[Y].

3. Compute roots.

2

(This works for ` moderately large (say ≤ 500). For larger `, we can use a direct evaluation
algorithm like the one I’m about to discuss.)
———-
In dimension 2, the geometric picture is the same except that A has three independent coor-
dinates : j1, j2, j3.
The analogue of Φ` is Ψ` ∈ Q(X1, X2, X3)[Y] (actually three of these fractions).
They are too large to be computed explicitly as soon as ` ≥ 5 : their size is O(`15 log `). We
pay the price of a larger number of variables. To compare, Φ` has size O(`3 log `).
What could we do ?

1. Purely algebraic method : write down equation for A[`], compute factorization to find
any rational subgroups, apply quotient algorithm. This is also very expensive.

2. Better : directly compute the evaluation

Ψ`(j1(A), j2(A), j3(A), Y) ∈ k[Y]

This univariate polynomial has reasonable size :O(`6(h+log `)) where h is the height/number
of digits of ji(A) (say ∈ Q).

———-
Algorithm for direct evaluation uses an analytic method. Disclaimer : the math here to explain
how we reduce to computing theta functions is more involved. Assume A is over Fp.

1. Lift ji(A) to x1, x2, x3 ∈ Q, viewed as subfield of C.
2. Compute genus 2 curve C/C whose Jacobian has coordinates xi.
3. Compute period matrix of C : τ ∈ H2 (i.e. complex, symmetric, Im(τ) positive definite)

such that
Jac(C) ' C2/(Z2 ⊕ τZ2).

4. Enumerate period matrices τ ′ ∈ H2 such that the complex tori C2/(Z2 ⊕ τ ′Z2) are all
the complex abelian surfaces `-isogenous to Jac(C). (Obtained by the action of certain
symplectic matrices on τ .) We have :

Ψ`(x1, x2, x3, Y) =
∏
τ ′

(Y − j1(τ ′)).

5. Recognize that the result actually lives in Q[Y], and reduce mod p. (In fact, we can
separate numerator and denominator to only recognize integral coefficients : this will
make certification possible later on.)

Critical step is 4. Write down the modular function j1 in terms of theta functions : for any g ≥ 2,
any a, b ∈ {0, 1}g,

θa,b(τ) =
∑

n∈Zg+
a
2

exp(iπ(ntτn+ btn)).

(rapidly decreasing exponential terms).
We reduced our initial number theory problem to the question of evaluating theta functions
which is pure numerical analysis.
———-
Dupont, Labrande–Thomé : heuristically, θa,b(τ) can be computed up to 2−N in quasilinear
time O(M(N) logN), where M(N) is the time to multiply N -bit integers. This works in
pratice, and is critical to reach the required precisions. Also critical to obtain a reasonable
complexity estimate.
In the rest of the talk, we explain how one can get a certified implementation of this algorithm.

3

3 Computing theta functions

The “naive” algorithm (compute partial sums of exponential series) is not quasi-linear time :
O(M(N)Ng/2 logN). When optimized, it is still better for practical applications when g = 1 ;
not so in higher dimensions.
Instead, the quasilinear algorithm is based on arithmetic-geometric means (AGM). 2 main
steps :

1. From the input of θ, certain AGMs can recover the period matrix τ .

2. Use Newton iterations around 1. to go in the other direction τ θ.

To discuss certified implementations, we enter into details for each step.
———-
First discuss Step 1 (I shortened this part sharply in the actual talk).
Start with projective theta values θ0,b(τ/2)/θ0,0(τ/2), indexed by b ∈ {0, 1}g : i.e. 2g − 1
coordinates. By duplication, get θ2a,b(τ)/θ20,0(τ) for all a, b. For well-chosen symplectic ma-
trices N ∈ Sp4(Z), we compute θ20,0(τ) as follows :

— Get λθ20,b(Nτ) using transformation formula, for some common unknown λ ∈ C×.
— Construct the AGM sequence whose n-th term is

(λθ20,b(2
nNτ))b∈{0,1}g .

At each step, use the duplication formula :

θ20,b(τ) =
1

2g

∑
b′∈(Z/2Z)g

θ0,b′(τ)θ0,b+b′(τ).

Thus we have to extract square roots at each step : I will come back to this.

