A survey of elliptic curves for proof systems

Diego Aranha, Youssef El Housni, *Aurore Guillevic* With many slides from Youssef El Housni

Aarhus University and Inria Nancy

June 24, 2022

https://members.loria.fr/AGuillevic/files/talks/22-06-Nancy.pdf

Our work

Diego F. Aranha, Youssef El Housni, and Aurore Guillevic. A survey of elliptic curves for proof systems. Cryptology ePrint Archive, Paper 2022/586, 2022. https://eprint.iacr.org/2022/586.

Youssef El Housni and Aurore Guillevic.
 Families of SNARK-friendly 2-chains of elliptic curves.
 In Orr Dunkelman and Stefan Dziembowski, editors, *EUROCRYPT 2022*, volume 13276 of *LNCS*, pages 367–396. Springer, 2022.
 ePrint 2021/1359.

Youssef El Housni and Aurore Guillevic.

Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition.

In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, *CANS 20*, volume 12579 of *LNCS*, pages 259–279. Springer, Heidelberg, December 2020.

Outline

Preliminaries on proof systems Zero-knowledge proof (ZKP) ZK-SNARK

Pairings

Curves for proof systems

proof composition SNARK curves

Pairing-friendly curves

2-chains of pairing-friendly elliptic curves

Implementations

Outline

Preliminaries on proof systems Zero-knowledge proof (ZKP) ZK-SNARK

Pairings

Curves for proof systems

Pairing-friendly curves

Implementations

Zero-Knowledge Proofs

Bob No idea what the solution is but Alice must know it

Alice

I know x such that $g^x = y$

Bob

 $x\in\mathbb{Z}_{
ho}$, but $A,g,y\in\mathbf{G}$ a group of order p, e.g. $E(\mathbb{F}_{q}),$ $\#E(\mathbb{F}_{q})=p$

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob I know x such that $g^{x} = y$ $r \stackrel{\text{random}}{\leftarrow} \mathbb{Z}_{p}$ $A = g^{r}$ c = H(A, y) $s = r + c \cdot x$ $\pi = (A, c, s)$ $g^{s} \stackrel{?}{=} A \cdot y^{c}$ $c \stackrel{?}{=} H(A, y)$ Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

AliceBobI know x such that $g^x = y$ $r \stackrel{\text{random}}{\longleftarrow} \mathbb{Z}_p$ $A = g^r$ c = H(A, y) $s = r + c \cdot x$ $\pi = (A, c, s)$ $g^s \stackrel{?}{=} A \cdot y^c$ $c \stackrel{?}{=} H(A, y)$

 $x\in\mathbb{Z}_p$, but $A,g,y\in\mathbf{G}$ a group of order p, e.g. $E(\mathbb{F}_q),\,\#E(\mathbb{F}_q)=p$

ZKP families

- specific statement vs general statement
- *interactive* vs *non-interactive* protocol
- transparent setup vs trapdoored setup vs no setup
- Any verifier vs given verifier
- prover complexity (Alice)
- verifier complexity (Bob)
- communication complexity (size of the proof and the setup)
- security assumptions, cryptographic primitive...
- ...

Blockchains and ZKP

A blockchain is a public peer-to-peer *decentralized*, *transparent*, *immutable*, *paying* ledger.

- *Transparent*: everything is visible to everyone
- Immutable: nothing can be removed once written
- Paying: everyone should pay a fee to use

ZKP literature landmarks

- First ZKP paper [GMR85]
- Non-Interactive ZKP [BFM88]
- Succinct ZKP [K92]

•

- Succinct Non-Interactive ZKP [M94]
- Succinct NIZK without the PCP Theorem [Groth10]
- "SNARK" terminology and characterization of existence [BCCT11]
- Succinct NIZK without PCP Theorem and Quasi-linear prover time [GGPR13]
- Succinct NIZK without with constant-size proof and constant-time verifier (Groth16)
- First succinct NIZK with universal and updatable setup [Sonic19]
- Active research and implementation on SNARK with universal and updatable setup [PLONK19]

Zero-knowledge proof

What is a zero-knowledge proof?

"I have a sound, complete and zero-knowledge proof that a statement is true". [GMR85]

Sound

False statement \implies cheating prover cannot convince honest verifier.

Complete

True statement \implies honest prover convinces honest verifier.

Zero-knowledge

True statement \implies verifier learns nothing other than statement is true.

Zero-knowledge proof

ZK-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

"I have a *computationally sound*, *complete*, *zero-knowledge*, *succinct*, *non-interactive* proof that a statement is true and that I know a related secret".

Succinct

Honestly-generated proof is very "short" and "easy" to verify.

Non-interactive

No interaction between the prover and verifier for proof generation and verification.

ARgument of Knowledge

Honest verifier is convinced that a computationally bounded prover knows a secret information.

