Cluster Search and MILP Modeling for Differential Attacks

RODRÍGUEZ CORDERO Ana Margarita

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

October 27th, 2022

Index

1 Introduction
2 Differential Attack

3 Clusters
4 MILP Representation
5 Results

Symmetric Cryptography

Symmetric Cryptography

- Stream ciphers
- Block ciphers

Symmetric Cryptography

■ Block ciphers

Block Cipher

Block Cipher

Given a key $K \in \mathbb{F}_{2}^{m}$ and a message $M \in \mathbb{F}_{2}^{N}$, a block cipher of block size n is an invertible function E_{K} that encrypts the message M in blocks of size n

Block Cipher

Block Cipher

Given a key $K \in \mathbb{F}_{2}^{m}$ and a message $M \in \mathbb{F}_{2}^{N}$, a block cipher of block size n is an invertible function E_{K} that encrypts the message M in blocks of size n

Block Cipher

Block Cipher

Given a key $K \in \mathbb{F}_{2}^{m}$ and a message $M \in \mathbb{F}_{2}^{N}$, a block cipher of block size n is an invertible function E_{K} that encrypts the message M in blocks of size n

Block Cipher Constructions

Block Cipher Constructions

- Iterative cipher:

Block Cipher Constructions

■ Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}$,

Block Cipher Constructions

\square Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function

Block Cipher Constructions

Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function
Feistel Network

Block Cipher Constructions

\square Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function
Feistel Network

■ IBM construction by Horst Feistel

Block Cipher Constructions

\square Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function
Feistel Network

- IBM construction by Horst Feistel
- Identical encryption and decryption

Block Cipher Constructions

\square Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function
Feistel Network

- IBM construction by Horst Feistel
- Identical encryption and decryption

■ Used in Data Encryption Standard (DES)

Block Cipher Constructions

\square Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function

Feistel Network

- IBM construction by Horst Feistel
- Identical encryption and decryption

■ Used in Data Encryption Standard (DES)

Substitution Permutation Network

Block Cipher Constructions

\square Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function
Feistel Network

- IBM construction by Horst Feistel
- Identical encryption and decryption

■ Used in Data Encryption Standard (DES)

Substitution Permutation Network

■ Non-linear layer is a Substitution box (S-box)

Block Cipher Constructions

\square Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function
Feistel Network

- IBM construction by Horst Feistel
- Identical encryption and decryption

■ Used in Data Encryption Standard (DES)

Substitution Permutation Network

■ Non-linear layer is a Substitution box (S-box)

- Linear layer includes a bit, nibble or byte permutation

Block Cipher Constructions

\square Iterative cipher: $E_{k}=f_{K_{r}} \circ \ldots \circ f_{K_{1}}, \quad f_{K_{i}}$ named round function
Feistel Network

- IBM construction by Horst Feistel
- Identical encryption and decryption

■ Used in Data Encryption Standard (DES)

Substitution Permutation Network

■ Non-linear layer is a Substitution box (S-box)
■ Linear layer includes a bit, nibble or byte permutation
■ Used in Advance Encryption Standard (AES)

DES

[Jérémy Jean, TikZ for Cryptographers]

DES

[Jérémy Jean, TikZ for Cryptographers]

AES

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

Round function f

AES

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

Round function f

AES

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

Round function f

AES

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

Round function f

- 128-bit version of Rijndael

AES

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

Round function f

- 128-bit version of Rijndael

■ Proposed in 1998 by Daemen and Rijmen for the 1997 NIST competition

Block Cipher Operations

Linear operations

Block Cipher Operations

Linear operations
■ Constant additions

Block Cipher Operations

Linear operations
- Constant additions
- Bit XOR

Block Cipher Operations

Linear operations
- Constant additions
- Bit XOR
- Mix columns matrices

Block Cipher Operations

Linear operations
- Constant additions
- Bit XOR
- Mix columns matrices

Block Cipher Operations

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices

Block Cipher Operations

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices

Block Cipher Operations

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices

Block Cipher Operations

Linear operations
■ Constant additions

- Bit XOR
- Mix columns matrices

Nonlinear operations

- Bit AND operation
- Exponentiation
- Inverse operation

Block Cipher Operations

Linear operations
■ Constant additions

- Bit XOR
- Mix columns matrices

Nonlinear operations

- Bit AND operation
- Exponentiation

■ Inverse operation

Block Cipher Operations

Linear operations
■ Constant additions

- Bit XOR
- Mix columns matrices

Nonlinear operations

- Bit AND operation
- Exponentiation
- Inverse operation

■...

Block Cipher Operations

Linear operations
■ Constant additions

- Bit XOR
- Mix columns matrices
- ...

Nonlinear operations

- Bit AND operation
- Exponentiation
- Inverse operation

■...

Substitution Box

A substitution box (S-box), is a non-linear operation usually represented as a look-up table:
$\begin{array}{clll}\mathbf{S}: & \mathbb{F}_{2}^{m_{1}} & \longrightarrow & \mathbb{F}_{2}^{m_{2}} \\ & \mathbf{x} & \mapsto & \mathbf{S}(\mathbf{x})\end{array}$

Substitution Box

A substitution box (S-box), is a non-linear operation usually represented as a look-up table:

$$
\begin{array}{cccc}
\mathbf{S}: & \mathbb{F}_{2}^{m_{1}} & \longrightarrow & \mathbb{F}_{2}^{m_{2}} \\
& \mathbf{x} & \mapsto & \mathbf{S}(\mathbf{x})
\end{array}
$$

AES S-box:
\mathbb{F}_{256}
1 If $x \neq 0$, replace x by its inverse, $x=x^{-1}$ in $\mathbb{F}_{2}^{8 *}$

