			MILP Representation	
000000	00000	00	00000	00000000

Cluster Search and MILP Modeling for Differential Attacks

RODRÍGUEZ CORDERO Ana Margarita

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

October 27th, 2022

	MILP Representation	

Index

2 Differential Attack

3 Clusters4 MILP Representation5 Results

Introduction			MILP Representation	
•••••	00000	00	00000	00000000

Symmetric Cryptography

Introduction			MILP Representation	
•000000	00000	00	00000	00000000

Symmetric Cryptography

Stream ciphers

Block ciphers

Introduction			MILP Representation	
•000000	00000	00	00000	00000000

Symmetric Cryptography

Block ciphers

Introduction		MILP Representation	
000000			

Block Cipher

Block Cipher

Given a key $K \in \mathbb{F}_2^m$ and a message $M \in \mathbb{F}_2^N$, a block cipher of block size n is an **invertible** function E_K that encrypts the message M in blocks of size n

Introduction		MILP Representation	
000000			

Block Cipher

Block Cipher

Given a key $K \in \mathbb{F}_2^m$ and a message $M \in \mathbb{F}_2^N$, a block cipher of block size n is an **invertible** function E_K that encrypts the message M in blocks of size n

Introduction		MILP Representation	
000000			

Block Cipher

Block Cipher

Given a key $K \in \mathbb{F}_2^m$ and a message $M \in \mathbb{F}_2^N$, a block cipher of block size n is an **invertible** function E_K that encrypts the message M in blocks of size n

Introduction			MILP Representation	
000000	00000	00	00000	00000000

Introduction Di		Clusters	MILP Representation	
000000 0	00000	00	00000	00000000

Iterative cipher:

Introduction		MILP Representation	
000000			

Iterative cipher: $E_k = f_{K_r} \circ ... \circ f_{K_1}$,

Introduction			MILP Representation	
000000	00000	00	00000	00000000

Iterative cipher: $E_k = f_{K_r} \circ ... \circ f_{K_1}$, f_{K_i} named round function

Introduction			MILP Representation	
000000	00000	00	00000	00000000

Iterative cipher: $E_k = f_{K_r} \circ ... \circ f_{K_1}$, f_{K_i} named round function

Feistel Network

Introduction		MILP Representation	
000000			

Iterative cipher: $E_k = f_{K_r} \circ ... \circ f_{K_1}$,

 f_{K_i} named round function

Feistel Network

IBM construction by Horst Feistel

Introduction		MILP Representation	
Block Ciph	er Constructions		

Iterative cipher: $E_k = f_{K_r} \circ ... \circ f_{K_1}$,

 f_{K_i} named round function

Feistel Network

- IBM construction by Horst Feistel
- Identical encryption and decryption

Introduction	Differential Attack	Clusters OO	MILP Representation	Results 00000000
Block Cipher C	Constructions			

Iterative cipher: $E_k = f_{K_r} \circ \ldots \circ f_{K_1}$,

Feistel Network

 f_{K_i} named round function

- IBM construction by Horst Feistel
- Identical encryption and decryption
- Used in Data Encryption Standard (DES)

Introduction			MILP Representation	
Block C	Cipher Constructions			
	Iterative cipher: $E_k = f_{K_r} \circ \circ f_{K_1}$, f_{K_i} named rou	und function	

Feistel Network

Substitution Permutation Network

- IBM construction by Horst Feistel
- Identical encryption and decryption
- Used in Data Encryption Standard (DES)

Introduction			MILP Representation	
Block Cip	her Constructions			
Iter	rative cipher: $E_k = f_{K_r} \circ$	$. \circ f_{K_1}, f_{K_i}$ name	ed round function	

Feistel Network

Substitution Permutation Network

- IBM construction by Horst Feistel
- Identical encryption and decryption
- Used in Data Encryption Standard (DES)

 Non-linear layer is a Substitution box (S-box)

Introduction	Differential Attack	Clusters OO	MILP Representation	Results 0000000
Block Ciph	ner Constructions			
Iter	ative cipher: $E_k = f_{K_r} \circ$	$. \circ f_{K_1}, f_{K_i}$ name	ed round function	

 $\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k$

Feistel Network

Substitution Permutation Network

- IBM construction by Horst Feistel
- Identical encryption and decryption
- Used in Data Encryption Standard (DES)

- Non-linear layer is a Substitution box (S-box)
- Linear layer includes a bit, nibble or byte permutation

Introduction ○○●○○○○		MILP Representation	
Block Cipher C	Constructions		

Feistel Network

Iterative cipher: $E_k = f_{K_r} \circ ... \circ f_{K_1}$,

Substitution Permutation Network

- f_{K_i} named round function
 - IBM construction by Horst Feistel
 - Identical encryption and decryption
 - Used in Data Encryption Standard (DES)

- Non-linear layer is a Substitution box (S-box)
- Linear layer includes a bit, nibble or byte permutation
- Used in Advance Encryption Standard (AES)

Introduction			MILP Representation	
000000	00000	00	00000	00000000

DES [Jérémy Jean, TikZ for Cryptographers]

Introduction			MILP Representation	
000000	00000	00	00000	00000000

DES [Jérémy Jean, TikZ for Cryptographers]

Introduction			MILP Representation	
0000000	00000	00	00000	00000000

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

Introduction			MILP Representation	
0000000	00000	00	00000	0000000

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

Introduction			MILP Representation	
0000000	00000	00	00000	00000000

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

Introduction			MILP Representation	
0000000	00000	00	00000	00000000

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

128-bit version of Rijndael

Introduction			MILP Representation	
0000000	00000	00	00000	00000000

[Daemen and Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography), 2002]

128-bit version of Rijndael

Proposed in 1998 by Daemen and Rijmen for the 1997 NIST competition

	Introduction			MILP Representation	
0000000 00000 00 000000 000000	0000000	00000	00	00000	00000000

Linear operations

 Introduction			MILP Representation	
0000000	00000	00	00000	00000000

Linear operations

Constant additions

 Introduction			MILP Representation	
0000000	00000	00	00000	00000000

Linear operations

- Constant additions
- Bit XOR

Introduction			MILP Representation	
0000000	00000	00	00000	00000000

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices

Introduction			MILP Representation	
0000000	00000	00	00000	00000000

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices

• • • •

Introduction			MILP Representation	
0000000	00000	00	00000	00000000

Linear operations

Constant additions

- Bit XOR
- Mix columns matrices
- • •

Nonlinear operations

Introduction		MILP Representation	
0000000			

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices
- • •

Nonlinear operations

Bit AND operation

Introduction		MILP Representation	
0000000			

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices

• • • •

Nonlinear operations

- Bit AND operation
- Exponentiation

Introduction		MILP Representation	
0000000			

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices

• • • •

Nonlinear operations

- Bit AND operation
- Exponentiation
- Inverse operation
| Introduction | | MILP Representation | |
|--------------|--|---------------------|--|
| 0000000 | | | |
| | | | |

Block Cipher Operations

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices

• • • •

Nonlinear operations

- Bit AND operation
- Exponentiation
- Inverse operation

• • • •

Introduction			MILP Representation	
0000000	00000	00	00000	00000000

Block Cipher Operations

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices
- • •

Nonlinear operations

- Bit AND operation
- Exponentiation
- Inverse operation
- **...**

Introduction		MILP Representation	
0000000			

Block Cipher Operations

Linear operations

- Constant additions
- Bit XOR
- Mix columns matrices
- ...