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup: $(pk, vk) \leftarrow S(F, 1^{\lambda})$

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:	(<i>pk</i> , <i>vk</i>)	\leftarrow	$S({\it F},1^{\lambda})$
Prove:	π	\leftarrow	P(x, z, w, pk)

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup:	(<i>pk</i> , <i>vk</i>)	\leftarrow	$S({\it F},1^{\lambda})$
Prove:	π	\leftarrow	P(x, z, w, pk)
Verify:	false/true	\leftarrow	$V(x, z, \pi, vk)$

Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such that z := F(x, w).

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Succinctness: An honestly-generated proof is very "short" and "easy" to verify. Definition [BCTV14b]

A succinct proof π has size $O_{\lambda}(1)$ and can be verified in time $O_{\lambda}(|F| + |x| + |z|)$, where $O_{\lambda}(.)$ is some polynomial in the security parameter λ .

main ideas:

- 1. Reduce a "general statement" satisfiability to a polynomial equation satisfiability.
- 2. Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high probability.
- 3. Use homomorphic hiding cryptography to blindly verify the polynomial equation.
- 4. Use Fiat-Shamir transform to make the protocol non-interactive.

To know more about zk-SNARK, see Youssef slides at Aarhus seminar, May 11, 2022.

Outline

Preliminaries on proof systems

Pairings

Curves for proof systems

Pairing-friendly curves

Implementations

What is a pairing?

 $(\mathbf{G}_1, +), (\mathbf{G}_2, +), (\mathbf{G}_T, \cdot)$ three cyclic groups of large prime order ℓ Pairing: map $e : \mathbf{G}_1 \times \mathbf{G}_2 \to \mathbf{G}_T$

- 1. bilinear: $e(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q)$, $e(P, Q_1 + Q_2) = e(P, Q_1) \cdot e(P, Q_2)$
- 2. non-degenerate: $e(G_1,G_2) \neq 1$ for $\langle G_1 \rangle = {f G}_1$, $\langle G_2
 angle = {f G}_2$
- 3. efficiently computable.

Most often used in practice:

$$e([a]P, [b]Q) = e([b]P, [a]Q) = e(P, Q)^{ab}$$
.

 \rightsquigarrow Many applications in asymmetric cryptography.

Pairings in cryptography: 1993 and 2001

1993

Menezes-Okamoto-Vanstone attack on supersingular curves

2001

- Joux' tri-partite key exchange
- Boneh Frankin Identity based encryption
- Boneh Lynn Shacham short signature

Pairing setting: elliptic curves

$$E/\mathbb{F}_p$$
: $y^2 = x^3 + ax + b$, $a, b \in \mathbb{F}_p$, $p \ge 5$

- proposed in 1985 by Koblitz, Miller
- $E(\mathbb{F}_p)$ has an efficient group law (chord an tangent rule) ightarrow \mathbf{G}_1
- $\#E(\mathbb{F}_p) = p + 1 t$, trace t: $|t| \le 2\sqrt{p}$
- efficient group order computation (*point counting*)

Pairing setting: elliptic curves

$$E/\mathbb{F}_p$$
: $y^2 = x^3 + ax + b$, $a, b \in \mathbb{F}_p$, $p \ge 5$

- proposed in 1985 by Koblitz, Miller
- $E(\mathbb{F}_p)$ has an efficient group law (chord an tangent rule) ightarrow \mathbf{G}_1

•
$$\#E(\mathbb{F}_p)=p+1-t$$
, trace $t\colon |t|\leq 2\sqrt{p}$

- efficient group order computation (*point counting*)
- large subgroup of prime order ℓ s.t. $\ell \mid p+1-t$ and ℓ coprime to p
- $E(\mathbb{F}_p)[\ell] = \{P \in E(\mathbb{F}_p) \colon [\ell]P = \mathcal{O}\}$ has order ℓ
- $E[\ell] \simeq \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$ (for crypto)
- only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
- optimal parameter sizes

Tate Pairing and modified Tate pairing

 $\ell \mid p^n - 1, \ E[\ell] \subset E(\mathbb{F}_{p^n})$ Tate Pairing: For cryptography,

•
$$\mathbf{G}_1 = E(\mathbb{F}_p)[\ell] = \{P \in E(\mathbb{F}_p), [\ell]P = \mathcal{O}\}$$

- embedding degree n > 1 w.r.t. ℓ : smallest¹ integer n s.t. $\ell \mid p^n 1$ $\Leftrightarrow E[\ell] \subset E(\mathbb{F}_{p^n})$
- $\mathbf{G}_2 \subset E(\mathbb{F}_{p^n})[\ell]$
- $\textbf{G}_1 \cap \textbf{G}_2 = \mathcal{O}$ by construction for practical applications

•
$$\mathbf{G}_{\mathcal{T}} = \boldsymbol{\mu}_{\ell} = \{ u \in \mathbb{F}_{p^n}^*, \ u^{\ell} = 1 \} \subset \mathbb{F}_{p^n}^*$$

When *n* is small i.e. $1 \le n \le 0$, the curve is *pairing-friendly*. This is very rare: For a given curve, $\log n \sim \log \ell$ (Balasubramanian–Koblitz).