* Generated by the polynomial $m(X)=X^{8}+X^{4}+X^{3}+X+1$

Substitution Box

A substitution box (S-box), is a non-linear operation usually represented as a look-up table:

$$
\begin{array}{cccc}
\mathbf{S}: & \mathbb{F}_{2}^{m_{1}} & \longrightarrow & \mathbb{F}_{2}^{m_{2}} \\
& \mathbf{x} & \mapsto & \mathbf{S}(\mathbf{x})
\end{array}
$$

AES S-box:
\mathbb{F}_{256}
1 If $x \neq 0$, replace x by its inverse, $x=x^{-1}$ in $\mathbb{F}_{2}^{8 *}$
2 $x=A x+b$, where A is a fix 8×8 binary matrix and b is a fix 8 binary vector

* Generated by the polynomial $m(X)=X^{8}+X^{4}+X^{3}+X+1$

Differential Distinguisher

■ An ideal block cipher should behave like a random permutation in \mathbb{F}_{2}^{n}

Differential Distinguisher

■ An ideal block cipher should behave like a random permutation in \mathbb{F}_{2}^{n}
For a given $(\Delta, \nabla) \in \mathbb{F}_{2}^{2 n}$,

Differential Distinguisher

■ An ideal block cipher should behave like a random permutation in \mathbb{F}_{2}^{n}
For a given $(\Delta, \nabla) \in \mathbb{F}_{2}^{2 n}, x \in \mathbb{F}_{2}^{n}$,

Differential Distinguisher

■ An ideal block cipher should behave like a random permutation in \mathbb{F}_{2}^{n}
For a given $(\Delta, \nabla) \in \mathbb{F}_{2}^{2 n}, x \in \mathbb{F}_{2}^{n}, p\left(E_{K}(x \oplus \Delta)=\nabla\right) \simeq 2^{-n}$

Differential Distinguisher

- An ideal block cipher should behave like a random permutation in \mathbb{F}_{2}^{n}
$■$ For a given $(\Delta, \nabla) \in \mathbb{F}_{2}^{2 n}, x \in \mathbb{F}_{2}^{n}, p\left(E_{K}(x \oplus \Delta)=\nabla\right) \simeq 2^{-n}$

Differential Distinguisher

Find a pair $(\Delta, \nabla) \in \mathbb{F}_{2}^{2 n}$ such that $p\left(E_{K}(x \oplus \Delta)=\nabla\right) \gg 2^{-n}$

Differential Distinguisher

■ An ideal block cipher should behave like a random permutation in \mathbb{F}_{2}^{n}
$■$ For a given $(\Delta, \nabla) \in \mathbb{F}_{2}^{2 n}, x \in \mathbb{F}_{2}^{n}, p\left(E_{K}(x \oplus \Delta)=\nabla\right) \simeq 2^{-n}$

Differential Distinguisher

Find a pair $(\Delta, \nabla) \in \mathbb{F}_{2}^{2 n}$ such that $p\left(E_{K}(x \oplus \Delta)=\nabla\right) \gg 2^{-n}$
Study the propagation of input differences throughout the cipher:

$$
\nabla=E_{K}(P) \oplus E_{K}(P \oplus \Delta)
$$

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

Eli Biham and Adi Shamir 1991

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

- Eli Biham and Adi Shamir 1991

■ Already known by IBM and some security agencies like NSA

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

- Eli Biham and Adi Shamir 1991

■ Already known by IBM and some security agencies like NSA

- The pair (Δ, ∇) is referred to as a differential

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find
- Differential characteristic: $\Delta=\delta_{0} \rightarrow$

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find
- Differential characteristic: $\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow$

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find

■ Differential characteristic: $\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow$

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find

■ Differential characteristic: $\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}=\nabla$

Differential Attack

[Biham, E., Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3-72 (1991)]

- Eli Biham and Adi Shamir 1991

■ Already known by IBM and some security agencies like NSA

- The pair (Δ, ∇) is referred to as a differential usually hard to find
- Differential characteristic: $\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}=\nabla$
- Analyze the differential behavior of cipher operations

Computing the Probability

$$
p\left(\delta_{0} \rightarrow \delta_{1} \cdots \rightarrow \delta_{r}\right)
$$

Computing the Probability

$$
p\left(\delta_{0} \rightarrow \delta_{1} \cdots \rightarrow \delta_{r}\right)
$$

\rightarrow On the board

Difference Distribution Table

Difference Distribution Table

Difference Distribution Table:

$$
\operatorname{DDT}\left(\Delta_{i}, \nabla_{0}\right)=\#\left\{\mathbf{x} \in \mathbb{F}_{2}^{n}: S(\mathbf{x}) \oplus S\left(\mathbf{x} \oplus \Delta_{i}\right)=\nabla_{o}\right\}
$$

Difference Distribution Table

Difference Distribution Table:

$$
\operatorname{DDT}\left(\Delta_{i}, \nabla_{0}\right)=\#\left\{\mathbf{x} \in \mathbb{F}_{2}^{n}: S(\mathbf{x}) \oplus S\left(\mathbf{x} \oplus \Delta_{i}\right)=\nabla_{o}\right\}
$$

I Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	8	0	0	0	0	0	0	0	
0×1	0	2	2	0	0	2	2	0	
0×2	0	2	2	0	0	2	2	0	
0×3	0	0	0	4	0	0	0	4	
0×4	0	0	0	0	4	0	0	4	
0×5	0	2	2	0	0	2	2	0	
0×6	0	2	2	0	0	2	2	0	
0×7	0	0	0	4	4	0	0	0	

Abstraction Approach

■ Step1: Minimize the number of non-linear active operations

Abstraction Approach

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1

Abstraction Approach

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1

Abstraction Approach

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1
- We obtain: a Truncated differential characteristics

Abstraction Approach

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1
- We obtain: a Truncated differential characteristics
- Step2: Find a differential characteristic from the truncated differential

Abstraction Approach

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1
- We obtain: a Truncated differential characteristics

■ Step2: Find a differential characteristic from the truncated differential

- Follow the differential behaviour of the nonlinear operation

Abstraction Approach

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1
- We obtain: a Truncated differential characteristics

■ Step2: Find a differential characteristic from the truncated differential
■ Follow the differential behaviour of the nonlinear operation
-> Obtain differential characteristics

Clusters

- We obtain differential characteristics from the abstraction method: $\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}=\nabla$.