Nonlinear operations

- Bit AND operation
- Exponentiation
- Inverse operation
- • •

Introduction		MILP Representation	
000000			
Substitutio	n Box		

A substitution box (S-box), is a non-linear operation usually represented as a look-up table: **S**: $\mathbb{F}_{0}^{m_{1}} \longrightarrow \mathbb{F}_{0}^{m_{2}}$

Introduction		MILP Representation	

Substitution Box

A substitution box (S-box), is a non-linear operation usually represented as a look-up table: **S**: $\mathbb{F}_{2}^{m_{1}} \longrightarrow \mathbb{F}_{2}^{m_{2}}$

$$egin{array}{rcl} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} \mathbb{F}_2^{m_1} & \longrightarrow & \mathbb{F}_2^{m_2} \ \mathbf{x} & \mapsto & \mathbf{S}(\mathbf{x}) \end{array} \end{array}$$

AES S-box:

₽256

1 If $x \neq 0$, replace x by its inverse, $x = x^{-1}$ in \mathbb{F}_2^{8*}

* Generated by the polynomial $m(X) = X^8 + X^4 + X^3 + X + 1$

Introduction		MILP Representation	

Substitution Box

A substitution box (S-box), is a non-linear operation usually represented as a look-up table: **S**: $\mathbb{F}_{2}^{m_{1}} \longrightarrow \mathbb{F}_{2}^{m_{2}}$

$$egin{array}{rcl} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} \mathbb{F}_2^{m_1} & \longrightarrow & \mathbb{F}_2^{m_2} \ \mathbf{x} & \mapsto & \mathbf{S}(\mathbf{x}) \end{array} \end{array}$$

AES S-box:

F256

If $x \neq 0$, replace x by its inverse, $x = x^{-1}$ in \mathbb{F}_2^{8*}

2 x = Ax + b, where A is a fix 8 \times 8 binary matrix and b is a fix 8 binary vector

* Generated by the polynomial $m(X) = X^8 + X^4 + X^3 + X + 1$

	Differential Attack	MILP Representation	
0000000	00000	00000	0000000
Differentia	I Distinguisher		

An ideal block cipher should behave like a random permutation in \mathbb{F}_2^n

	Differential Attack	MILP Representation	
Differential	Distinguisher		

An ideal block cipher should behave like a random permutation in \mathbb{F}_2^n

For a given $(\Delta, \nabla) \in \mathbb{F}_2^{2n}$,

	Differential Attack	MILP Representation	
Differential	Distinguisher		

An ideal block cipher should behave like a random permutation in \mathbb{F}_2^n

• For a given $(\Delta, \nabla) \in \mathbb{F}_2^{2n}, x \in \mathbb{F}_2^n$,

Differential Attack	MILP Representation	
Distinguisher		

Differential Distinguisher

- An ideal block cipher should behave like a random permutation in \mathbb{F}_2^n
- For a given $(\Delta, \nabla) \in \mathbb{F}_2^{2n}, \ x \in \mathbb{F}_2^n, \ p(E_{\mathcal{K}}(x \oplus \Delta) = \nabla) \simeq 2^{-n}$

Differential Attack	MILP Representation	

Differential Distinguisher

An ideal block cipher should behave like a random permutation in \mathbb{F}_2^n

For a given $(\Delta, \nabla) \in \mathbb{F}_2^{2n}$, $x \in \mathbb{F}_2^n$, $p(E_K(x \oplus \Delta) = \nabla) \simeq 2^{-n}$

Differential Distinguisher

Find a pair $(\Delta, \nabla) \in \mathbb{F}_2^{2n}$ such that $p(E_{\mathcal{K}}(x \oplus \Delta) = \nabla) \gg 2^{-n}$

Differential Attack	MILP Representation	
00000		

Differential Distinguisher

- An ideal block cipher should behave like a random permutation in \mathbb{F}_2^n
- For a given $(\Delta, \nabla) \in \mathbb{F}_2^{2n}, \ x \in \mathbb{F}_2^n, \ p(E_{\mathcal{K}}(x \oplus \Delta) = \nabla) \simeq 2^{-n}$

Differential Distinguisher

 $\nabla = E_{\kappa}(P) \oplus E_{\kappa}(P \oplus \Delta)$

Find a pair
$$(\Delta, \nabla) \in \mathbb{F}_2^{2n}$$
 such that $p(E_{\mathcal{K}}(x \oplus \Delta) = \nabla) \gg 2^{-n}$

Study the propagation of input differences throughout the cipher:

0000000 00000 00	00000	0000000

0000000 00000 00	00000	0000000

Eli Biham and Adi Shamir 1991

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find
- Differential characteristic: $\Delta = \delta_0 \rightarrow$

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find
- Differential characteristic: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow$

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find
- Differential characteristic: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow \cdots \rightarrow$

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find
- Differential characteristic: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow \cdots \rightarrow \delta_r = \nabla$

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

- Eli Biham and Adi Shamir 1991
- Already known by IBM and some security agencies like NSA
- The pair (Δ, ∇) is referred to as a differential usually hard to find
- Differential characteristic: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow \cdots \rightarrow \delta_r = \nabla$
- Analyze the differential behavior of cipher operations

0000000 0000 00 00000 0000000		Differential Attack		MILP Representation	
	000000	00000	00	00000	00000000

Computing the Probability

 $p(\delta_0 \rightarrow \delta_1 \cdots \rightarrow \delta_r)$

Differential Attack	MILP Representation	
00000		

Computing the Probability

 $p(\delta_0 \rightarrow \delta_1 \cdots \rightarrow \delta_r)$

 \rightarrow On the board

	Differential Attack		MILP Representation	
000000	00000	00	00000	00000000

Difference Distribution Table

Differential Attack	MILP Representation	
00000		

Difference Distribution Table

Difference Distribution Table:

$$DDT(\Delta_i, \nabla_o) = \# \left\{ \mathbf{x} \in \mathbb{F}_2^n : S(\mathbf{x}) \oplus S(\mathbf{x} \oplus \Delta_i) = \nabla_o \right\}$$

