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Zero-Knowledge Proofs

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice must know it

“Prove it”
Challenge

Response

5/53



Zero-Knowledge for public keys: Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c random←− Zp
c

s = r + c · x s g s ?= A · y c

with A · y c = g r · gx ·c

then g r · gx ·c = g r+x ·c

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p
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Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c = H(A, y)
s = r + c · x

π = (A, c, s)
g s ?= A · y c

c ?= H(A, y)

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p
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ZKP families

• specific statement vs general statement
• interactive vs non-interactive protocol
• transparent setup vs trapdoored setup vs no setup
• Any verifier vs given verifier
• prover complexity (Alice)
• verifier complexity (Bob)
• communication complexity (size of the proof and the setup)
• security assumptions, cryptographic primitive...
• ...
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Blockchains and ZKP
A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying
ledger.

• Transparent: everything is visible to everyone
• Immutable: nothing can be removed once written
• Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

ZKP

setup, prover?, verifier?
Immutable −−−−−→

Problem
scalability −−−−−→

Solution
ZKP

Communication complexity
Paying −−−−−→

Problem
cost −−−−−→

Solution
ZKP

Verifier complexity , prover?
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ZKP literature landmarks
• First ZKP paper [GMR85]
• Non-Interactive ZKP [BFM88]
• Succinct ZKP [K92]
• Succinct Non-Interactive ZKP [M94]
• Succinct NIZK without the PCP Theorem [Groth10]
• “SNARK” terminology and characterization of existence [BCCT11]
• Succinct NIZK without PCP Theorem and Quasi-linear prover time [GGPR13]
• Succinct NIZK without with constant-size proof and constant-time verifier
(Groth16)
• First succinct NIZK with universal and updatable setup [Sonic19]
• Active research and implementation on SNARK with universal and updatable
setup [PLONK19]
• ...
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Zero-knowledge proof
What is a zero-knowledge proof?

"I have a sound, complete and zero-knowledge proof that a statement is true". [GMR85]

Sound
False statement =⇒ cheating prover cannot convince honest verifier.

Complete
True statement =⇒ honest prover convinces honest verifier.

Zero-knowledge
True statement =⇒ verifier learns nothing other than statement is true.
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Zero-knowledge proof
ZK-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

"I have a computationally sound, complete, zero-knowledge, succinct, non-interactive
proof that a statement is true and that I know a related secret".

Succinct
Honestly-generated proof is very “short” and “easy” to verify.

Non-interactive
No interaction between the prover and verifier for proof generation and verification.

ARgument of Knowledge
Honest verifier is convinced that a computationally bounded prover knows a secret
information.
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ZK-SNARK
Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such
that z := F (x ,w).
A ZK-SNARK consists of algorithms S,P,V s.t. for a security parameter λ:

Setup: (pk, vk) ← S(F , 1λ)

Prove: π ← P(x , z ,w , pk)
Verify: false/true ← V (x , z , π, vk)

Anyone (trusted)
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?π
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ZK-SNARK

Succinctness: An honestly-generated proof is very "short" and "easy" to verify.

Definition [BCTV14b]
A succinct proof π has size Oλ(1) and can be verified in time Oλ(|F |+ |x |+ |z |),
where Oλ(.) is some polynomial in the security parameter λ.
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ZK-SNARKs in a nutshell

main ideas:
1. Reduce a "general statement" satisfiability to a polynomial equation satisfiability.
2. Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high

probability.
3. Use homomorphic hiding cryptography to blindly verify the polynomial equation.
4. Use Fiat-Shamir transform to make the protocol non-interactive.

To know more about zk-SNARK, see Youssef slides at Aarhus seminar, May 11, 2022.
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What is a pairing?

(G1,+), (G2,+), (GT , ·) three cyclic groups of large prime order `
Pairing: map e : G1 × G2 → GT

1. bilinear: e(P1 + P2,Q) = e(P1,Q) · e(P2,Q), e(P,Q1 + Q2) = e(P,Q1) · e(P,Q2)
2. non-degenerate: e(G1,G2) 6= 1 for 〈G1〉 = G1, 〈G2〉 = G2

3. efficiently computable.
Most often used in practice:

e([a]P, [b]Q) = e([b]P, [a]Q) = e(P,Q)ab .