 $^{^{1}}n = 1$ is possible too in rare circumstances

Modified Tate pairing

Ensure the pairing is non-degenerate: $\textbf{G}_1 \cap \textbf{G}_2 = \mathcal{O}$

$$E[\ell] = \mathbb{Z}/\ell\mathbb{Z} imes \mathbb{Z}\ell\mathbb{Z} = \mathbf{G}_1 imes \mathbf{G}_2$$

Let
$$P \in \mathbf{G}_1 = E(\mathbb{F}_p)[\ell], Q \in \mathbf{G}_2 \subset E(\mathbb{F}_{p^n})[\ell]$$
.
Let $f_{\ell,P}$ the function s. t. $\text{Div}(f_{\ell,P}) = \ell(P) - \ell(\mathcal{O})$.
 $f_{\ell,P}$ is a function in $\mathbb{F}_{p^n}[x, y]$ with a zero at P of multiplicity ℓ and a pole at \mathcal{O} of mult. ℓ

Modified Tate pairing (in cryptography):

$$\begin{array}{cccc} E(\mathbb{F}_p)[\ell] & E(\mathbb{F}_{p^n})[\ell] \\ & & & & \\ \exists \parallel & & & \\ e_{\mathsf{Tate}}: & \mathbf{G}_1 & \times & \mathbf{G}_2 & \to & \boldsymbol{\mu}_\ell \subset \mathbb{F}_{p^n}^* \\ & & & (P,Q) & \mapsto & (f_{\ell,P}(Q))^{\frac{p^n-1}{\ell}} \end{array}$$

Miller Loop

Input: integer <i>s</i> , points <i>P</i> , <i>Q</i> of order <i>s</i>
Output: $m = f_{s,P}(Q)$, where $Div(f) = s(P) - s(O)$
1 $m \leftarrow 1; S \leftarrow P;$
2 for b from the second most significant bit of s to the least do
3 $\ell \leftarrow \ell_{S,S}(Q); S \leftarrow [2]S;$ // Double Line
4 $v \leftarrow v_{[2]S}(Q)$; // Vertical Line
5 $m \leftarrow m^2 \cdot \ell/v;$ // Update 1
6 if $b=1$ then
7 $\ell \leftarrow \ell_{S,P}(Q); S \leftarrow S + P;$ // Add Line
8 $v \leftarrow v_{S+Q}(Q)$; // Vertical Line
9 $m \leftarrow m \cdot \ell/v$; // Update 2
10 return <i>m</i> ;

Outline

Preliminaries on proof systems

Pairings

Curves for proof systems proof composition SNARK curves

Pairing-friendly curves

Implementations

Proof composition

Example: Groth16 [Gro16]

Given an instance $\Phi = (a_0, \dots, a_\ell) \in \mathbb{F}_r^\ell$ of a public NP program F

• $(\textit{pk},\textit{vk}) \leftarrow S(\textit{F}, \tau, 1^{\lambda})$ where

$$\mathsf{vk} = (\mathsf{vk}_{lpha,eta}, \{\mathsf{vk}_{\pi_i}\}_{i=0}^\ell, \mathsf{vk}_{\gamma}, \mathsf{vk}_{\delta}) \in \mathbf{G}_{\mathcal{T}} imes \mathbf{G}_1^{\ell+1} imes \mathbf{G}_2 imes \mathbf{G}_2$$

• $\pi \leftarrow P(\Phi, w, pk)$ where

$$\pi = (A, B, C) \in \mathbf{G}_1 imes \mathbf{G}_2 imes \mathbf{G}_1 \qquad (O_\lambda(1))$$

• $0/1 \leftarrow V(\Phi, \pi, \textit{vk})$ where V is

$$e(A,B) = vk_{\alpha,\beta} \cdot e(vk_{x}, vk_{\gamma}) \cdot e(C, vk_{\delta}) \qquad (O_{\lambda}(|\Phi|))$$
(1)

and $vk_x = \sum_{i=0}^{\ell} [a_i] vk_{\pi_i}$ depends only on the instance Φ and $vk_{\alpha,\beta} = e(vk_{\alpha}, vk_{\beta})$ can be computed in the trusted setup for $(vk_{\alpha}, vk_{\beta}) \in \mathbf{G}_1 \times \mathbf{G}_2$.