Differential Attack	MILP Representation	
00000		

Difference Distribution Table

Difference Distribution Table:

$$DDT(\Delta_i, \nabla_o) = \# \left\{ \mathbf{x} \in \mathbb{F}_2^n : S(\mathbf{x}) \oplus S(\mathbf{x} \oplus \Delta_i) = \nabla_o \right\}$$

∆: Input		∇: output difference						
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	8	0	0	0	0	0	0	0
0x1	0	2	2	0	0	2	2	0
0x2	0	2	2	0	0	2	2	0
0x3	0	0	0	4	0	0	0	4
0x4	0	0	0	0	4	0	0	4
0x5	0	2	2	0	0	2	2	0
0x6	0	2	2	0	0	2	2	0
0x7	0	0	0	4	4	0	0	0

Differential Attack	MILP Representation	
00000		

Step1: Minimize the number of non-linear active operations

Differential Attack	MILP Representation	
00000		

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1

Differential Attack	MILP Representation	
00000		

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1

Differential Attack	MILP Representation	
00000		

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1
- We obtain: a Truncated differential characteristics

Differential Attack	MILP Representation	
00000		

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1
- We obtain: a Truncated differential characteristics
- Step2: Find a differential characteristic from the truncated differential

Differential Attack	MILP Representation	
00000		

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1
- We obtain: a Truncated differential characteristics
- Step2: Find a differential characteristic from the truncated differential
- Follow the differential behaviour of the nonlinear operation

Differential Attack	MILP Representation	
00000		

- Step1: Minimize the number of non-linear active operations
- Step1: Any non-zero difference is represented as 1
- We obtain: a Truncated differential characteristics
- Step2: Find a differential characteristic from the truncated differential
- Follow the differential behaviour of the nonlinear operation
- -> Obtain differential characteristics

	Clusters ●O	MILP Representation	
Clusters			

We obtain differential characteristics from the abstraction method: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow \cdots \rightarrow \delta_r = \nabla.$

	Clusters ●O	MILP Representation	
Clusters			

- We obtain differential characteristics from the abstraction method: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow \cdots \rightarrow \delta_r = \nabla.$
- Easy to compute $p(\delta_0 \to \delta_1 \to \cdots \to \delta_r) = \prod_{i=0}^{r-1} P(\delta_i \to \delta_{i+1}).$
| | Clusters
●O | MILP Representation | |
|----------|----------------|---------------------|--|
| Clusters | | | |

- We obtain differential characteristics from the abstraction method: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow \cdots \rightarrow \delta_r = \nabla.$
- Easy to compute $p(\delta_0 \to \delta_1 \to \cdots \to \delta_r) = \prod_{i=0}^{r-1} P(\delta_i \to \delta_{i+1}).$
- What is the exact probability of the differential (Δ, ∇) ?

	Clusters ●O	MILP Representation	
Clusters			

- We obtain differential characteristics from the abstraction method: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow \cdots \rightarrow \delta_r = \nabla.$
- Easy to compute $p(\delta_0 \to \delta_1 \to \cdots \to \delta_r) = \prod_{i=0}^{r-1} P(\delta_i \to \delta_{i+1}).$
- What is the exact probability of the differential (∆, ∇)?

Cluster

A cluster is a set of differential characteristics, for a given number of rounds, that have the same input and output difference

$$\Delta = \delta_0^j \to \delta_1^j \to \dots \to \delta_r^j = \nabla$$

	Clusters ●O	MILP Representation	
Clusters			

- We obtain differential characteristics from the abstraction method: $\Delta = \delta_0 \rightarrow \delta_1 \rightarrow \cdots \rightarrow \delta_r = \nabla.$
- Easy to compute $p(\delta_0 \to \delta_1 \to \cdots \to \delta_r) = \prod_{i=0}^{r-1} P(\delta_i \to \delta_{i+1})$.
- What is the exact probability of the differential (∆, ∇)?

Cluster

A cluster is a set of differential characteristics, for a given number of rounds, that have the same input and output difference

$$\Delta = \delta_0^j \to \delta_1^j \to \dots \to \delta_r^j = \nabla$$

$$p(\Delta \to \nabla) \approx \sum_{j} p(\delta_0^j \to \delta_1^j \to \cdots \to \delta_r^j)$$

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Differential At	lack Glusters	MILP Representation	
000000 00000	00	00000	0000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

Fix input and output differences, change in the middle:

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

Fix also probability

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time
 - Obtains first the highest probabilities

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time
 - Obtains first the highest probabilities

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time
 - Obtains first the highest probabilities

Meet in the middle method

From the truncated path: selects a round with few values in the middle

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time
 - Obtains first the highest probabilities

- From the truncated path: selects a round with few values in the middle
- Search forward and backward to the middle

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time
 - Obtains first the highest probabilities

- From the truncated path: selects a round with few values in the middle
- Search forward and backward to the middle
- Stores the middle values in a table

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time
 - Obtains first the highest probabilities

- From the truncated path: selects a round with few values in the middle
- Search forward and backward to the middle
- Stores the middle values in a table
- Performs a crossed search

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time
 - Obtains first the highest probabilities

- From the truncated path: selects a round with few values in the middle
- Search forward and backward to the middle
- Stores the middle values in a table
- Performs a crossed search
 - Finds the whole cluster (for small number of rounds)

		Clusters	MILP Representation	
000000	00000	00	00000	00000000

[Chen et all., Improved Differential Characteristic Searching Methods, 2015]

Naive approach

- Fix input and output differences, change in the middle:
 - Too much computation time

Naive approach improved:

- Fix also probability
 - Improves computation time
 - Obtains first the highest probabilities

- From the truncated path: selects a round with few values in the middle
- Search forward and backward to the middle
- Stores the middle values in a table
- Performs a crossed search
 - Finds the whole cluster (for small number of rounds)
 - Uses too much memory

			MILP Representation	
0000000	00000	00	00000	00000000

MILP: Mixed-Integer Linear Programming

	MILP Representation	
	00000	

ILP: Integer Linear Programming

Minimize or maximize an objective function

$$\sum_{i} a_i X_i$$

	MILP Representation	
	00000	

ILP: Integer Linear Programming

Minimize or maximize an objective function

$$\sum_{i} a_i X_i$$

Constraints
$$\sum b_i X_i \ge b$$
 $\sum c_i X_i \le c$ $\sum d_i X_i == d$

	MILP Representation	
	00000	

ILP: Integer Linear Programming

Minimize or maximize an objective function

$$\sum_{i} a_i X_i$$

Constraints
$$\sum b_i X_i \ge b$$
 $\sum c_i X_i \le c$ $\sum d_i X_i == d$

XOR Truth Table

	a, b	$, c \in \mathbb{F}_2$
а	b	$c = a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