Clusters

- We obtain differential characteristics from the abstraction method: $\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}=\nabla$.
■ Easy to compute $p\left(\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}\right)=\Pi_{i=0}^{r-1} P\left(\delta_{i} \rightarrow \delta_{i+1}\right)$.

Clusters

- We obtain differential characteristics from the abstraction method: $\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}=\nabla$.
■ Easy to compute $p\left(\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}\right)=\Pi_{i=0}^{r-1} P\left(\delta_{i} \rightarrow \delta_{i+1}\right)$.
$■$ What is the exact probability of the differential (Δ, ∇) ?

Clusters

- We obtain differential characteristics from the abstraction method:
$\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}=\nabla$.
■ Easy to compute $p\left(\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}\right)=\Pi_{i=0}^{r-1} P\left(\delta_{i} \rightarrow \delta_{i+1}\right)$.
\square What is the exact probability of the differential (Δ, ∇) ?

Cluster

A cluster is a set of differential characteristics, for a given number of rounds, that have the same input and output difference

$$
\Delta=\delta_{0}^{j} \rightarrow \delta_{1}^{j} \rightarrow \cdots \rightarrow \delta_{r}^{j}=\nabla
$$

Clusters

- We obtain differential characteristics from the abstraction method:
$\Delta=\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}=\nabla$.
■ Easy to compute $p\left(\delta_{0} \rightarrow \delta_{1} \rightarrow \cdots \rightarrow \delta_{r}\right)=\Pi_{i=0}^{r-1} P\left(\delta_{i} \rightarrow \delta_{i+1}\right)$.
- What is the exact probability of the differential (Δ, ∇) ?

Cluster

A cluster is a set of differential characteristics, for a given number of rounds, that have the same input and output difference

$$
\begin{gathered}
\Delta=\delta_{0}^{j} \rightarrow \delta_{1}^{j} \rightarrow \cdots \rightarrow \delta_{r}^{j}=\nabla \\
p(\Delta \rightarrow \nabla) \approx \sum_{j} p\left(\delta_{0}^{j} \rightarrow \delta_{1}^{j} \rightarrow \cdots \rightarrow \delta_{r}^{j}\right)
\end{gathered}
$$

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]
Naive approach
Fix input and output differences, change in the middle:

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach
Fix input and output differences, change in the middle:

- Too much computation time

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability
- Improves computation time

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability
- Improves computation time

■ Obtains first the highest probabilities

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:
Fix also probability

- Improves computation time

■ Obtains first the highest probabilities

Meet in the middle method

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability
- Improves computation time

■ Obtains first the highest probabilities

Meet in the middle method

■ From the truncated path: selects a round with few values in the middle

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability
- Improves computation time

■ Obtains first the highest probabilities

Meet in the middle method

- From the truncated path: selects a round with few values in the middle
- Search forward and backward to the middle

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

$■$ Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability
- Improves computation time

■ Obtains first the highest probabilities

Meet in the middle method

■ From the truncated path: selects a round with few values in the middle

- Search forward and backward to the middle

■ Stores the middle values in a table

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

$■$ Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability
- Improves computation time

■ Obtains first the highest probabilities

Meet in the middle method

■ From the truncated path: selects a round with few values in the middle

- Search forward and backward to the middle
- Stores the middle values in a table
- Performs a crossed search

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

$■$ Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability
- Improves computation time

■ Obtains first the highest probabilities

Meet in the middle method

- From the truncated path: selects a round with few values in the middle
- Search forward and backward to the middle

■ Stores the middle values in a table
■ Performs a crossed search
■ Finds the whole cluster (for small number of rounds)

Implementing Cluster Search

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

$■$ Fix input and output differences, change in the middle:

- Too much computation time

Naive approach improved:

- Fix also probability
- Improves computation time

■ Obtains first the highest probabilities

Meet in the middle method

- From the truncated path: selects a round with few values in the middle
- Search forward and backward to the middle
- Stores the middle values in a table
- Performs a crossed search

■ Finds the whole cluster (for small number of rounds)

- Uses too much memory

MILP Modeling

MILP: Mixed-Integer Linear Programming

MILP Modeling

ILP: Integer Linear Programming
■ Minimize or maximize an objective function

$$
\sum_{i} a_{i} X_{i}
$$

MILP Modeling

ILP: Integer Linear Programming

- Minimize or maximize an objective function

$$
\sum_{i} a_{i} X_{i}
$$

\square Constraints $\sum b_{i} X_{i} \geq b \quad \sum c_{i} X_{i} \leq c \quad \sum d_{i} X_{i}=d$

MILP Modeling

ILP: Integer Linear Programming

- Minimize or maximize an objective function

$$
\sum_{i} a_{i} X_{i}
$$

\square Constraints $\sum b_{i} X_{i} \geq b \quad \sum c_{i} X_{i} \leq c \quad \sum d_{i} X_{i}==d$

XOR Truth Table

$a, b, c \in \mathbb{F}_{2}$		
a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

MILP Modeling

ILP: Integer Linear Programming

- Minimize or maximize an objective function

$$
\sum_{i} a_{i} X_{i}
$$

- Constraints $\sum b_{i} X_{i} \geq b \quad \sum c_{i} X_{i} \leq c \quad \sum d_{i} X_{i}==d$

XOR Truth Table

$a, b, c \in \mathbb{F}_{2}$		
a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

