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Quantum setting
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Quantum algorithms

Grover’s search
Grover’s search retrieve an element in time O(

√
n) among n other elements.

BHT collision search
BHT algorithm retrieve a collision in time O(n1/3) among n elements.
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Quantum algorithms

Shor’s algorithm
Shor’s algorithm solves the factorization problem and discrete logarithm exponentially faster
than classical algorithms.

Simon’s period finding
Given f : {0, 1}n → {0, 1}m a function which admits a period i.e, there exists s ∈ {0, 1}n such
that for all x , y in {0, 1}n, f (x) = f (y) ⇔ x = y or x = y ⊕ s.
Simon’s period finding find s in O(n3) computations.
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Quantum models

Classical model
Classical queries and classical computations

Q1 model
Classical queries and quantum computations

Q2 model
Quantum queries and quantum computations
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Quantum memory models

Small quantum memory
Polynomial size or at worst sub-exponential.

QRACM
Classical memory can be queried in superposition.

QRAQM
Quantum memory can be queried in superposition.
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Naive impact of quantum computer

Public-key cryptography
The factorization problem and
discrete logarithm happen to be the
hard problems behind the most used
cryptosystems.
⇒ Shor’s algorithm breaks them.

Replacement that uses other
problems (NIST PQC competition).

Secret-key cryptography
Grover’s search speeds up the search
for the secret keys.
⇒ Doubling the size of the keys
should be enough.

Doubling the state size too [CNS17]
not always enough
⇒ Need for a block cipher with
256-bit key and state (like Saturnin)
LR5 is the natural proposition but
still no proof after many years
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Existing quantum attacks

9 / 47



Even-Mansour cipher

Even-Mansour cipher
Given Π a public n-bit permutation and k1, k2 two n-bit secret keys,
EM : x ↦→ Π(x ⊕ k1) ⊕ k2.
The Even-Mansour cipher is secure against classical attacks up to 2n/2 computations.

x Π EM(x)

k1 k2

Figure: Even-Mansour Cipher
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Attack on Even-Mansour cipher

x Π EM(x)

k1 k2

Q2 attack on the Even-Mansour cipher
Observe that EM(x) ⊕ Π(x) = Π(x ⊕ k1) ⊕ k2 ⊕ Π(x) = EM(x ⊕ k1) ⊕ Π(x ⊕ k1).
Then Simon’s algorithm applied to x ↦→ EM(x) ⊕ Π(x) retrieves k1, we can find
k2 = EM(x) ⊕ Π(x ⊕ k1).
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LR3 (3-round Feistel network)

RL

f1

f2

f3

R ′L′

Figure: LR3 (3-round Feistel network)
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Attack on LR3

Q2 attack on LR3

We fix two values for the right part
R0 and R1.
Observe that L′(L, R𝛽) ⊕ R𝛽 only
depends on L ⊕ f1(R𝛽).
Then Simon’s algorithm applied to
(x , 𝛽) ↦→ L′(x , R𝛽) ⊕ R𝛽 retrieves
f1(R0) ⊕ f1(R1).

RL

f1

f2

f3

R ′L′
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Attack on LR4

R𝛽

L

f1 f2 f3 f4

R0 ⊕ R1

f4 f3 f2 f1

R ′

L′

Figure: Attack on LR4
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FX construction

FX-construction
Given Ek a n-bit block cipher and k1, k2 two n-bit secret keys,
EM : x ↦→ Ek(x ⊕ k1) ⊕ k2.

x Ek FX (x)

k1 k2

Figure: FX construction
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Attack on the FX construction

x Ek FX (x)

k1 k2

Q2 attack on the FX construction
Like the Even-Mansour cipher, FX (x) ⊕ Ek(x) admits k1 as a period.
Then Simon’s algorithm applied to x ↦→ FX (x) ⊕ Ek(x) retrieve k1, we can find
k2 = FX (x) ⊕ Ek(x ⊕ k1).
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Other quantum attacks

Other Simon-based attacks
Other constructions have been broken (CBC-MAC, PMAC, GMAC,GCM, OCB,...)
Q1 attacks (Offline-Simon algorithm)
Linearization attacks
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State of the art of quantum security proofs
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Polynomial degree minimization

Polynomial degree minimization
For a given quantum algorithm,
build a family of oracles such that:

The oracles are indexed by few integer variables (one or two in practice).
The application of the quantum algorithm is a polynomial on the index.
The family is “large”.