	MILP Representation	
	0000	

ILP: Integer Linear Programming

Minimize or maximize an objective function

$$\sum_{i} a_i X_i$$

Constraints
$$\sum b_i X_i \ge b$$
 $\sum c_i X_i \le c$ $\sum d_i X_i == d$

XOR Truth Table

	a, b	$, c \in \mathbb{F}_2$
а	b	$c = a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

Non-valid transitions: (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)

	MILP Representation	
	0000	

ILP: Integer Linear Programming

Minimize or maximize an objective function

$$\sum_{i} a_i X_i$$

Constraints
$$\sum b_i X_i \ge b$$
 $\sum c_i X_i \le c$ $\sum d_i X_i == d$

XOR Truth Table

	a, b	$, c \in \mathbb{F}_2$	
а	b	$c = a \oplus b$	Non-valid transitions:
0	0	0	(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)
0	1	1	$a+b \ge c$ $a+c \ge b$ $b+c \ge a$
1	0	1	$a+b+c\leq 2$
1	1	0	

	MILP Representation	
	0000	

			MILP Representation	
000000	00000	00	0000	00000000

ostrac	ted X	OR Truth Tab	le
а	b	$c = a \oplus b$	
0	0	0	-
0	1	1	
1	0	1	
1	1	0	

			MILP Representation	
000000	00000	00	0000	00000000

Abstr	act	ed X	OR Truth Tab	le
ć	a	b	$c = a \oplus b$	
(0	0	0	
(0	1	1	
1	1	0	1	
1	1	1	0	
1	1	1	1	

			MILP Representation	
000000	00000	00	0000	00000000

Abstract	ted X	OR Truth Table	e
а	b	$c = a \oplus b$	
0	0	0	Non-valid transitions:
0	1	1	(0,0,1), (0,1,0), (1,0,0)
1	0	1	
1	1	0	
1	1	1	

			MILP Representation	
000000	00000	00	0000	00000000

Abstrac	ted X	OR Truth Table	;
а	b	$c = a \oplus b$	
0	0	0	Non-valid transitions:
0	1	1	(0,0,1), (0,1,0), (1,0,0)
1	0	1	$a+b+c\neq 1 \Rightarrow$
1	1	0	
1	1	1	

			MILP Representation	
000000	00000	00	0000	00000000

Abstract	ted X	OR Truth Table	
а	b	$c = a \oplus b$	
0	0	0	Non-valid transitions:
0	1	1	(0, 0, 1), (0, 1, 0), (1, 0, 0)
1	0	1	$a+b+c\neq 1 \Rightarrow$
1	1	0	$a+b\geq c$ $a+c\geq b$ $b+c\geq a$
1	1	1	

	MILP Representation	
	0000	

Working with truncated characteristics:

Abstrac	ted X	OR Truth Table	
а	b	$c = a \oplus b$	
0	0	0	Non-valid transitions:
0	1	1	(0, 0, 1), (0, 1, 0), (1, 0, 0)
1	0	1	$a+b+c\neq 1 \Rightarrow$
1	1	0	$a+b\geq c$ $a+c\geq b$ $b+c\geq a$
1	1	1	

Step1 objective function:

	MILP Representation	
	0000	

Working with truncated characteristics:

Abst	ract	ed X	OR Truth Table	
	a	b	$c = a \oplus b$	
	0	0	0	Non-valid transitions:
	0	1	1	(0, 0, 1), (0, 1, 0), (1, 0, 0)
	1	0	1	$a + b + c \neq 1 \Rightarrow$
	1	1	0	$a+b\geq c$ $a+c\geq b$ $b+c\geq a$
	1	1	1	

Step1 objective function:

$$\sum_{i,r} X_{i,r}$$

where *i* word position, *r* round, $X_{i,r} = 1$ if there is a non-zero value at the S-box, zero otherwise.

	MILP Representation	
	00000	
		-

How do we model a non-linear function only with linear constraints?

	MILP Representation	
	00000	

How do we model a non-linear function only with linear constraints?

H-representation of the convex-hull

	MILP Representation	
	00000	

How do we model a non-linear function only with linear constraints?

H-representation of the convex-hull

			MILP Representation	
000000	00000	00	00000	00000000

How do we model a non-linear function only with linear constraints?

H-representation of the convex-hull

Product-of-Sum Representation of Boolean Functions

	MILP Representation	
	00000	

How do we model a non-linear function only with linear constraints?

H-representation of the convex-hull

Product-of-Sum Representation of Boolean Functions Quine-McCluskey (QM) algorithm
	MILP Representation	
	00000	

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

H-representation of the convex-hull

- Product-of-Sum Representation of Boolean Functions Quine-McCluskey (QM) algorithm
- Logical condition techniques for 8-bit S-boxes

			MILP Representation	
000000	00000	00	00000	00000000

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

H-representation of the convex-hull

- Product-of-Sum Representation of Boolean Functions Quine-McCluskey (QM) algorithm
- Logical condition techniques for 8-bit S-boxes

Minimization

- Greedy algorithm
- MILP minimization
- Prime implicants table

			MILP Representation	
000000	00000	00	00000	00000000

Step2 MILP Modeling

How do we model a non-linear function only with linear constraints?

H-representation of the convex-hull

- Product-of-Sum Representation of Boolean Functions Quine-McCluskey (QM) algorithm
- Logical condition techniques for 8-bit S-boxes

Minimization

- Greedy algorithm
- MILP minimization
- Prime implicants table

			MILP Representation	
000000	00000	00	00000	00000000

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: DDT

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: DDT

Δ: Input			∇ :	output	differer	ice		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	8	0	0	0	0	0	0	0
0x1	0	2	2	0	0	2	2	0
0x2	0	2	2	0	0	2	2	0
0x3	0	0	0	4	0	0	0	4
0x4	0	0	0	0	4	0	0	4
0x5	0	2	2	0	0	2	2	0
0x6	0	2	2	0	0	2	2	0
0x7	0	0	0	4	4	0	0	0

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

Δ: Input			∇ :	output	differer	ice		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	1	1	0	0	0

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input			∇ :	output	differer	nce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	1	1	0	0	0

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input			∇ :	output	differer	nce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	1	1	0	0	0

Δ: Input		∇: output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	
0x0	8	0	0	0	0	0	0	0	
0x1	0	2	2	0	0	2	2	0	
0x2	0	2	2	0	0	2	2	0	
0x3	0	0	0	0	0	0	0	0	
0x4	0	0	0	0	0	0	0	0	
0x5	0	2	2	0	0	2	2	0	
0x6	0	2	2	0	0	2	2	0	
0x7	0	0	0	0	0	0	0	0	