Non-valid transitions:
$(0,0,1),(0,1,0),(1,0,0),(1,1,1)$

MILP Modeling

ILP: Integer Linear Programming
■ Minimize or maximize an objective function

$$
\sum_{i} a_{i} X_{i}
$$

\square Constraints $\sum b_{i} X_{i} \geq b \quad \sum c_{i} X_{i} \leq c \quad \sum d_{i} X_{i}==d$

XOR Truth Table

$a, b, c \in \mathbb{F}_{2}$		
a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

Non-valid transitions:

$$
\begin{gathered}
(0,0,1),(0,1,0),(1,0,0),(1,1,1) \\
a+b \geq c \quad a+c \geq b \\
a+b+c \leq 2
\end{gathered}
$$

Step1 MILP Modeling

Working with truncated characteristics:

Step1 MILP Modeling

Working with truncated characteristics:

Abstracted XOR Truth Table

a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

Step1 MILP Modeling

Working with truncated characteristics:

Abstracted XOR Truth Table

a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0
1	1	1

Step1 MILP Modeling

Working with truncated characteristics:

Abstracted XOR Truth Table

a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0
1	1	1

Non-valid transitions:
$(0,0,1),(0,1,0),(1,0,0)$

Step1 MILP Modeling

Working with truncated characteristics:

Abstracted XOR Truth Table

a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0
1	1	1

Non-valid transitions:
$(0,0,1),(0,1,0),(1,0,0)$ $a+b+c \neq 1 \Rightarrow$

Step1 MILP Modeling

Working with truncated characteristics:

Abstracted XOR Truth Table

a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0
1	1	1

Non-valid transitions:
$(0,0,1),(0,1,0),(1,0,0)$
$a+b+c \neq 1 \Rightarrow$
$a+b \geq c \quad a+c \geq b \quad b+c \geq a$

Step1 MILP Modeling

Working with truncated characteristics:

Abstracted XOR Truth Table

a	b	$c=a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0
1	1	1

Non-valid transitions:

$$
\begin{gathered}
(0,0,1),(0,1,0),(1,0,0) \\
a+b+c \neq 1 \Rightarrow \\
a+b \geq c \quad a+c \geq b \quad b+c \geq a
\end{gathered}
$$

Step1 objective function:

Step1 MILP Modeling

Working with truncated characteristics:

Abstracted XOR Truth Table

a	b	$c=a \oplus b$	Non-valid transitions:
0	0	0	$(0,0,1),(0,1,0),(1,0,0)$
0	1	1	$a+b+c \neq 1 \Rightarrow$
1	0	1	$a \geq c \quad a+c \geq b \quad b+c \geq a$
1	1	0	

Step1 objective function:

$$
\sum_{i, r} X_{i, r}
$$

where i word position, r round, $X_{i, r}=1$ if there is a non-zero value at the S-box, zero otherwise.

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

- H-representation of the convex-hull

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

- H-representation of the convex-hull

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

- H-representation of the convex-hull

■ Product-of-Sum Representation of Boolean Functions

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

- H-representation of the convex-hull

■ Product-of-Sum Representation of Boolean Functions Quine-McCluskey (QM) algorithm

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

- H-representation of the convex-hull

■ Product-of-Sum Representation of Boolean Functions Quine-McCluskey (QM) algorithm

- Logical condition techniques for 8-bit S-boxes

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

- H-representation of the convex-hull

■ Product-of-Sum Representation of Boolean Functions Quine-McCluskey (QM) algorithm
■ Logical condition techniques for 8-bit S-boxes

Minimization

■ Greedy algorithm

- MILP minimization
- Prime implicants table

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?
■ H-representation of the convex-hull

■ Product-of-Sum Representation of Boolean Functions Quine-McCluskey (QM) algorithm
■ Logical condition techniques for 8-bit S-boxes

Minimization

■ Greedy algorithm
■ MILP minimization

- Prime implicants table

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

■ Establish valid transitions: DDT

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: DDT

: Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	8	0	0	0	0	0	0	0	
0×1	0	2	2	0	0	2	2	0	
0×2	0	2	2	0	0	2	2	0	
0×3	0	0	0	4	0	0	0	4	
0×4	0	0	0	0	4	0	0	4	
0×5	0	2	2	0	0	2	2	0	
0×6	0	2	2	0	0	2	2	0	
0×7	0	0	0	4	4	0	0	0	

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

d: Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

$\Delta:$ Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

: Input difference	∇ : output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

i: Input difference	∇ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	8	0	0	0	0	0	0	0	
0×1	0	2	2	0	0	2	2	0	
0×2	0	2	2	0	0	2	2	0	
0×3	0	0	0	0	0	0	0	0	
0×4	0	0	0	0	0	0	0	0	
0×5	0	2	2	0	0	2	2	0	
0×6	0	2	2	0	0	2	2	0	
0×7	0	0	0	0	0	0	0	0	

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

: Input difference	∇ : output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

i: Input difference	∇ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	0	0	0	0	0	
0×4	0	0	0	0	0	0	0	0	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	0	0	0	0	0	

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

■ Establish valid transitions: *-DDT

: Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input	∇ : output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	8	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	4	0	0	0	4
0x4	0	0	0	0	4	0	0	4
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	4	4	0	0	0

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

■ Establish valid transitions: *-DDT

: Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input	∇ : output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

■ Establish valid transitions: *-DDT

: Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ H-representation of convex-hull:

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input difference	∇ : output difference							
	0x0	0×1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

■ Establish valid transitions: *-DDT

: Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ H-representation of convex-hull:

- Set of valid transitions DDT:

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input	∇ : output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

: Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ H-representation of convex-hull:

- Set of valid transitions DDT:

$$
\{(0,0),(1,1),(1,2),(1,5), \ldots,(7,4)\}
$$

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input difference	∇ : output difference							
	0x0	0x1	0×2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