Proofs made with this technique
Grover’s search and BHT collision search are optimal.
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Recording oracle

Recording oracle
For a given attacking quantum algorithm,

The queries made by the attacker can be recorded as a database (in superposition)
The superposition can be examined to determine whether it differs from random or not
We can deduce the advantage of attackers.

Proofs made with this technique
LR4 is a quantum Pseudo-Random Function.
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First Try
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First try and attack

L R

E1

E3

S = S(L, R)

E2

E4

T = T (L, R)

f M

Figure: EME construction
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Modification of Simon’s algorithm

Simon’s period finding
Given f : {0, 1}n → {0, 1}m a function which admits a period i.e, there exists s ∈ {0, 1}n such
that for all x , y in {0, 1}n, f (x) = f (y) ⇔ x = y or x = y ⊕ s.
Simon’s period finding find s in O(n3) computations.

Quick description of Simon’s algorithm

Simon’s algorithm starts by making |𝜑f ⟩ = 1
2n/2

∑︀
x∈{0,1}n |x⟩ |f (x)⟩.

Then it measures the second register and we get a superposition 1√
2
(|x0⟩ + |x0 + s⟩).

By applying an Hadamard gate, we get a y such that y · s = 0.
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Modification of Simon’s algorithm

Relaxation of Simon’s algorithm
It is not necessary to have access to f if we have the superposition |𝜑f ⟩.
We can also take a superposition on a restricted space A, |𝜑f ,A⟩ = 1√

|A|

∑︀
x∈A |x⟩ |f (x)⟩.

Practical use
By considering the null function restricted to
A = {(x , y)|f (x) = f (y)}, we can search for s such that f (x) = f (y) ⇒ f (x ⊕ s) = f (y ⊕ s) in
O(n2n/3) operations.
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Attack on EME

Q2 Attack
S(L0, R0) = S(L1, R1) is equivalent to

f (E1(L0) ⊕ E2(R0)) ⊕ f (E1(L1) ⊕ E2(R1)) = E1(L0) ⊕ E1(L1).

If we guess the key of E2, we can reverse it. Then, by considering the function

F : (b, R) ↦→ S(Lb, E−1
2 (R)),

we can recover s = (1, E1(L0) ⊕ E1(L1)) in time Õ(2k/2 + 2n/3).
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Other weak mixing layer

Other weak mixing layer
Our attack impacts all mixing layers
of the form:

M(x , y) = Π2(f (Π1(x , y)), x , y)

with Π1 and Π2 two linear functions.
The period is different but the
procedure is the same.

L R

E1

Π2

E3

S = S(L, R)

E2

E4

T = T (L, R)

Π1

f M
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New Construction
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New construction: QuEME

L R

E1

E

E3

S

E2

E4

T

M

Figure: QuEME construction
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Security proofs

Classical security
QuEME is proven to be secure up to 2n classical queries.

Quantum security

QuEME is proven to be secure up to 2n/6 quantum queries.

Security claim
We claim QuEME to be secure up to 2n quantum queries.
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Instantiation : Double-AES
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Key extension

Key extension

K = (k1‖k2)

k3 = k1 ⊕ k2

k4 = k1 ⊕ (k2 ≪ 1)

Block ciphers
Taking the same block cipher would induce weak keys by having the same permutation for
multiple blocks.
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Modification of AES-128

Quick description of AES
The state of AES is composed of elements of F256 organized in a 4 × 4 matrix:⎡⎢⎢⎢⎣

𝛼0 𝛼4 𝛼8 𝛼12
𝛼1 𝛼5 𝛼9 𝛼13
𝛼2 𝛼6 𝛼10 𝛼14
𝛼3 𝛼7 𝛼11 𝛼15

⎤⎥⎥⎥⎦
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Modification of AES-128

Composition of a round of AES
AES-128 is composed of 10 rounds which are composed of:

AddKey xors the state with the round key;
SubBytes which applies the AES Sbox on all individual elements 𝛼i ;
ShiftRows which shifts the i-th row by i position;
MixColumns which multiplies each column by a fixed matrix.