; Many applications in asymmetric cryptography.
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Pairings in cryptography: 1993 and 2001

1993
Menezes–Okamoto–Vanstone attack on supersingular curves

2001
• Joux’ tri-partite key exchange
• Boneh Frankin Identity based encryption
• Boneh Lynn Shacham short signature
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Pairing setting: elliptic curves

E/Fp : y2 = x3 + ax + b, a, b ∈ Fp, p ≥ 5

• proposed in 1985 by Koblitz, Miller
• E (Fp) has an efficient group law (chord an tangent rule) → G1
• #E (Fp) = p + 1− t, trace t: |t| ≤ 2√p
• efficient group order computation (point counting)

• large subgroup of prime order ` s.t. ` | p + 1− t and ` coprime to p
• E (Fp)[`] = {P ∈ E (Fp) : [`]P = O} has order `
• E [`] ' Z/`Z× Z/`Z (for crypto)
• only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
• optimal parameter sizes
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Tate Pairing and modified Tate pairing

` | pn − 1, E [`] ⊂ E (Fpn )
Tate Pairing: For cryptography,
• G1 = E (Fp)[`] = {P ∈ E (Fp), [`]P = O}
• embedding degree n > 1 w.r.t. `: smallest1 integer n s.t. ` | pn − 1
⇔ E [`] ⊂ E (Fpn )

• G2 ⊂ E (Fpn )[`]
• G1 ∩ G2 = O by construction for practical applications
• GT = µ` = {u ∈ F∗pn , u` = 1} ⊂ F∗pn

When n is small i.e. 1 6 n 6∼ 50, the curve is pairing-friendly.
This is very rare: For a given curve, log n ∼ log ` (Balasubramanian–Koblitz).

1n = 1 is possible too in rare circumstances
20/53



Modified Tate pairing
Ensure the pairing is non-degenerate: G1 ∩ G2 = O

E [`] = Z/`Z× Z`Z = G1 × G2

Let P ∈ G1 = E (Fp)[`],Q ∈ G2 ⊂ E (Fpn )[`].
Let f`,P the function s. t. Div(f`,P) = `(P)− `(O).
f`,P is a function in Fpn [x , y ] with a zero at P of multiplicity ` and a pole at O of
mult. `
Modified Tate pairing (in cryptography):

E (Fp)[`] E (Fpn )[`]
∼ = ∪

eTate : G1 × G2 → µ` ⊂ F∗pn

(P,Q) 7→ (f`,P(Q))
pn−1

`
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Miller Loop

Input: integer s, points P, Q of order s
Output: m = fs,P(Q), where Div(f ) = s(P)− s(O)

1 m← 1; S ← P;
2 for b from the second most significant bit of s to the least do
3 `← `S,S(Q); S ← [2]S ; // Double Line
4 v ← v[2]S(Q) ; // Vertical Line
5 m← m2 · `/v ; // Update 1
6 if b = 1 then
7 `← `S,P(Q); S ← S + P ; // Add Line
8 v ← vS+Q(Q) ; // Vertical Line
9 m← m · `/v ; // Update 2

10 return m;
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Proof composition
A proof

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F
• (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}`i=0, vkγ , vkδ) ∈ GT × G`+1
1 × G2 × G2

• π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 × G2 × G1 (Oλ(1))

• 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai ]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ)
can be computed in the trusted setup for (vkα, vkβ) ∈ G1 × G2.
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Recursive ZK-SNARKs
An arithmetic mismatch

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)
V verification (eq. 1) is done in F∗qk

FV program of V is natively expressed in F∗qk not Fr

• 1st attempt: choose a curve for which q = r (impossible)
• 2nd attempt: simulate Fq operations via Fr operations (× log q blowup)
• 3rd attempt: use a cycle/chain of pairing-friendly elliptic

curves [CFH+15, BCTV14a, BCG+20]
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Recursive ZK-SNARKs
A proof of a proof

inner curve:
curve E0(Fq)

of prime order r

outer curve:
curve E1(Fs)
of order h × q

Given q, search for a pairing-friendly curve
E1 of order h · q over a field Fs

SNARK-0 with
a pairing e :

G1 × G2 → GT
#Gi = r

computation
in Fq[X ]

SNARK-1 with
a pairing e :

G1 × G2 → GT
#Gi = q

pairing
statement

proof of
statement
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Proof composition
cycles and chains of pairing-friendly elliptic curves