$\Delta:$ Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input difference	∇ : output difference							
	0x0	0x1	0×2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

■ H-representation of convex-hull:

- Set of valid transitions DDT:

$$
\{(0,0),(1,1),(1,2),(1,5), \ldots,(7,4)\}
$$

- Set of valid transitions 2-DDT and 4-DDT

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

: Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input	∇ : output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

■ H-representation of convex-hull:

- Set of valid transitions DDT:

$$
\{(0,0),(1,1),(1,2),(1,5), \ldots,(7,4)\}
$$

- Set of valid transitions 2-DDT and 4-DDT

$$
\{(0,0),(1,1),(1,2),(1,5), \ldots,(6,6)\}
$$

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

$\Delta:$ Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input	∇ : output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

■ H-representation of convex-hull:

- Set of valid transitions DDT:

$$
\{(0,0),(1,1),(1,2),(1,5), \ldots,(7,4)\}
$$

- Set of valid transitions 2-DDT and 4-DDT

$$
\begin{aligned}
& \{(0,0),(1,1),(1,2),(1,5), \ldots,(6,6)\} \\
& \{(0,0),(3,3),(3,7),(4,4), \ldots,(7,4)\}
\end{aligned}
$$

DDT Modeling with MILP

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]
■ Establish valid transitions: *-DDT

$\Delta:$ Input difference	$\nabla:$ output difference								
	0×0	0×1	0×2	0×3	0×4	0×5	0×6	0×7	
0×0	1	0	0	0	0	0	0	0	
0×1	0	1	1	0	0	1	1	0	
0×2	0	1	1	0	0	1	1	0	
0×3	0	0	0	1	0	0	0	1	
0×4	0	0	0	0	1	0	0	1	
0×5	0	1	1	0	0	1	1	0	
0×6	0	1	1	0	0	1	1	0	
0×7	0	0	0	1	1	0	0	0	

■ Use 2-DDT and 4-DDT:

Δ : Input difference	∇ : output difference							
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ : Input	∇ : output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	,	0	0	0

■ H-representation of convex-hull:

- Set of valid transitions DDT:

$$
\{(0,0),(1,1),(1,2),(1,5), \ldots,(7,4)\}
$$

- Set of valid transitions 2-DDT and 4-DDT

$$
\begin{aligned}
& \{(0,0),(1,1),(1,2),(1,5), \ldots,(6,6)\} \\
& \{(0,0),(3,3),(3,7),(4,4), \ldots,(7,4)\}
\end{aligned}
$$

$$
\sum_{i=0}^{7} a_{i}^{j} x_{i}+a^{j} \geq 0
$$

MILP Minimization of the H -representation

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

■ Assign a variable to each inequality (Value 0 or 1)

MILP Minimization of the H -representation

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

- Assign a variable to each inequality (Value 0 or 1)

■ 1 if it is used

MILP Minimization of the H -representation

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

- Assign a variable to each inequality (Value 0 or 1)
- 1 if it is used
- 0 otherwise

MILP Minimization of the H -representation

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

- Assign a variable to each inequality (Value 0 or 1)
- 1 if it is used
- 0 otherwise

Relate each inequality to the points that satisfy it

MILP Minimization of the H -representation

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

- Assign a variable to each inequality (Value 0 or 1)
- 1 if it is used
- 0 otherwise
- Relate each inequality to the points that satisfy it
- Minimize the number of inequalities constrained to: all points must be included

MILP Minimization of the H -representation

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

- Assign a variable to each inequality (Value 0 or 1)
- 1 if it is used
- 0 otherwise
- Relate each inequality to the points that satisfy it

■ Minimize the number of inequalities constrained to: all points must be included

■ Step2 objective: Maximize the probability of the transitions throughout 2-DDT and 4-DDT

Lightweight Cryptography

Lightweight Cryptography

Need for encryption and authentication on constrained devices

Lightweight Cryptography

Need for encryption and authentication on constrained devices

- Small hardware footprint

Lightweight Cryptography

Need for encryption and authentication on constrained devices

- Small hardware footprint

■ Small block size

Lightweight Cryptography

Need for encryption and authentication on constrained devices

- Small hardware footprint

■ Small block size

- Low-latency

Lightweight Cryptography

Need for encryption and authentication on constrained devices

- Small hardware footprint

■ Small block size

- Low-latency

■ Low-energy consumption

Warp

[Banik et all., WARP : Revisiting GFN for Lightweight 128-bit Block Cipher, 2020]

Warp

[Banik et all., WARP : Revisiting GFN for Lightweight 128-bit Block Cipher, 2020]

■ 128-bit Generalize Feistel cipher

Warp

[Banik et all., WARP : Revisiting GFN for Lightweight 128-bit Block Cipher, 2020]

$F=A R K \circ S$

- 128-bit Generalize Feistel cipher
- 128-bit key size

Warp

[Banik et all., WARP : Revisiting GFN for Lightweight 128-bit Block Cipher, 2020]

$F=A R K \circ S$

- 128-bit Generalize Feistel cipher
- 128-bit key size
- Linear key schedule

Warp

[Banik et all., WARP : Revisiting GFN for Lightweight 128-bit Block Cipher, 2020]

$F=A R K \circ S$

- 128-bit Generalize Feistel cipher
- 128-bit key size
- Linear key schedule
- 41 round function iterations

Clusters for Warp

Rounds	S-boxes	n_sol	Step2 -log(prob)	Cluster size	Cluster prob
10	17	2	34	4	32
11	22	2	44	4	42
12	28	4	56	16	53
13	34	2	68	512	59