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference								
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7		
0x0	1	0	0	0	0	0	0	0		
0x1	0	1	1	0	0	1	1	0		
0x2	0	1	1	0	0	1	1	0		
0x3	0	0	0	1	0	0	0	1		
0x4	0	0	0	0	1	0	0	1		
0x5	0	1	1	0	0	1	1	0		
0x6	0	1	1	0	0	1	1	0		
0x7	0	0	0	1	1	0	0	0		

Δ: Input		∇: output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	
0x0	1	0	0	0	0	0	0	0	
0x1	0	1	1	0	0	1	1	0	
0x2	0	1	1	0	0	1	1	0	
0x3	0	0	0	0	0	0	0	0	
0x4	0	0	0	0	0	0	0	0	
0x5	0	1	1	0	0	1	1	0	
0x6	0	1	1	0	0	1	1	0	
0x7	0	0	0	0	0	0	0	0	

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference								
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7		
0x0	1	0	0	0	0	0	0	0		
0x1	0	1	1	0	0	1	1	0		
0x2	0	1	1	0	0	1	1	0		
0x3	0	0	0	1	0	0	0	1		
0x4	0	0	0	0	1	0	0	1		
0x5	0	1	1	0	0	1	1	0		
0x6	0	1	1	0	0	1	1	0		
0x7	0	0	0	1	1	0	0	0		

Δ: Input			∇ :	output	differer	псе		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	8	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	4	0	0	0	4
0x4	0	0	0	0	4	0	0	4
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	4	4	0	0	0

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference								
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7		
0x0	1	0	0	0	0	0	0	0		
0x1	0	1	1	0	0	1	1	0		
0x2	0	1	1	0	0	1	1	0		
0x3	0	0	0	1	0	0	0	1		
0x4	0	0	0	0	1	0	0	1		
0x5	0	1	1	0	0	1	1	0		
0x6	0	1	1	0	0	1	1	0		
0x7	0	0	0	1	1	0	0	0		

Δ: Input			∇ :	output	differer	псе		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference								
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7		
0x0	1	0	0	0	0	0	0	0		
0x1	0	1	1	0	0	1	1	0		
0x2	0	1	1	0	0	1	1	0		
0x3	0	0	0	1	0	0	0	1		
0x4	0	0	0	0	1	0	0	1		
0x5	0	1	1	0	0	1	1	0		
0x6	0	1	1	0	0	1	1	0		
0x7	0	0	0	1	1	0	0	0		

Use 2-DDT and 4-DDT:

Δ: Input			∇:	output	differer	nce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

H-representation of convex-hull:

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	
0x0	1	0	0	0	0	0	0	0	
0x1	0	1	1	0	0	1	1	0	
0x2	0	1	1	0	0	1	1	0	
0x3	0	0	0	1	0	0	0	1	
0x4	0	0	0	0	1	0	0	1	
0x5	0	1	1	0	0	1	1	0	
0x6	0	1	1	0	0	1	1	0	
0x7	0	0	0	1	1	0	0	0	

Use 2-DDT and 4-DDT:

Δ: Input			∇ :	output	differer	псе		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

H-representation of convex-hull:

Set of valid transitions DDT:

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	
0x0	1	0	0	0	0	0	0	0	
0x1	0	1	1	0	0	1	1	0	
0x2	0	1	1	0	0	1	1	0	
0x3	0	0	0	1	0	0	0	1	
0x4	0	0	0	0	1	0	0	1	
0x5	0	1	1	0	0	1	1	0	
0x6	0	1	1	0	0	1	1	0	
0x7	0	0	0	1	1	0	0	0	

Use 2-DDT and 4-DDT:

Δ: Input			∇ :	output	differer	псе		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

H-representation of convex-hull:

Set of valid transitions DDT:

 $\{(0,0),(1,1),(1,2),(1,5),\ldots,(7,4)\}$

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	
0x0	1	0	0	0	0	0	0	0	
0x1	0	1	1	0	0	1	1	0	
0x2	0	1	1	0	0	1	1	0	
0x3	0	0	0	1	0	0	0	1	
0x4	0	0	0	0	1	0	0	1	
0x5	0	1	1	0	0	1	1	0	
0x6	0	1	1	0	0	1	1	0	
0x7	0	0	0	1	1	0	0	0	

Use 2-DDT and 4-DDT:

Δ: Input			∇ :	output	differer	псе		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

H-representation of convex-hull:

Set of valid transitions DDT:

 $\{(0,0),(1,1),(1,2),(1,5),\ldots,(7,4)\}$

 Set of valid transitions 2-DDT and 4-DDT

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference							
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	
0x0	1	0	0	0	0	0	0	0	
0x1	0	1	1	0	0	1	1	0	
0x2	0	1	1	0	0	1	1	0	
0x3	0	0	0	1	0	0	0	1	
0x4	0	0	0	0	1	0	0	1	
0x5	0	1	1	0	0	1	1	0	
0x6	0	1	1	0	0	1	1	0	
0x7	0	0	0	1	1	0	0	0	

Use 2-DDT and 4-DDT:

Δ: Input			∇ :	output	differer	псе		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

H-representation of convex-hull:

Set of valid transitions DDT:

 $\{(0,0),(1,1),(1,2),(1,5),\ldots,(7,4)\}$

 Set of valid transitions 2-DDT and 4-DDT

 $\{(0,0),(1,1),(1,2),(1,5),\ldots,(6,6)\}$

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference						
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	1	1	0	0	0

Use 2-DDT and 4-DDT:

Δ: Input			∇ :	output	differer	псе		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

H-representation of convex-hull:

Set of valid transitions DDT:

 $\{(0,0),(1,1),(1,2),(1,5),\ldots,(7,4)\}$

 Set of valid transitions 2-DDT and 4-DDT

 $\{(0,0),(1,1),(1,2),(1,5),\ldots,(6,6)\}$

$$\{(0,0), (3,3), (3,7), (4,4), \ldots, (7,4)\}$$

	MILP Representation	
	00000	

[Abdelkhalek et al., MILP Modeling for (Large) S-boxes to OptimizeProbability of Differential Characteristics, 2017]

Establish valid transitions: *-DDT

∆: Input		∇: output difference						
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	1	1	0	0	0

Use 2-DDT and 4-DDT:

Δ: Input			∇ :	output	differer	псе		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	1	1	0	0	1	1	0
0x2	0	1	1	0	0	1	1	0
0x3	0	0	0	0	0	0	0	0
0x4	0	0	0	0	0	0	0	0
0x5	0	1	1	0	0	1	1	0
0x6	0	1	1	0	0	1	1	0
0x7	0	0	0	0	0	0	0	0
Δ: Input			∇:	output	differer	ıce		
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
0x0	1	0	0	0	0	0	0	0
0x1	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0
0x3	0	0	0	1	0	0	0	1
0x4	0	0	0	0	1	0	0	1
0x5	0	0	0	0	0	0	0	0
0x6	0	0	0	0	0	0	0	0
0x7	0	0	0	1	1	0	0	0