Recursive ZK-SNARKs

An arithmetic mismatch

F any program is expressed in \mathbb{F}_r P proving is performed over **G**₁ (and **G**₂) (of order *r*) V verification (eq. 1) is done in $\mathbb{F}_{q^k}^*$ F_V program of V is natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r

Recursive ZK-SNARKs

An arithmetic mismatch

F any program is expressed in \mathbb{F}_r

P proving is performed over G_1 (and G_2) (of order r)

V verification (eq. 1) is done in $\mathbb{F}_{a^k}^*$

 F_V program of V is natively expressed in $\mathbb{F}_{q^k}^*$ not \mathbb{F}_r

- 1st attempt: choose a curve for which q = r (impossible)
- 2^{nd} attempt: simulate \mathbb{F}_q operations via \mathbb{F}_r operations (× log q blowup)
- 3rd attempt: use a cycle/chain of pairing-friendly elliptic curves [CFH⁺15, BCTV14a, BCG⁺20]

Recursive ZK-SNARKs

A proof of a proof

Proof composition

cycles and chains of pairing-friendly elliptic curves

Definition

An *m*-chain of elliptic curves is a list of distinct curves

$$E_1/\mathbb{F}_{q_1},\ldots,E_m/\mathbb{F}_{q_m}$$

where q_1, \ldots, q_m are large primes and

$$\#E_2(\mathbb{F}_{q_2}) = q_1, \ldots, \ \#E_i(\mathbb{F}_{q_i}) = q_{i-1}, \ldots, \ \#E_m(\mathbb{F}_{q_m}) = q_{m-1} \ . \tag{2}$$

Definition

An *m*-cycle of elliptic curves is an *m*-chain, with

$$\#E_1(\mathbb{F}_{q_1}) = q_m . \tag{3}$$

Choice of elliptic curves

ZK-curves

- SNARK
 - E/\mathbb{F}_q
 - pairing-friendly
 - r-1 highly 2-adic (efficient FFT)
- Recursive SNARK (2-cycle)
 - E_1/\mathbb{F}_{q_1} and E_2/\mathbb{F}_{q_2}
 - both pairing-friendly
 - $r_2 = q_1 \text{ and } r_1 = q_2$
 - ▶ r_{1,2} 1 highly 2-adic (efficient FFT)
 - $q_{\{1,2\}} 1$ highly 2-adic (efficient FFT)
- Recursive SNARK (2-chain)
 - E_1/\mathbb{F}_{q_1}
 - pairing-friendly
 - ▶ $r_1 1$ highly 2-adic
 - ▶ $q_1 1$ highly 2-adic
 - E_2/\mathbb{F}_{q_2}
 - pairing-friendly

 $r_2 = q_1$

BN, BLS12, BW12?, KSS16? ... [FST10]

MNT4/MNT6 [FST10, Sec.5], ? [CCW19]

BLS12 (seed
$$\equiv 1 \mod 3 \cdot 2^{large}$$
) [BCG⁺20], ?

Cocks–Pinch algorithm

Outline

Preliminaries on proof systems

Pairings

Curves for proof systems

Pairing-friendly curves 2-chains of pairing-friendly elliptic curves

Implementations

First ordinary pairing-friendly curves: MNT

IVIIya	aji, Nakal	bayashi, Takano, $\#E(\mathbb{F}_p) = p(u) + 1 - t(u), r(u) \mid \#E(\mathbb{F}_p)$
k	param	MNT
	t(u)	$-1\pm 6u$
3	r(u)	$12u^2 \mp 6u + 1$
	p(u)	$12u^2 - 1$
	Dy^2	$12u^2\pm 12u-5$
4	t(u)	-u, u+1
	r(u)	$u^2 + 2u + 2, \ u^2 + 1$
	p(u)	$u^2 + u + 1$
	Dy^2	$3u^2 + 4u + 4$
6	t(u)	$1\pm 2u$
	r(u)	$4u^2 \mp 2u + 1$
	p(u)	$4u^2 + 1$
	Dy^2	$12u^2 - 4u + 3$
COL	$DA:\ k = 0$	5, 753 bits, $pprox$ 137 bits of security, $D=-241873351932854907$, seed u

0xaa3a58eb20d1fec36e5e772ee6d3ff28c296465f137300399db8a5521e18d33581a262716214583d3b89820dd0c000

Cycle of curves

MNT-4 and MNT-6 curves form a cycle

k = 4, MNT-4 parameters $t_4 = -v$, $r_4 = v^2 + 1$, $p_4 = v^2 + v + 1$ k = 6, MNT-6 parameters $t_6 = 1 - 2u$, $r_6 = 4u^2 + 2u + 1$, $p_6 = 4u^2 + 1$

> $r_4 = p_6$ v = 2uand \iff and $p_4 = r_6$ r_4 , r_6 are primes

Unique known cycle of pairing-friendly curves. Impossibility results:

Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
 On cycles of pairing-friendly elliptic curves.
 SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.