Clusters on Warp

0 ,	0 ,	0 ,	0,	0 ,	0 ,	7,	d,	a,	d	0 ,	0,	0,	0,	0 ,	a,	0 ,	0 ,	0 ,	0,	0,	0 ,	0 ,	0,	a,	d,	0 ,	0 ,	0,	d	0,	0,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	d,	7 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0.	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	a,	d,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	a,	a,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,
0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	0 ,	0,	0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	a,	0 ,	0,	0 ,	0 ,	0,	0,	0 ,	0,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0.	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0,	0 ,	0 ,	0,	0 ,	0 ,	a,	0,	0.	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0,	0 ,	0 ,
a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0,	a,	0 ,	0 ,	0,	0 ,	0,	0,	0.	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	a,	0
0 ,	0 ,	0 ,	0,	a,	0 ,	a,	a,	0 ,	0,	0 ,	0,	0,	0,	0 ,	0 ,	0,	0 ,	0 ,	0,	0,	0 ,	0 ,	0,	0,	0 ,	a,	0 ,	0,	0,	0 ,	a,
0 ,	a,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5.	0 ,	0 ,	0 ,	a,	0 ,	0 ,	a,	0,	a,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0,	0 ,	0 ,	0
0.	0,	0 ,	0.	7 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	a,	a,	0 ,	0 ,	a,	0,	0 ,	d,	0 ,	0 ,	5,	0 ,	0 ,	a,	0,	a,	0.

Clusters on Warp

0 ,	0 ,	0 ,	0,	0 ,	0,	7.	d,	a,	d	0 ,	0,	0,	0,	0 ,	a,	0,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	d,	0 ,	0 ,	0,	d,	0 ,	0,
0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	a,	a,	0,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0,	d,	7 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	a,	d,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	a,	a,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	a,	0,	0 ,	0 ,	0 ,	0.	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0,	0,	0 ,	0 ,	0,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,
a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	a,	0 ,	0,	0,	0,	0,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0,	0,	a,	0 ,
0 ,	0 ,	0 ,	0 ,	a,	0 ,	a,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0,	0 ,	a,
0 ,	a,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5,	0.	0 ,	0 ,	a,	0 ,	0 ,	a,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0,	0,	0 ,
0.	0 ,	0 ,	0.	7,	0,	a,	0 ,	0 ,	0 ,	0 ,	0,	0,	0,	0 ,	a,	a,	0 ,	0 ,	a_{1}	0,	0 ,	d,	0 ,	0 ,	5,	0 ,	0 ,	a,	0,	a,	0.
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	7 ,	d,	a,	d	0 ,	0 ,	0,	0,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	d,	0 ,	0 ,	0 ,	d,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	a,	0.	0,	0 ,	0,	0,	0 ,	0,	0,	d,	7 ,	0 ,	0 ,	0 ,	0,	0 ,	a,	0 ,	0.	0 ,	0,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	a,	d,	0,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	a,	a,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	0 ,	0,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	0.	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,
a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	a,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	5,	0 ,
0 ,	0 ,	0 ,	0 ,	a,	0,	a,	5.	0 ,	0 ,	0 ,	0,	0,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0.	0 ,	a,
0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5.	0.	0 ,	0 ,	a,	0 ,	0,	a_{1}	0 ,	a,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	7 ,	0,	a,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	a,	a,	0 ,	0 ,	a_{1}	0 ,	0 ,	d,	0 ,	0 ,	5,	0 ,	0 ,	a,	0,	a,	0 ,

Clusters on Warp

											0,													a,	d,	0,	0,	0,	d,	0 ,	0,
0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	a,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	d,	7.	0 ,	0,	0 ,	0 ,	0 ,	a,	0,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	a_{1}	d,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0.	a,	a,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0,	0 ,	0 ,	0,	0 ,	0 ,
0.	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0.	0 ,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0,	0 ,	0,	0 ,	0.	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	a,	0,	0 ,	0 ,	0 ,	0,	0 ,	a,	0,	0.	0 ,	0 ,	0,	0 ,	0,	0 ,	0,	0,	0,	0 ,	0 ,
a,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	a,	0 ,	0,	0,	0 ,	0,	0,	0 ,	0 ,	0 ,	0,	0,	0,	0,	0 ,	0,	0,	a,	0 ,
0 ,	0 ,	0 ,	0,	a,	0 ,	a,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0,	0,	0,	a,	0,	0 ,	0,	0 ,	a,
0 ,	a,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5,	0 ,	0 ,	0 ,	a,	0 ,	0,	a,	0 ,	a,	0 ,	0 ,	0 ,	0,	a,	0 ,	0 ,	0,	0 ,	0 ,
0,	0 ,	0,	0.	7,	0,	a,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	a,	a,	0 ,	0,	a,	0,	0 ,	d,	0,	0,	5,	0 ,	0,	a,	0,	a,	0.
0 ,	0 ,	0,	0,	0 ,	0 ,	7 ,	d,	a,	d,	0 ,	0 ,	0,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0	a,	d,	0 ,	0 ,	0 ,	d,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	a,	a,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	d,	7,	0 ,	0,	0 ,	0,	0 ,	a,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	d,	0,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	a,	a,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0,	0 ,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0,	0 ,	0 ,	0 ,	a,	0,	0,	0,	0 ,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0,	0.	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0,	0,	0 ,	0,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	a,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	a,	0,	0,	0 ,	0 ,	0,	0 ,	0,	0,	0 ,	0,	0 ,	0 ,	0 ,
a,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	a,	0 ,	0 ,	0,	0 ,	0 ,	0,	0,	0 ,	0 ,	0,	0 ,	0,	0,	0 ,	0,	0 ,	5 ,	0 ,
0 ,	0 ,	0 ,	0.	a,	0,	a,	5,	0 ,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	a,	0 ,	0,	0,	0 ,	a,
0 ,	a,	0,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	5,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	a_{1}	0,	a,	0 ,	0,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0,	0,	7,	0,	a,	0 ,	0 ,	0,	0 ,	0,	0 ,	0.	0 ,	a,	a,	0 ,	0,	a_{1}	0 ,	0,	d,	0,	0,	5,	0,	0,	a,	0,	a,	0 ,
0 ,	0 ,	0 ,	0.	0.	0 ,	7,	d,	a,	d,	0 ,	0 ,	0,	0.	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0,	a,	d,	0	0.	0 ,	d,	0 ,	0 ,
0 ,	0 ,	0,	0.	0.	0,	0,	0 ,	0 ,	0.	a,	a,	0,	0,	0,	0 ,	0,	0 ,	0,	0 ,	d,	7.	0,	0,	0 ,	0.	0,	a,	0,	0.	0 ,	0,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	a,	d,	0,	0 ,	0 ,	0,	0 ,	0,	0.	0,	0,	0,	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0.	0.	0 ,	0,	0 ,	0 ,	0.	0,	0 ,	0,	0.	a,	a,	0 ,	0 ,	0.	0 ,	0 ,	0.	0 ,	0.	0.	0.	0,	0.	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	a,	0 ,	0,	0,	0,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0.	0 ,	0,	a,	0,	0,	0.	0 ,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0.	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0,	0 ,	0 ,	0 ,	0,	0 ,	a,	0 ,	0 ,	0,	0 ,	0.	0 ,	0,	0,	0.	0 ,	0 ,	0 ,	0 ,
a,	0 ,	0 ,	0.	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0.	0,	0,	0,	0,	0,	d,	0 ,
0 ,	0 ,	0 ,	0,	a,	0 ,	a,	d,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0.	0 ,	0.	0 ,	0,	a,	0.	0 ,	0,	0 ,	a,
0 ,	a,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	a,	0 ,	a,	0 ,	0,	0 ,	0,	a,	0,	0 ,	0.	0 ,	0 ,
0 ,	0 ,	0,	0,	7.	0 ,	a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	a,	a,	0 ,	0,	a,	0 ,	0 ,	d,	0.	0 ,	5,	0,	0,	a,	0,	a,	0 ,