The last round omits the Mixcolumns operation and applies one extra AddKey.
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Modification of AES-128

AES key schedule

K = K0 = k0‖k1‖k2‖k3 and Ki+1 = (k4i+4‖k4i+5‖k4i+6‖k4i+7) for i from 0 to 9

k4i+4 = SubWord (RotWord(k4i+3)) ⊕ k4i ⊕ rci
k4i+5 = k4i+4 ⊕ k4i+1
k4i+6 = k4i+5 ⊕ k4i+2
k4i+7 = k4i+6 ⊕ k4i+3

with rci =

⎛⎜⎜⎜⎝
X i mod X 8 + X 4 + X 3 + X + 1

0
0
0

⎞⎟⎟⎟⎠
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Modification of AES-128

Modification of AES-128
We modify the round constant for each block Ej for j ∈ {1, 2, 3, 4} :

rci ,j =

⎛⎜⎜⎜⎝
X i mod X 8 + X 4 + X 3 + X + 1

j
0
0

⎞⎟⎟⎟⎠
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Instantiation

Double-AES
We propose Double-AES with 10 rounds of AES for each blocks and claim a unified security
claim for both classical and quantum attackers with T 2/p > 2224 where T is the time
complexity of the attack and p is the probability of success.

Double-AES-7
We conjecture Double-AES-7 (with 7 rounds of AES for each blocks) to also provide the target
security.

Double-AES-6-MC
We conjecture Double-AES-6-MC (with 6 rounds of AES for each blocks but the last round
include a MixColumn operation) to also provide the target security.
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Best attacks on Double-AES and preliminary
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Cancelation of the first middle round

Cancelation of the first middle
round
If we introduce a difference in L but
not in R , on the first round of the
middle encryption, the difference in
the plaintext and the first key cancel
each other.

L R

E1

E

E3

S

E2

E4

T
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Attack on X-2-X

Attack on X-2-X
For a pair of plaintexts (L1‖R),
(L2‖R), we get a ciphertext pair
(S1‖T1), (S2‖T2).
From a guess of k3, we get
E−1

3 (S1) ⊕ E−1
3 (S2).

From a guess of k1,we get
E1(L1) ⊕ E1(L2) and with 3 bytes of
E2(R), we get 16 possibilities for a
byte of E−1

3 (S1) ⊕ E−1
3 (S2).

L R

E1

E

E3

S

E2

E4

T
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Attack on X-2-X

Using more pairs
One pair can filter one guess of (k1, k3, E2(R)) out of 16. Then by using 70 pairs instead of
one, we do not need to guess more elements and filter out every wrong guess.

Complexity
This attack takes 2107.5 time and memory.
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Attack on X-3-3

Attack on X-3-3
From a guess of k1, we can build a
set of plaintext (Li , R) such that
E1(Li ) is constant except the bytes 0
and 8 that take the value i .
We then use the square property of
3-round AES.
We recover the balanced byte from
the ciphertext and the guess of 5
bytes of k3.

L R

E1

E

E3

S

E2

E4

T
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Attack on X-3-3

AK

k2,1
SB SR MC

Round 1

AK

k2,2
SB SR MC

Round 2

AK

k2,3
SB SR

Round 3

AK

k2,4

Figure: Square-like property on the middle part.
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Attack on X-3-3

AK

k3,1
SB SR MC

Round 1

AK

k3,2
SB∙ SR∙ MC∙

Round 2

MC�

AK

k3,3
SB∙∙∙∙

SR∙∙∙∙
∙∙∙∙

Round 3

AK

k3,4
����

∙∙∙∙
∙∙∙∙
∙∙∙∙
∙∙∙∙

Figure: Recovery on the bottom part.
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Attack on X-3-3

Using more sets
One set can filter one guess of out of 256. Then by using 21 sets instead of one, we do not
need to guess more elements and filter out every wrong guess.

Complexity
This attack takes 296.5 time and data.
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Conclusion
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Conclusion

Conclusion
We extend the properties exploitable for a Simon-based attack and apply it on EME.
We develop QuEME, a quantum-safe construction for block ciphers.
We propose Double-AES, a new block-cipher ready for you to experiment.
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Future work

Future work
Other ways to extend the properties retrievable by Simon’s algorithm.
Application of our quantum attack on LR5

Further cryptanalysis of Double-AES.
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