Very popular pairing-friendly curves: Barreto-Naehrig (BN)

$$E_{BN}: y^2 = x^3 + b, \ p \equiv 1 \mod 3, \ D = -3 \ (\text{ordinary})$$

$$\begin{array}{rcl} p &=& 36x^4 + 36x^3 + 24x^2 + 6x + 1 \\ t &=& 6x^2 + 1 \\ \ell &=& p + 1 - t = 36x^4 + 36x^3 + 18x^2 + 6x + 1 \\ t^2 - 4p &=& -3(6x^2 + 4x + 1)^2 \rightarrow \text{ no CM method needed} \\ \text{Comes from the Aurifeuillean factorization of } \Phi_{12}: \\ \Phi_{12}(6x^2) &= \ell(x)\ell(-x) \end{array}$$

Security level	$\log_2 \ell$	finite field	п	$\log_2 p$	$\deg P, \ p = P(u)$	ρ
102	256	3072	12	256	4	1
123	384	4608	12	384	4	1
132	448	5376	12	448	4	1

BLS12

Barreto, Lynn, Scott method.

Becomes more and more popular, replacing BN curves

$$E_{BLS}: y^2 = x^3 + b, \ p \equiv 1 \mod 3, \ D = -3 \ (ordinary)$$

$$p = (u-1)^2/3(u^4 - u^2 + 1) + u$$

$$t = u+1$$

$$r = (u^4 - u^2 + 1) = \Phi_{12}(u)$$

$$p+1-t = (u-1)^2/3(u^4 - u^2 + 1)$$

$$t^2 - 4p = -3y(u)^2 \rightarrow \text{ no CM method needed}$$

BLS12-381 with seed -0xd20100000010000

The Cocks-Pinch method

Three equations:

 $\ell \mid p+1-t \tag{4}$

$$\ell \mid \Phi_n(p) \tag{5}$$

$$t^2 - 4p = -Dy^2 \tag{6}$$

From (4), $p \equiv t - 1 \mod \ell$ From (5) and (4), $\ell \mid \Phi_n(t-1) \iff t - 1 = \zeta_n \mod \ell$ where ζ_n is a primitive *n*-th root of unity modulo ℓ , ζ_n exists $\iff \ell \equiv 1 \mod n$.

 $t = \zeta_n + 1 \bmod \ell$

From (6) and (4), with $p = (t^2 + Dy^2)/4$,

$$p + 1 - t = \frac{1}{4} \left(t^2 - 4t + 4 + Dy^2 \right) = \frac{1}{4} \left((t - 2)^2 + Dy^2 \right)$$

Because $\ell \mid p + 1 - t$, assuming ℓ odd,

$$(t-2)^2 + Dy^2 = 0 \mod \ell \implies y = \frac{t-2}{\sqrt{-D}} \mod \ell$$

The Cocks–Pinch method

Input: A positive integer *n* and a positive square-free integer *D* **Output:** E/\mathbb{F}_{q} with an order- ℓ subgroup and embedding degree *n* 1 Choose a prime ℓ such that *n* divides $\ell - 1$ and -D is a square modulo ℓ 2 Compute $t = 1 + x^{(\ell-1)/n}$ for x a generator of $(\mathbb{Z}/\ell\mathbb{Z})^{\times}$, $t-1 \equiv \zeta_n \mod \ell$ 3 Compute $v = (t-2)/\sqrt{-D} \mod \ell$ 4 Lift t and y in \mathbb{Z} 5 Compute $q = (t^2 + Dy^2)/4$ in \mathbb{Q} 6 if q is a prime integer then Use CM method ($D < 10^{20}$) to get the coefficients of E/\mathbb{F}_{σ} with order- ℓ 7 subgroup 8 else 9 Go back to 1 10 return E/\mathbb{F}_{a} with an order- ℓ subgroup and embedding degree n

The Cocks–Pinch method

Drawback: $\log |t|, \log |y| \approx \log \ell \implies \log p \approx 2 \log \ell$ rho-value:

$$\rho = \frac{\log p}{\log \ell} \approx 2$$

The optimal would be $\rho = 1$ for a prime-order curve, $\ell = p + 1 - t$.

How to compute primitive *n*-th roots of unity:

Input: prime ℓ , integer n > 0, $\ell \equiv 1 \mod n$ Output: $\zeta_n \mod \ell$ 1 $z \leftarrow \operatorname{random}(\ell)$ 2 $z \leftarrow z^{(\ell-1)/n}$ 3 while $\Phi_n(z) \neq 0 \mod \ell$ (or: $z^d = 1 \mod \ell$ for some $d \mid n, 1 \leq d < n$) do 4 $\mid z \leftarrow \operatorname{random}(\ell)$ 5 $\mid z \leftarrow z^{(\ell-1)/n}$ 6 return z

The CM method (Complex Multiplication)

Hard problem to compute the curve coefficients (a, b) given a prime p and a trace t. The other way: given p and (a, b) in E/\mathbb{F}_p : $: y^2 = x^3 + ax + b$ and computing the order $\#E(\mathbb{F}_p)$ is done with the SEA algorithm (Schroof-Elkies-Atkin). The *CM* method computes a *j*-invariant, given p, t.