Clusters on Warp

																								a,	d,	0,	0,	0,	d,	0,	0 ,
0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	a,	a,	0 ,	0.	0 ,	0 ,	0 ,	0,	0 ,	0,	d,	7,	0 ,	0 ,	0 ,	0 ,	0,	a,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0 ,	a_{1}	d,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0,	0 ,	0.	a,	a,	0 ,	0,	0,	0,	0,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	0,	0,	0.	0,	0 ,	a,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0.	0 ,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0 ,	0 ,	0,	0 ,	0,	0.	0 ,	0 ,	0 ,	a,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	a,	0 ,	0.	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,
a,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0,	0,	0,	0,	0,	0,	0,	0 ,	0,	0 ,	0,	0 ,	0,	0,	0 ,	a,	0 ,
0 ,	0 ,	0 ,	0,	a,	0 ,	a,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0,	0,	0 ,	0 ,	0 ,	0,	a,	0 ,	0,	0 ,	0 ,	a,
0 ,	a,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	a,	0,	a,	0 ,	0 ,	0 ,	0,	a,	0 ,	0 ,	0 ,	0 ,	0 ,
0,	0 ,	0,	0.	7,	0,	a,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	a,	a,	0,	0,	a,	0,	0 ,	d,	0,	0 ,	5,	0 ,	0 ,	a,	0 ,	a,	0,
0 ,	0 ,	0,	0,	0 ,	0 ,	7 ,	d,	a,	d,	0 ,	0 ,	0,	0 ,	0 ,	a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	d,	0 ,	0 ,	0 ,	d,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	a,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	d,	7,	0 ,	0,	0 ,	0,	0 ,	a,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	d,	0 ,	0,	0.	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	a,	0 ,	0,	0,	0,	0,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0,	0,	0 ,	a,	0 ,	0,	0,	0 ,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0,	0.	0 ,	0,	0,	0,	0,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0,	0,	0 ,	0 ,	0,	0,	0,	0 ,	0 ,	a,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	0.	0,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,
a,	0 ,	0 ,	0,	0 ,	0,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	a,	0 ,	0 ,	0,	0 ,	0,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	5,	0 ,
0 ,	0 ,	0 ,	0.	a,	0,	a,	5,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0,	0 ,	0 ,	a,
0 ,	a,	0,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5,	0 ,	0 ,	0 ,	a,	0 ,	0,	a_{1}	0,	a,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0,	0,	7,	0,	a,	0,	0 ,	0 ,	0 ,	0,	0 ,	0.	0,	a,	a,	0,	0,	a_{1}	0,	0,	d,	0 ,	0 ,	5,	0 ,	0,	a,	0 ,	a,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	7,	d,	a,	d,	0 ,	0 ,	0 ,	0,	0 ,	a,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0,	a,	d,	0,	0 ,	0 ,	d,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	a,	a,	0 ,	0,	0.	0 ,	0,	0 ,	0,	0 ,	d,	7.	0 ,	0,	0 ,	0.	0,	a,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	d,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	a,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	a,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0.	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0.	a,	0 ,	0,	0 ,	0 ,	0,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,
a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0.	0,	0 ,	0 ,	0 ,	0 ,	d,	0 ,
0 ,	0 ,	0 ,	0,	a,	0 ,	a,	d,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0,	0 ,	0,	a,	0.	0 ,	0,	0 ,	a,
0 ,	a,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5 ,	0 ,	0 ,	0 ,	a,	0 ,	0,	a,	0 ,	a,	0 ,	0.	0 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0,	0,	7.	0,	a,	0,	0 ,	0 ,	0,	0 ,	0 ,	0,	0,	a,	a,	0,	0,	a,	0,	0,	d,	0,	0 ,	5.	0,	0 ,	a,	0 ,	a,	0,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	7.	d,	a,	d,	0 ,	0,	0,	0 ,	0 ,	a,	0,	0,	0,	0 ,	0 ,	0,	0 ,	0 ,	a,	d,	0 ,	0 ,	0,	d,	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	a,	a,	0 ,	0.	0 ,	0 ,	0 ,	0,	0,	0,	d,	7,	0 ,	0 ,	0 ,	0 ,	0,	a,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	a,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0.	0 ,	0 ,	a,	d,	0,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0.	0 ,	0 ,	0,	0,	0 ,	0 ,	0 ,	0,	0 ,	0.	a,	a,	0 ,	0,	0 ,	0.	0,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0,	0.	0.	0,	0,	0,	0 ,	0 ,	0 ,	0,	0,	0.	0,	0 ,	0,	0,	0,	0,	0.	0,	0 ,	a,	0 ,	0,	0,	0,	0,	0,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0,	0 ,	0,	0.	0,	0 ,	0 ,	a,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	a,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	a,	0,	0.	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,
a,	0 ,	0 ,	0.	0 ,	0 ,	0 ,	0,	0,	0 ,	0,	0,	0 ,	a,	0 ,	0 ,	0,	0,	0 ,	0,	0,	0 ,	0 ,	0,	0 ,	0,	0 ,	0 ,	0,	0 ,	f,	0 ,
0 ,	0 ,	0 ,	0,	a,	0 ,	a,	f,	0 ,	0 ,	0 ,	0,	0 ,	0 ,	0 ,	0 ,	0,	0,	0,	0 ,	0,	0 ,	0 ,	0,	0 ,	0,	a,	0 ,	0,	0 ,	0 ,	a,
0 ,	a,	0 ,	0.	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	5,	0.	0 ,	0 ,	a,	0 ,	0 ,	a,	0,	a,	0 ,	0 ,	0 ,	0,	a,	0 ,	0,	0 ,	0 ,	0 ,
0 ,	0 ,	0 ,	0 ,	7 ,	0 ,	a,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	0 ,	a,	a,	0 ,	0,	a,	0,	0 ,	d,	0 ,	0 ,	5,	0 ,	0 ,	a,	0 ,	a,	0 ,