H-representation of convex-hull:

Set of valid transitions DDT:

 $\{(0,0),(1,1),(1,2),(1,5),\ldots,(7,4)\}$

 Set of valid transitions 2-DDT and 4-DDT

 $\{(0,0),(1,1),(1,2),(1,5),\ldots,(6,6)\}$

$$\{(0,0),(3,3),(3,7),(4,4),\ldots,(7,4)\}$$

$$\sum_{i=0}^{7} a_i^j X_i + a^j \ge 0$$

	MILP Representation	
	00000	

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

Assign a variable to each inequality (Value 0 or 1)

	MILP Representation	
	00000	

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

Assign a variable to each inequality (Value 0 or 1)

1 if it is used

	MILP Representation	
	00000	

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

Assign a variable to each inequality (Value 0 or 1)

- 1 if it is used
- 0 otherwise

	MILP Representation	
	00000	

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

- Assign a variable to each inequality (Value 0 or 1)
 - 1 if it is used
 - 0 otherwise
- Relate each inequality to the points that satisfy it

	MILP Representation	
	00000	

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

- Assign a variable to each inequality (Value 0 or 1)
 - 1 if it is used
 - 0 otherwise
- Relate each inequality to the points that satisfy it
- Minimize the number of inequalities constrained to: all points must be included

	MILP Representation	
	00000	

[Sasaki and Todo, New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search, 2017]

- Assign a variable to each inequality (Value 0 or 1)
 - 1 if it is used
 - 0 otherwise
- Relate each inequality to the points that satisfy it
- Minimize the number of inequalities constrained to: all points must be included
- Step2 objective: Maximize the probability of the transitions throughout 2-DDT and 4-DDT

			MILP Representation	Results
000000	00000	00	00000	0000000

	MILP Representation	Results
		•0000000

	MILP Representation	Results
		•0000000

Need for encryption and authentication on constrained devices

Small hardware footprint

	MILP Representation	Results
		•0000000

- Small hardware footprint
- Small block size

	MILP Representation	Results
		•0000000

- Small hardware footprint
- Small block size
- Low-latency

	MILP Representation	Results
		•0000000

- Small hardware footprint
- Small block size
- Low-latency
- Low-energy consumption

			MILP Representation	Results
0000000	00000	00	00000	0000000

Warp

[Banik et all., WARP : Revisiting GFN for Lightweight 128-bit Block Cipher, 2020]

Introduction Diffe	erential Attack (Clusters	MILP Representation	Results
0000000 000	000 (00	00000	0000000

 $F = ARK \circ S$

128-bit Generalize Feistel cipher

		Clusters	MILP Representation	Results
0000000 00	0000	00	00000	0000000

 $F = ARK \circ S$

- 128-bit Generalize Feistel cipher
- 128-bit key size

		Clusters	MILP Representation	Results
0000000 00	0000	00	00000	0000000

 $F = ARK \circ S$

- 128-bit Generalize Feistel cipher
- 128-bit key size
- Linear key schedule

		Clusters	MILP Representation	Results
0000000 00	0000	00	00000	0000000

 $F = ARK \circ S$

- 128-bit Generalize Feistel cipher
- 128-bit key size
- Linear key schedule
- 41 round function iterations

Introduction Differential A	llack Glusters	MILP Representation	Hesults
000000 00000	00	00000	0000000

Clusters for Warp

Rounds	S-boxes	n_sol	Step2 -log(prob)	Cluster size	Cluster prob
10	17	2	34	4	32
11	22	2	44	4	42
12	28	4	56	16	53
13	34	2	68	512	59
Introduction	Differential Attack	MILP Representation	Results		
--------------	---------------------	---------------------	---------		

0,	0,	0,	0,	0,	0,	7,	d,	а,	d,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	а,	d,	0,	0,	0,	d,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	0,	0,	0,	0,	0,	0,	d,	7,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,
0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	d,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,
0,	0,	0,	0,	а,	0,	а,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	а,
0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	5,	0,	0,	0,	а,	0,	0,	а,	0,	а,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,
0,	0,	0,	0,	7,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	а,	0,	0,	d,	0,	0,	5,	0,	0,	а,	0,	а,	0,

	MILP Representation	Results
		000000

0.	0.	0.	0.	0.	0.	7.	d.	a.	d.	0.	0.	0.	0.	0.	a.	0.	0.	0.	0.	0.	0.	0.	0.	a.	d.	0.	0.	0.	d.	0.	0.
0	0	0	0	ő	0	o,	0	0	0	a	a,	0	ő	0	0	0	ő	ő	0	d	7	0	0	0	0	0	a,	0	0	0	0
0	0	0		0	0	0	0	0	0	0	0	0	0	0	0		d	0	0	0	0	0	0	0	0	0	0	0	0	0	0
o,	0,	0,	0,	0,	ő,	0,	0,	0,	0,	0,	0,	0,	0,	2,	2,	0	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	a,	a,	0,	0,	0,	0,	0,	0,	0,	2	0,	0,	0,	0,	0,	0,	0,	0,
o,	0,	0,	0,	0,	ő,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0	2,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	a,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	<i>a</i> ,	0,	0,	0,	0,	0,	0,	<i>a</i> ,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
a,	0,	0,	0,	υ,	0,	υ,	υ,	0,	0,	0,	υ,	0,	a,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	υ,	0,	0,	0,	a ,	υ,
υ,	υ,	0,	υ,	a,	0,	а,	а,	0,	υ,	0,	0,	υ,	0,	0,	0,	υ,	υ,	0,	υ,	0,	υ,	υ,	0,	υ,	υ,	a,	0,	0,	0,	0,	a,
0,	a,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	5,	0,	0,	0,	а,	0,	0,	а,	0,	a,	0,	0,	0,	0,	a,	0,	0,	0,	0,	0,
0,	0,	0,	0,	7,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	а,	0,	0,	d,	0,	0,	5,	0,	0,	а,	0,	a,	0,
0,	0,	0,	0,	0,	0,	7,	d,	а,	d,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	а,	d,	0,	0,	0,	d,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	0,	0,	0,	0,	0,	0,	d,	7,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,
0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	d,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	a,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	a.	0.	0.	0.	0.	0.	0.	0.	0.
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	a.	0.	0.	0.	0.	0.	0.	a.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
a.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	a.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	5.	0.
0	0	0	0	a	0	a	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	a	0	0	0	0	a
ō,	a,	0	0	0	0	0	o,	0	0	Ő,	ō,	5	0	0	0	a,	ō,	0	a,	0	a,	0	0	0	0	a,	0	ō,	ō,	Ő,	0
~,	,	-, ,	, ,		<i>o</i> ,	5,	<i>,</i>	ő,	, ,	0,	-, ,	0,	<i>,</i>	<i>o</i> ,	5,	,	, ,	<i>o</i> ,		<i>o</i> ,		3,	<i>o</i> ,	, ,	5,	0,	-, ,	-,	0,	2,	<i>o</i> ,