- 1. Compute the discriminant -D as the square-free part in $t^2 4p = -Dy^2$
- 2. If $D \equiv 1, 2 \mod 4$, $D \leftarrow 4D$
- 3. Compute a Hilbert Class Polynomial $H_{-D}(X) \mod p$ with Sutherland's software classpoly at https://math.mit.edu/~drew/
- 4. Compute a root j_0 of $H_{-D}(X) \mod p$

5. Set
$$E: y^2 = x^3 + \frac{3j_0}{1728 - j_0}x + \frac{2j_0}{1728 - j_0}$$

The CM method

For specific (small) values of -D, the *j*-invariants are known:

•
$$-D = -3, j = 0$$

- *−D* = *−*4, *j* = 1728
- *−D* = *−*8, *j* = 8000
- *−D* = *−*7, *j* = *−*3375
- *−D* = *−*11, *j* = *−*32768
- *−D* = *−*19, *j* = *−*884736
- *−D* = *−*43, *j* = *−*884736000
- *−D* = *−*67, *j* = *−*147197952000
- -D = -163, j = -262537412640768000

The Brezing-Weng method: The Cocks-Pinch method with polynomials

Start with r(x) an irreducible polynomial s.t. the number field $K = \mathbb{Q}[x]/(r(x))$ contains ζ_n and $\sqrt{-D}$

Algorithm 1: Idea of Barreto–Lynn–Scott and Brezing–Weng methods **Input:** A positive integer *n* and a positive square-free integer *D* **Output:** Polynomials p(x), r(x), t(x) s.t. $t^2(x) - 4p(x) = -Dy^2(x)$, $r(x) | p(x) + 1 - t(x), r(x) | \Phi_n(p(x))$

- 1 Choose an irreducible polynomial $r(x) \in \mathbb{Z}[x]$ with positive leading coefficient such that $\sqrt{-D}$ and $\zeta_n \in K = \mathbb{Q}[x]/(r(x))$
- 2 Choose $t(x) \in \mathbb{Q}[x]$ a polynomial representing $\zeta_n + 1$ in K
- 3 Set $y(x) \in \mathbb{Q}[x]$ a polynomial mapping to $(\zeta_n 1)/\sqrt{-D}$ in K
- 4 Compute $p(x) = (t^2(x) + Dy^2(x))/4$ in $\mathbb{Q}[x]$
- 5 If p(x) does not represent primes go back to 1 or 2
- 6 return p(x), r(x), t(x)

The BLS family

If 3 | n, then
$$\sqrt{-3} \in K = \mathbb{Q}[x]/(\Phi_n(x))$$

• $n = 3$: $\zeta_3 = \frac{-1+\sqrt{-3}}{2} \in \mathbb{C}$, $\Phi_3 = x^2 + x + 1$
For $n \equiv 3 \mod 6$, $\zeta_3 = x^{n/3} \mod \Phi_n(x)$
 $\sqrt{-3} = 2x^{n/3} + 1$ and $1/\sqrt{-3} = \sqrt{-3}/3 = (2x^{n/3} + 1)/3$
• $n = 6$: $\zeta_6 = \frac{11+\sqrt{-3}}{2} \in \mathbb{C}$, $\Phi_6 = x^2 - x + 1$
For $n \equiv 0 \mod 6$, $\zeta_6 = x^{n/6} \mod \Phi_n(x)$
 $\sqrt{-3} = 2x^{n/6} - 1$ and $1/\sqrt{-3} = \sqrt{-3}/3 = (2x^{n/6} - 1)/3$

Given *n* multiple of 3,

1.
$$r(x) \leftarrow \Phi_n(x)$$

2. $t(x) \leftarrow x + 1$
3. $y(x) \leftarrow (x - 1)/\sqrt{-3}$
• $y(x) = (x - 1)(2x^{n/3} + 1)/3$ if $n \equiv 3 \mod 6$
• $y(x) = (x - 1)(2x^{n/6} - 1)/3$ if $n \equiv 0 \mod 6$
4. $p(x) = (t^2(x) + 3y^2(x))/4$

Finding 2-chains of elliptic curves

Curve E_2/\mathbb{F}_{q_2}

- q is a prime or a prime power
- t is relatively prime to q
- *r* is prime
- r divides q + 1 t
- $r \text{ divides } q^k 1 \text{ (smallest } k \in \mathbb{N}^*)$ and $q^k 1 \text{ (smallest } k \in \mathbb{N}^*)$

r is a **fixed** chosen prime

that divides q + 1 - t

•
$$4q - t^2 = Dy^2$$
 (for $D < 10^{12}$) and some integer y

Algorithm 2: Cocks–Pinch method

- 1 Fix k and D and choose a prime r s.t. k|r-1 and $\left(\frac{-D}{r}\right) = 1$;
- 2 Compute $t = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$;

3 Compute
$$y = (t-2)/\sqrt{-D} \mod r$$
;

- 4 Lift t and y in \mathbb{Z} ;
- 5 Compute $q = (t^2 + Dy^2)/4$ (in \mathbb{Q});
- **6** back to 1 if q is not a prime integer;

2-chains

Limitations and improvements

- $\rho = \log_2 q / \log_2 r \approx 2$ (because $q = f(t^2, y^2)$ and $t, y \stackrel{\$}{\leftarrow} \mod r$).
- The curve parameters (q, r, t) are not expressed as polynomials.