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
■ n-bit SPN block cipher ($\mathrm{n}=64,128$), seen as a 4×4 matrix

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
■ n-bit SPN block cipher ($\mathrm{n}=64,128$), seen as a 4×4 matrix
■ Tweakey size of $t=k n, k=1,2,3$

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
\square n-bit SPN block cipher ($n=64,128$), seen as a 4×4 matrix
■ Tweakey size of $t=k n, k=1,2,3$

- Number of rounds between 32 and 56

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
■ n-bit SPN block cipher ($\mathrm{n}=64,128$), seen as a 4×4 matrix

- Tweakey size of $t=k n, k=1,2,3$
- Number of rounds between 32 and 56

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
■ n-bit SPN block cipher ($\mathrm{n}=64,128$), seen as a 4×4 matrix

- Tweakey size of $t=k n, k=1,2,3$
- Number of rounds between 32 and 56

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
■ n-bit SPN block cipher ($\mathrm{n}=64,128$), seen as a 4×4 matrix

- Tweakey size of $t=k n, k=1,2,3$
- Number of rounds between 32 and 56

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
■ n-bit SPN block cipher ($\mathrm{n}=64,128$), seen as a 4×4 matrix

- Tweakey size of $t=k n, k=1,2,3$
- Number of rounds between 32 and 56

- S-boxes can be implemented with a few XOR and NOR operations

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
■ n-bit SPN block cipher ($\mathrm{n}=64,128$), seen as a 4×4 matrix

- Tweakey size of $t=k n, k=1,2,3$
- Number of rounds between 32 and 56

- S-boxes can be implemented with a few XOR and NOR operations

Skinny

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]
■ n-bit SPN block cipher ($\mathrm{n}=64,128$), seen as a 4×4 matrix
■ Tweakey size of $t=k n, k=1,2,3$

- Number of rounds between 32 and 56

- S-boxes can be implemented with a few XOR and NOR operations

Step1 Skinny

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

Step1 Skinny

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

- Problem

Step1 Skinny

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

■ Problem \rightarrow Many solutions don't have a Step2 solution

Step1 Skinny

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

■ Problem \rightarrow Many solutions don't have a Step2 solution
■ Increase the objective of Step1

Step1 Skinny

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

- Problem \rightarrow Many solutions don't have a Step2 solution

■ Increase the objective of Step1 \rightarrow Too many solutions

Step1 Skinny

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

- Problem \rightarrow Many solutions don't have a Step2 solution

■ Increase the objective of Step1 \rightarrow Too many solutions

- Proposed solution:

Step1 Skinny

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

- Problem \rightarrow Many solutions don't have a Step2 solution

■ Increase the objective of Step1 \rightarrow Too many solutions
■ Proposed solution: Add extra variables to control instantiation probability

Conclusions

Conclusions

Differential search can be simplified throughout differential characteristics search

Conclusions

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps

Conclusions

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps
- Both steps can be model as a MILP problem

Conclusions

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps
■ Both steps can be model as a MILP problem
■ Clusters can make a considerable improvement in the approximation of the probability of a differential
-> Future Work

Conclusions

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps
■ Both steps can be model as a MILP problem
- Clusters can make a considerable improvement in the approximation of the probability of a differential
-> Future Work
■ Need to improve Cluster Search

Conclusions

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps
■ Both steps can be model as a MILP problem
- Clusters can make a considerable improvement in the approximation of the probability of a differential
-> Future Work
- Need to improve Cluster Search
- Need fo better Step1 model for Skinny

Cluster Search and MILP Modeling for Differential Attacks

RODRÍGUEZ CORDERO Ana Margarita

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

October 27th, 2022