~	~		~	~		-		-		~		~			-	~	~		~	~	~	~			-1		~		-1	~	~
υ,	υ,	υ,	υ,	υ,	υ,	7,	а,	а,	а,	υ,	υ,	υ,	υ,	υ,	а,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	υ,	а,	а,	υ,	υ,	υ,	а,	υ,	υ,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	0,	0,	0,	0,	0,	0,	d,	7,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,
0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	d,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	а.	a.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	a.	0.	0.	0.	0.	0.	0.	0.	0.
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	a	0	0	0	0	0	0	0
Ő,	0	0	ō,	0	0	0	0	0	ō,	0	a,	0	ō,	ō,	ō,	0	ō,	a,	ō,	0	0	0	0	0	0	ō,	0	0	0	0	ō,
	0,	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0	0,	0,	0	2,	0,	2		0,	0	0,	0	0	0	0,	0	0	0	0,	0	0,	0,	0	0,	0	0	2	0	0	0,	0,	2
0,	2,	0,	0,	0,	ő,	0	0,	ő,	0,	0,	0,	5	0,	0,	0,	2,	0,	0,	2,	0,	2,	0,	0,	0,	0,		0,	0,	0,	0,	0
0,	a,	0,	0,	7	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	a,	0,	0,	a,	0,	a,	d,	0,	0,	5	a,	0,	0,	0,	0,	0,
	0,	0,	0,	- ,	0,	<i>a</i> ,	0,	0,	0,	0,	0,	- 0,	- 0,	0,	a,	<i>a</i> ,	0,	0,	<i>a</i> ,	0,	- 0,	<i>u</i> ,	0,	0,	3,	- 0,	0,	<i>a</i> ,	- 0,	<i>a</i> ,	0,
0,	0,	0,	0,	0,	0,	7,	а,	а,	d,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	а,	d,	0,	0,	0,	d,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	0,	0,	0,	0,	0,	0,	a,	7,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,
0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	d,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	5,	0,
0,	0,	0,	0,	а,	0,	а,	5,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	а,	0,	0,	0,	0,	а,
0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	5,	0,	0,	0,	а,	0,	0,	а,	0,	a,	0,	0,	0,	0,	a,	0,	0,	0,	0.	0,
0,	0,	0,	0,	7,	0,	а,	0,	0,	0,	0,	0,	0,	0,	0,	a,	a,	0,	0,	a,	0,	0,	d,	0,	0,	5,	0,	0,	a,	0,	a,	0,
0	0	0	0	0	0	7	d	a	d	0	0	0	0	0	a	0	0	0	0	0	0	0	0	а	d	0	0	0	d	0	0
Ő,	0	0	0	0	0	0	0	0	0	a,	a	0	0	ō,	0	0	0	ō,	0	d	7	ō,	0	0	0	0	a,	0	0	0	0
Ő,	0	0	a,	0	0	0	0	0	0	0	0	0	0	ō,	0	a,	d	ō,	0	0	0	ō,	0	0	0	0	0	0	0	0	ō,
0	0,	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,	0,	0,	0,	ő,	ō,	0,	ő,	0,	0,	0,	0,	0,	0,	0,	0	0,	0,	0,	0,	0,	0,	0,	2,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	a,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	a,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	a,	0,	0,	0,	0,	0,	0,	a,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	<u>,</u>	0,
a,	J,	0,	J,	J,	0,	J,	J,	0,	J,	0,	0,	J,	d,	0,	0,	J,	0,	0,	0,	0,	J,	0,	0,	0,	0,	J,	0,	0,	0,	4 ,	J,
0,	υ,	0,	0,	а,	0,	<i>a</i> ,	u,	0,	0,	0,	0,	<u>,</u>	0,	0,	0,	υ,	0,	0,	υ,	0,	υ,	0,	0,	0,	0,	a,	0,	0,	0,	0,	a,
υ,	a,	0,	υ,	0,	0,	υ,	υ,	υ,	0,	0,	0,	э,	υ,	υ,	υ,	a,	0,	υ,	a,	0,	a,	υ,	0,	0,	0,	a,	0,	υ,	0,	υ,	0,
0							- 11	- 11		- 11			1)	- 11			- 11	1)		- 11		d			2	1)	- 11		- 11		11