Algorithm 3: Brezing–Weng method

- Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x] with positive leading coefficient ¹ s.t. √-D and the primitive k-th root of unity ζ_k are in K = Q[x]/r(x);
- 2 Choose $t(x) \in \mathbb{Q}[x]$ be a polynomial representing $\zeta_k + 1$ in K;
- 3 Set $y(x) \in \mathbb{Q}[x]$ be a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in K;
- 4 Compute $q(x) = (t^2(x) + Dy^2(x))/4$ in $\mathbb{Q}[x]$;
 - $\rho = 2 \max (\deg t(x), \deg y(x)) / \deg r(x) < 2$
 - r(x), q(x), t(x) but does $\exists x_0 \in \mathbb{Z}^*, r(x_0) = r_{\mathsf{fixed}}$ and $q(x_0)$ is prime ?

¹conditions to satisfy Bunyakovsky conjecture which states that such a polynomial produces infinitely many primes for infinitely many integers.

2-chains

- $\mathbf{G}_2 \subset E(\mathbb{F}_{q^k}) \cong E'[r](\mathbb{F}_{q^{k/d}})$ for a twist E' of degree d.
- When -D = -3, there exists a twist E' of degree d = 6.
- Associated with a choice of $\xi \in \mathbb{F}_{q^{k/6}}$ s.t. $x^6 \xi \in \mathbb{F}_{q^{k/6}}[x]$ is irreducible, the equation of E' can be either
 - $y^2 = x^3 + b/\xi$ and we call it a D-twist or
 - $y^2 = x^3 + b \cdot \xi$ and we call it a M-twist.
- For the D-type, $E'
 ightarrow E: (x,y) \mapsto (\xi^{1/3}x,\xi^{1/2}y)$,
- For the M-type $E' o E: (x,y) \mapsto (\xi^{2/3} x/\xi, \xi^{1/2} y/\xi)$

2-chains

Suggested construction: combines CP and BW

- 1. Cocks–Pinch method
 - k = 6 and $-D = -3 \implies 128$ -bit security, \mathbf{G}_2 coordinates in \mathbb{F}_q , GLV multiplication over \mathbf{G}_1 and \mathbf{G}_2
 - restrict search to size(q) \leq 768 bits \implies smallest machine-word size
- 2. Brezing-Weng method
 - choose $r(x) = q_{\text{BLS } 12-377}(x)$
 - $q(x) = (t^2(x) + 3y^2(x))/4$ factors $\implies q(x_0)$ cannot be prime
 - lift $t = r \times h_t + t(x_0)$ and $y = r \times h_y + y(x_0)$ [FK19, GMT20]

2-chains [CANS2020]

The suggested curve: BW6-761

$$\frac{E: y^2 = x^3 - 1 \text{ over } \mathbb{F}_q \text{ of } 761\text{-bit with seed } x_0 = 0x8508c00000000}{\text{Our curve, } k = 6, D = 3, r = q_{\text{BLS } 12-377}}$$

$$\frac{F(x) = (x^6 - 2x^5 + 2x^3 + x + 1)/3 = q_{\text{BLS } 12-377}(x)}{r(x) = x^5 - 3x^4 + 3x^3 - x + 3 + h_t r(x)}$$

$$y(x) = (x^5 - 3x^4 + 3x^3 - x + 3)/3 + h_y r(x)$$

$$q(x) = (t^2 + 3y^2)/4$$

$$q_{h_t = 13, h_y = 9}(x) = (103x^{12} - 379x^{11} + 250x^{10} + 691x^9 - 911x^8)$$

$$-79x^7 + 623x^6 - 640x^5 + 274x^4 + 763x^3 + 73x^2 + 254x + 229)/9$$

Inner curves [EC2022] SNARK-0

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient $\boldsymbol{G}_1,~\boldsymbol{G}_2,~\boldsymbol{G}_{\mathcal{T}}$ and pairing
- $p-1 \equiv r-1 \equiv 0 \mod 2^L$ for large input $L \in \mathbb{N}^*$ (FFTs)

 \rightarrow BLS (k = 12) family of roughly 384 bits with seed x \equiv 1 \mod 3 \cdot 2^L