— The limit is (λ, . . . , λ). Thus we get λ, hence θ20,0(Nτ) from the very first term of the
sequence.

In particular, get θ20,b(τ) from N = I2g. We recover information on τ (some polynomial in its
coefficients) by applying the transformation formula again. A good choice is to take :

N =

(
Diag(δi) Diag(1− δi)

Diag(δi − 1) Diag(δi)

)
, where δi ∈ {0, 1} for 1 ≤ i ≤ g.

———-
For the actual implementation of step 1 : can control convergence rate of AGM sequences. We
also have to find the correct sign choices when taking square roots.

— Can be precomputed in the context of evaluating theta functions.

— Theorem (K. 2022) : sign choices can be predicted (they are always “good”, i.e. contained
in a common quarter plane) in the case g = 2.

— In general, sign choices can be precomputed by computing τ to a low precision by
numerical integration ; however the dependency of the cost in terms of τ is hard to
control.

4

In the end, this AGMmethod gives analytic functions F,G in the following diagram (whereN =
2g − 1, and G is polynomial in coefficients of τ) :

Hg

CN ⊃ Ω CN

(
θ0,b(τ/2)

θ0,0(τ/2)

)
G(τ).

G

F

with Ω open. (Or at least we get such a diagram around any point where the method actually
works, e.g. none of the theta values we hit are equal to zero).

4 Newton iterations

Given an exact τ , we can hope to compute theta values at high precision as follows :

— Start with x = (θ0,b(τ/2)/θ0,0(τ/2)) up to 2−p for a small p, computed using the naive
algorithm ;

— Compute F (x) as before ; it is not exactly G(τ) ;

— Compute (an approximation of) dF (x) using finite differences ;

— Correct x using the usual Newton procedure, which is hopefully closer to the real theta
values at τ .

Even if we observe convergence in practice, it is in no way a proof in the mathematical sense
that the result is correct.
———-
To turn this into a certified algorithm (K. 2022), it is sufficient to collect :

— A lower bound for the size of a polydisk (ball) Ω where F is defined ;

— An upper bound on |F | on Ω ; thus we also get upper bounds on |dF |, |d2F | using 1. and
Cauchy’s formula ;

— An upper bound on |dF−1(G(τ))|.
These explicit values can be determined a priori for small g, or on the fly during the com-
putation. In the end, the provable error bounds closely match with experimental precision
losses.
However, I can only show that |dF−1| is uniformly bounded when g ≤ 2. In higher dimensions,
we can still run certified Newton iterations at any point where they actually work.

Formal theorem : there exists an algorithm which, on the input of an exact τ ∈ F2 (Sie-
gel fundamental domain), computes θ2a,b(τ) for all a, b up to an error of 2−N , in quasi-linear
time O(M(N) logN), uniformly in τ ; we know all the explicit constants necessary to imple-
ment it in a computer.
———-
Comments on implementation. I wrote an acb_thetamodule https://github.com/j-kieffer/
arb for the C library Arb https://arblib.org/ featuring :

5

https://github.com/j-kieffer/arb
https://github.com/j-kieffer/arb
https://arblib.org/

— State-of-the-art versions of the naive algorithm, for low precisions ; (summing exponential
terms over a tight ellipsoid, using only 2 multiplications per term asymptotically) ;

— Certified quasi-linear algorithms for higher precisions.

This is still work in progress, and should soon be merged into the Arb master branch. I plan on
comparing performance with existing implementations in CMH (g = 2, Pari/GP (g = 2), Arb
(g = 1), Magma (any g but unoptimized algorithm), Julia (any g but low precisions only),...

The more general case of theta functions (as opposed to theta constants as in this talk) is also
covered.
———-
A previously untractable application, joint work in progress with Raymond van Bommel, Shiva
Chidambaram, Edgar Costa (MIT) : the isogeny class over of principally polarized abelian
surfaces with LMFDB label 349.a, containing the Jacobian of

y2 = x6 + 2x5 + 3x4 − x2 + 2x+ 1

contains exactly two vertices linked by an isogeny of minimal degree 134 = 28, 561.
A research project is to employ these techiques for SEA-style point counting records for abelian
surfaces.

6

	Motivation: isogeny graphs
	Computing neighbors
	Computing theta functions
	Newton iterations