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, <i>a</i> , 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	7, 0, 0, 0, 0, 0, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0, 0,	a, 0, 0, 0, 0, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0,	0, <i>a</i> , 0, 0, 0, 0, 0, 0, 0,	0, a, 0, 0, 0, 0, a, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 5,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, a, 0, 0, 0, 0, 0, 0,	a, 0, 0, a, 0, 0, 0, 0, 0,	0, 0, a, 0, 0, 0, 0, 0, 0, 0,	0, 0, <i>d</i> , 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	0, d, 0, 0, 0, 0, 0, 0, 0,	0, 7, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, <i>a</i> , 0, 0, 0, 0,	a, 0, 0, 0, a, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, a, a,	0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,	0,	0,	0,	7,	0,	a,	0,	0,	0,	0,	0,	0,	0,	0,	а,	а,	0,	0,	а,	0,	0,	d,	0,	0,	5,	0,	0,	а,	0,	a,	0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, a, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, a,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	7, 0, 0, 0, 0, 0, 0, 0, 0, a,	d, 0, 0, 0, 0, 0, 0, 0, 5,	a, 0, 0, 0, 0, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0,	0, <i>a</i> , 0, 0, 0, 0, 0, 0, 0,	0, a, 0, 0, 0, 0, a, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, <i>a</i> , 0, 0, 0, 0, 0,	a, 0, 0, a, 0, 0, 0, 0, 0,	0, 0, <i>a</i> , 0, 0, 0, 0, 0, 0,	0, 0, d, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	0, d, 0, 0, 0, 0, 0, 0, 0,	0, 7, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, <i>a</i> , 0, 0, 0, 0,	a, 0, 0, 0, a, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, a,	0, a, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 5, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, a,
0,	a,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	5,	0,	0,	0,	a,	0,	0,	a,	0,	a,	0,	0,	0,	0,	a,	0,	0,	0,	0,	0,
0,	0,	0,	0,	7,	0,	a,	0, d	0,	0, d	0,	0,	0,	0,	0,	a,	<i>a</i> ,	0,	0,	<i>a</i> ,	0,	0,	<i>a</i> ,	0,	0,	5, d	0,	0,	<i>a</i> ,	0, d	<i>a</i> ,	0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 7,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	7, 0, 0, 0, 0, 0, 0, 0, a, 0, a, 7,	d, 0, 0, 0, 0, 0, 0, 0, d, 0, 0,	a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, <i>a</i> , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0, <i>a</i> , 0, 0, 0, <i>a</i> , 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 5, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0,	a, 0, 0, 0, 0, 0, 0, 0, 0, a,	0, 0, 0, 0, 0, 0, 0, 0, a, a, 0,	0, 0, d, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, a, a, 0,	0, d, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 5,	0, 0, 0, 0, 0, 0, 0, a, a, 0, 0,	0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	d, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, <i>a</i> , 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, a, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 7,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	, 0, 0, 0, 0, 0, 0, <i>a</i> , 0, <i>a</i> ,	0, 0, 0, 0, 0, 0, 0, f , 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	a, 0, 0, 0, 0, 0, 0, 0, 0, 0,	a, 0, 0, 0, 0, <i>a</i> , 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 5, 0,	0, 0, 0, 0, 0, 0, <i>a</i> , 0, 0, 0,	0, 0, <i>a</i> , 0, 0, 0, 0, 0, 0,	0, 0, <i>a</i> , 0, 0, 0, 0, <i>a</i> , <i>a</i> ,	0, a, 0, 0, 0, 0, 0, a, a,	0, d, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, <i>a</i> , 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, a, a,	d, 0, 0, 0, 0, 0, 0, 0, 0, 0,	7, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, d,	0, 0, 0, <i>a</i> , 0, 0, 0, 0, 0,	0, 0, 0, 0, <i>a</i> , 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 5,	0, 0, 0, 0, 0, 0, 0, <i>a</i> , <i>a</i> , 0,	a, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, a,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, f , 0, f , 0, <i>a</i> ,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

			MILP Representation	Results
0000000	00000	00	00000	00000000

			MILP Representation	Results
0000000	00000	00	00000	00000000

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]

■ n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix

			MILP Representation	Results
000000	00000	00	00000	00000000

- n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix
- Tweakey size of t = kn, k = 1, 2, 3

			MILP Representation	Results
000000	00000	00	00000	00000000

- n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix
- Tweakey size of t = kn, k = 1, 2, 3
- Number of rounds between 32 and 56

			MILP Representation	Results
000000	00000	00	00000	00000000

- n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix
- Tweakey size of t = kn, k = 1, 2, 3
- Number of rounds between 32 and 56

			MILP Representation	Results
000000	00000	00	00000	00000000

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]

- n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix
- Tweakey size of t = kn, k = 1, 2, 3
- Number of rounds between 32 and 56

 $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$

			MILP Representation	Results
000000	00000	00	00000	00000000

- n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix
- Tweakey size of t = kn, k = 1, 2, 3
- Number of rounds between 32 and 56

			MILP Representation	Results
000000	00000	00	00000	00000000

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]

- n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix
- Tweakey size of t = kn, k = 1, 2, 3
- Number of rounds between 32 and 56

S-boxes can be implemented with a few XOR and NOR operations

			MILP Representation	Results
000000	00000	00	00000	00000000

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]

- n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix
- Tweakey size of t = kn, k = 1, 2, 3
- Number of rounds between 32 and 56

S-boxes can be implemented with a few XOR and NOR operations

			MILP Representation	Results
000000	00000	00	00000	00000000

[Beierle et all., The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS, 2016]

- n-bit SPN block cipher (n=64,128), seen as a 4 × 4 matrix
- Tweakey size of t = kn, k = 1, 2, 3
- Number of rounds between 32 and 56

S-boxes can be implemented with a few XOR and NOR operations

	MILP Representation	Results
		000000000

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

	MILP Representation	Results
		000000000

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1
- Durkla								

Problem

			MILP Representation	Results
000000	00000	00	00000	000000000

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

 \blacksquare Problem \rightarrow Many solutions don't have a Step2 solution

			MILP Representation	Results
000000	00000	00	00000	000000000

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

 \blacksquare Problem \rightarrow Many solutions don't have a Step2 solution

Increase the objective of Step1

			MILP Representation	Results
000000	00000	00	00000	000000000

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

■ Problem → Many solutions don't have a Step2 solution

 \blacksquare Increase the objective of Step1 \rightarrow Too many solutions

			MILP Representation	Results
000000	00000	00	00000	000000000

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

■ Problem → Many solutions don't have a Step2 solution

Increase the objective of Step1 \rightarrow Too many solutions

Proposed solution:

			MILP Representation	Results
000000	00000	00	00000	00000000

[Delaune et all., SKINNY with Scalpel - Comparing Tools for Differential Analysis, 2020]

Rounds	SK	n_sol	TK1	n_sol	TK2	n_sol	TK3	n_sol
11	52	2	32	2	16	1	10	3
12	55	2	38	7	21	1	13	2
13	58	6	41	2	25	2	16	2
14	61	2	45	3	31	1	19	1

 \blacksquare Problem \rightarrow Many solutions don't have a Step2 solution

- \blacksquare Increase the objective of Step1 \rightarrow Too many solutions
- Proposed solution: Add extra variables to control instantiation probability

			MILP Representation	Results
000000	00000	00	00000	00000000

		MILP Representation	Results 000000●0
Conclusions			

Differential search can be simplified throughout differential characteristics search

		MILP Representation	Results 000000●0
Conclusions			

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps

		MILP Representation	Results 000000●0
_			

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps
- Both steps can be model as a MILP problem

	MILP Representation	Results 00000000

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps
- Both steps can be model as a MILP problem
- Clusters can make a considerable improvement in the approximation of the probability of a differential

-> Future Work

	MILP Representation	Results 000000●0

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps
- Both steps can be model as a MILP problem
- Clusters can make a considerable improvement in the approximation of the probability of a differential

-> Future Work

Need to improve Cluster Search

	MILP Representation	Results 000000●0

- Differential search can be simplified throughout differential characteristics search
- Differential characteristic search can be improved with abstraction approach in two steps
- Both steps can be model as a MILP problem
- Clusters can make a considerable improvement in the approximation of the probability of a differential
- -> Future Work
- Need to improve Cluster Search
- Need to better Step1 model for Skinny

			MILP Representation	Results
0000000	00000	00	00000	0000000

Cluster Search and MILP Modeling for Differential Attacks

RODRÍGUEZ CORDERO Ana Margarita

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

October 27th, 2022