Universal SNARK

- 128-bit security
- pairing-friendly
- efficient G_1 , ///////// and pairing
- $p-1 \equiv r-1 \equiv 0 \mod 2^L$ for large $L \in \mathbb{N}^*$ (FFTs)

 \rightarrow BLS (k=24) family of roughly 320 bits with seed $x\equiv 1 \mod 3 \cdot 2^L$

Outer curves [EC2022] SNARK-1

Groth16 SNARK

- 128-bit security
- pairing-friendly
- efficient $\boldsymbol{G}_1,~\boldsymbol{G}_2,~\boldsymbol{G}_{\mathcal{T}}$ and pairing
- $r' = p (r' 1 \equiv 0 \mod 2^L)$

 \rightarrow BW (k = 6) family of roughly 768 bits with (t mod x) mod r \equiv 0 or 3

Universal SNARK

- 128-bit security
- pairing-friendly
- efficient G_1 , G_2 , G_T and pairing
- $r' = p (r' 1 \equiv 0 \mod 2^L)$

→ BW (k = 6) family of roughly 704 bits with ($t \mod x$) mod $r \equiv 0$ or 3 → CP (k = 8) family of roughly 640 bits → CP (k = 12) family of roughly 640 bits

All G_i formulae and pairings are given in terms of x and some $h_t, h_y \in \mathbb{N}$.

Outline

Preliminaries on proof systems

Pairings

Curves for proof systems

Pairing-friendly curves

Implementations

Implementation and benchmark

Short-list of curves

We short list few 2-chains of the proposed families that have some additional nice engineering properties

- Groth16: BLS12-377 and BW6-761
- Universal: BLS24-315 and BW6-633 (or BW6-672)

Table: Cost of S, P and V algorithms for Groth16 and Universal. n =number of multiplication gates, a =number of addition gates and ℓ =number of public inputs. M_G =multiplication in **G** and P=pairing.

	S	Р	V
Groth16	$3n M_{\mathbf{G}_1}$, $n M_{\mathbf{G}_2}$	$(4n-\ell)$ M $_{\mathbf{G}_1}$, n M $_{\mathbf{G}_2}$	3 P,ℓM _{G1}
Universal	$d_{\geq n+a}$ M $_{\mathbf{G}_1}$, 1 M $_{\mathbf{G}_2}$	9(n+a) M _{G1}	2 P, 18 $\mathtt{M}_{\textbf{G}_1}$

Implementation and benchmark

https://github.com/ConsenSys/gnark (Go)

 F_V : program that checks V (eq. 1) ($\ell = 1$, $\hbar/\#/8000$ n = 19378)

Table: Groth16 (ms)

	S	Р	V
BLS12-377	387	34	1
BLS24-315	501	54	4
BW6-761	1226	114	9
BW6-633	710	69	6
BW6-672	840	74	7

Table: Universal (ms)

	S	Р	V
BLS12-377	87	215	4
BLS24-315	76	173	1
BW6-761	294	634	9
BW6-633	170	428	6
BW6-672	190	459	7

Play with gnark!

Write SNARK programs at https://play.gnark.io/ Example: Proof of Groth16 V program (eq. 1)

Conclusion

papers 2-chains: ePrint 2021/1359 (EUROCRYPT 2022) Survey of elliptic curves for SNARKs: ePrint 2022/586 (submitted) implementations github/ConsenSys/gnark-crypto (Go) gitlab/inria/snark-2-chains (SageMath/MAGMA) follow-up work Co-factor clearing and subgroup membership on pairing-friendly elliptic curves ePrint 2022/352 (AFRICACRYPT 2022)

THANK YOU!

References I

- Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
 - Zexe: Enabling decentralized private computation.

In *2020 IEEE Symposium on Security and Privacy (SP)*, pages 1059–1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

- Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
 Scalable zero knowledge via cycles of elliptic curves.
 In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014, Part II*, volume 8617 of *LNCS*, pages 276–294. Springer, Heidelberg, August 2014.
- Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
 Succinct non-interactive zero knowledge for a von neumann architecture.
 In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 781–796.
 USENIX Association, August 2014.

References II

- Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
 On cycles of pairing-friendly elliptic curves.
 SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.
- Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation.

In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270. IEEE Computer Society, 2015. ePrint 2014/976.

Georgios Fotiadis and Elisavet Konstantinou. TNFS resistant families of pairing-friendly elliptic curves. Theoretical Computer Science, 800:73–89, 31 December 2019.

References III

- David Freeman, Michael Scott, and Edlyn Teske.
 A taxonomy of pairing-friendly elliptic curves.
 Journal of Cryptology, 23(2):224–280, April 2010.
- Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Cocks–Pinch curves of embedding degrees five to eight and optimal ate pairing computation.

Des. Codes Cryptogr., 88:1047-1081, March 2020.

Jens Groth.

On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien Coron, editors, *EUROCRYPT 2016, Part II*, volume 9666 of *LNCS*, pages 305–326. Springer, Heidelberg, May 2016.