Definition
An m-chain of elliptic curves is a list of distinct curves

E1/Fq1 , . . . ,Em/Fqm

where q1, . . . , qm are large primes and

#E2(Fq2) = q1, . . . , #Ei (Fqi ) = qi−1, . . . , #Em(Fqm ) = qm−1 . (2)

Definition
An m-cycle of elliptic curves is an m-chain, with

#E1(Fq1) = qm . (3)
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Choice of elliptic curves
ZK-curves

• SNARK
• E/Fq BN, BLS12, BW12?, KSS16? . . . [FST10]

I pairing-friendly
I r − 1 highly 2-adic (efficient FFT)

• Recursive SNARK (2-cycle)
• E1/Fq1 and E2/Fq2 MNT4/MNT6 [FST10, Sec.5], ? [CCW19]

I both pairing-friendly
I r2 = q1 and r1 = q2
I r{1,2} − 1 highly 2-adic (efficient FFT)
I q{1,2} − 1 highly 2-adic (efficient FFT)

• Recursive SNARK (2-chain)
• E1/Fq1 BLS12 (seed ≡ 1 mod 3 · 2large) [BCG+20], ?

I pairing-friendly
I r1 − 1 highly 2-adic
I q1 − 1 highly 2-adic

• E2/Fq2 Cocks–Pinch algorithm
I pairing-friendly
I r2 = q1
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First ordinary pairing-friendly curves: MNT
Miyaji, Nakabayashi, Takano, #E (Fp) = p(u) + 1− t(u), r(u) | #E (Fp)
k param MNT

t(u) −1± 6u
3 r(u) 12u2 ∓ 6u + 1

p(u) 12u2 − 1
Dy2 12u2 ± 12u − 5

4 t(u) −u, u + 1
r(u) u2 + 2u + 2, u2 + 1
p(u) u2 + u + 1
Dy2 3u2 + 4u + 4

6 t(u) 1± 2u
r(u) 4u2 ∓ 2u + 1
p(u) 4u2 + 1
Dy2 12u2 − 4u + 3

CODA: k = 6, 753 bits, ≈ 137 bits of security, D = −241873351932854907, seed u =
0xaa3a58eb20d1fec36e5e772ee6d3ff28c296465f137300399db8a5521e18d33581a262716214583d3b89820dd0c000
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Cycle of curves

elliptic curve
E1(Fp) of prime order r

elliptic curve
E0(Fr ) of prime order p

statement
in a group of
prime order p
over a field Fr

statement
in a group of
prime order r
over a field Fp
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MNT-4 and MNT-6 curves form a cycle

k = 4, MNT-4 parameters t4 = −v , r4 = v2 + 1, p4 = v2 + v + 1
k = 6, MNT-6 parameters t6 = 1− 2u, r6 = 4u2 + 2u + 1, p6 = 4u2 + 1

r4 = p6
and

p4 = r6
⇐⇒

v = 2u
and

r4, r6 are primes

Unique known cycle of pairing-friendly curves.
Impossibility results:

Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
On cycles of pairing-friendly elliptic curves.
SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.
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Very popular pairing-friendly curves: Barreto-Naehrig (BN)

EBN : y2 = x3 + b, p ≡ 1 mod 3, D = −3 (ordinary)

p = 36x4 + 36x3 + 24x2 + 6x + 1
t = 6x2 + 1
` = p + 1− t = 36x4 + 36x3 + 18x2 + 6x + 1

t2 − 4p = −3(6x2 + 4x + 1)2 → no CM method needed
Comes from the Aurifeuillean factorization of Φ12 :
Φ12(6x2) = `(x)`(−x)

Security level log2 ` finite field n log2 p degP, p = P(u) ρ

102 256 3072 12 256 4 1
123 384 4608 12 384 4 1
132 448 5376 12 448 4 1
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BLS12

Barreto, Lynn, Scott method.
Becomes more and more popular, replacing BN curves

EBLS : y2 = x3 + b, p ≡ 1 mod 3, D = −3 (ordinary)

p = (u − 1)2/3(u4 − u2 + 1) + u
t = u + 1
r = (u4 − u2 + 1) = Φ12(u)

p + 1− t = (u − 1)2/3(u4 − u2 + 1)
t2 − 4p = −3y(u)2 → no CM method needed

BLS12-381 with seed -0xd201000000010000
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The Cocks–Pinch method
Three equations:

` | p + 1− t (4)
` | Φn(p) (5)

t2 − 4p = −Dy2 (6)
From (4), p ≡ t − 1 mod `
From (5) and (4), ` | Φn(t − 1) ⇐⇒ t − 1 = ζn mod `
where ζn is a primitive n-th root of unity modulo `, ζn exists ⇐⇒ ` ≡ 1 mod n.

t = ζn + 1 mod `
From (6) and (4), with p = (t2 + Dy2)/4,

p + 1− t = 1
4
(
t2 − 4t + 4 + Dy2

)
= 1

4
(

(t − 2)2 + Dy2
)

Because ` | p + 1− t, assuming ` odd,

(t − 2)2 + Dy2 = 0 mod ` =⇒ y =
t − 2
√
−D

mod `
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The Cocks–Pinch method

Input: A positive integer n and a positive square-free integer D
Output: E/Fq with an order-` subgroup and embedding degree n

1 Choose a prime ` such that n divides `− 1 and −D is a square modulo `
2 Compute t = 1 + x (`−1)/n for x a generator of (Z/`Z)×, t − 1 ≡ ζn mod `
3 Compute y = (t − 2)/

√
−D mod `

4 Lift t and y in Z
5 Compute q = (t2 + Dy2)/4 in Q
6 if q is a prime integer then
7 Use CM method (D < 1020) to get the coefficients of E/Fq with order-`

subgroup
8 else
9 Go back to 1

10 return E/Fq with an order-` subgroup and embedding degree n
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The Cocks–Pinch method
Drawback: log |t|, log |y | ≈ log ` =⇒ log p ≈ 2 log `
rho-value:

ρ = log p
log ` ≈ 2

The optimal would be ρ = 1 for a prime-order curve, ` = p + 1− t.

How to compute primitive n-th roots of unity:
Input: prime `, integer n > 0, ` ≡ 1 mod n
Output: ζn mod `

1 z ← random(`)
2 z ← z(`−1)/n

3 while Φn(z) 6= 0 mod ` (or: zd = 1 mod ` for some d | n, 1 ≤ d < n) do
4 z ← random(`)
5 z ← z(`−1)/n

6 return z
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The CM method (Complex Multiplication)

Hard problem to compute the curve coefficients (a, b) given a prime p and a trace t.
The other way: given p and (a, b) in E/Fp : : y2 = x3 + ax + b and computing the
order #E (Fp) is done with the SEA algorithm (Schroof–Elkies–Atkin).
The CM method computes a j-invariant, given p, t.
1. Compute the discriminant −D as the square-free part in t2 − 4p = −Dy2

2. If D ≡ 1, 2 mod 4, D ← 4D
3. Compute a Hilbert Class Polynomial H−D(X ) mod p with Sutherland’s software

classpoly at https://math.mit.edu/~drew/

4. Compute a root j0 of H−D(X ) mod p
5. Set E : y2 = x3 + 3j0

1728−j0 x + 2j0
1728−j0
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The CM method

For specific (small) values of −D, the j-invariants are known:
• −D = −3, j = 0
• −D = −4, j = 1728
• −D = −8, j = 8000
• −D = −7, j = −3375
• −D = −11, j = −32768
• −D = −19, j = −884736
• −D = −43, j = −884736000
• −D = −67, j = −147197952000
• −D = −163, j = −262537412640768000

39/53



The Brezing–Weng method: The Cocks–Pinch method with polynomials

Start with r(x) an irreducible polynomial s.t. the number field K = Q[x ]/(r(x))
contains ζn and

√
−D

Algorithm 1: Idea of Barreto–Lynn–Scott and Brezing–Weng methods
Input: A positive integer n and a positive square-free integer D
Output: Polynomials p(x), r(x), t(x) s.t. t2(x)− 4p(x) = −Dy2(x),

r(x) | p(x) + 1− t(x), r(x) | Φn(p(x))
1 Choose an irreducible polynomial r(x) ∈ Z[x ] with positive leading coefficient such

that
√
−D and ζn ∈ K = Q[x ]/(r(x))

2 Choose t(x) ∈ Q[x ] a polynomial representing ζn + 1 in K
3 Set y(x) ∈ Q[x ] a polynomial mapping to (ζn − 1)/

√
−D in K

4 Compute p(x) = (t2(x) + Dy2(x))/4 in Q[x ]
5 If p(x) does not represent primes go back to 1 or 2
6 return p(x), r(x), t(x)
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The BLS family
If 3 | n, then

√
−3 ∈ K = Q[x ]/(Φn(x))

• n = 3: ζ3 = −1+
√
−3

2 ∈ C, Φ3 = x2 + x + 1
For n ≡ 3 mod 6, ζ3 = xn/3 mod Φn(x)√
−3 = 2xn/3 + 1 and 1/

√
−3 =

√
−3/3 = (2xn/3 + 1)/3

• n = 6: ζ6 = 11+
√
−3

2 ∈ C, Φ6 = x2 − x + 1
For n ≡ 0 mod 6, ζ6 = xn/6 mod Φn(x)√
−3 = 2xn/6 − 1 and 1/

√
−3 =

√
−3/3 = (2xn/6 − 1)/3

Given n multiple of 3,
1. r(x)← Φn(x)
2. t(x)← x + 1
3. y(x)← (x − 1)/

√
−3

• y(x) = (x − 1)(2xn/3 + 1)/3 if n ≡ 3 mod 6
• y(x) = (x − 1)(2xn/6 − 1)/3 if n ≡ 0 mod 6

4. p(x) = (t2(x) + 3y2(x))/4
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Finding 2-chains of elliptic curves
Curve E2/Fq2

• q is a prime or a prime power
• t is relatively prime to q
• r is prime
• r divides q + 1− t
• r divides qk − 1 (smallest k ∈ N∗)
• 4q − t2 = Dy2 (for D < 1012) and some integer y

r is a fixed chosen prime
that divides q + 1− t
and qk − 1 (smallest k ∈ N∗)

Algorithm 2: Cocks–Pinch method
1 Fix k and D and choose a prime r s.t. k|r − 1 and (−D

r ) = 1;
2 Compute t = 1 + x (r−1)/k for x a generator of (Z/rZ)×;
3 Compute y = (t − 2)/

√
−D mod r ;

4 Lift t and y in Z;
5 Compute q = (t2 + Dy2)/4 (in Q);
6 back to 1 if q is not a prime integer;
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2-chains
Limitations and improvements

• ρ = log2 q/ log2 r ≈ 2 (because q = f (t2, y2) and t, y $←− modr).
• The curve parameters (q, r , t) are not expressed as polynomials.

Algorithm 3: Brezing–Weng method
1 Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x ] with positive leading

coefficient 1 s.t.
√
−D and the primitive k-th root of unity ζk are in

K = Q[x ]/r(x);
2 Choose t(x) ∈ Q[x ] be a polynomial representing ζk + 1 in K ;
3 Set y(x) ∈ Q[x ] be a polynomial mapping to (ζk − 1)/

√
−D in K ;

4 Compute q(x) = (t2(x) + Dy2(x))/4 in Q[x ];

• ρ = 2max (deg t(x), deg y(x))/ deg r(x) < 2
• r(x), q(x), t(x) but does ∃ x0 ∈ Z∗, r(x0) = rfixed and q(x0) is prime ?
1conditions to satisfy Bunyakovsky conjecture which states that such a polynomial produces

infinitely many primes for infinitely many integers.
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2-chains
Notes

• G2 ⊂ E (Fqk ) ∼= E ′[r ](Fqk/d ) for a twist E ′ of degree d .
• When −D = −3, there exists a twist E ′ of degree d = 6.
• Associated with a choice of ξ ∈ Fqk/6 s.t. x6 − ξ ∈ Fqk/6 [x ] is irreducible, the
equation of E ′ can be either
• y2 = x3 + b/ξ and we call it a D-twist or
• y2 = x3 + b · ξ and we call it a M-twist.

• For the D-type, E ′ → E : (x , y) 7→ (ξ1/3x , ξ1/2y),
• For the M-type E ′ → E : (x , y) 7→ (ξ2/3x/ξ, ξ1/2y/ξ)
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2-chains
Suggested construction: combines CP and BW

1. Cocks–Pinch method
• k = 6 and −D = −3 =⇒ 128-bit security, G2 coordinates in Fq, GLV multiplication

over G1 and G2
• restrict search to size(q) ≤ 768 bits =⇒ smallest machine-word size

2. Brezing–Weng method
• choose r(x) = qBLS 12−377(x)
• q(x) = (t2(x) + 3y2(x))/4 factors =⇒ q(x0) cannot be prime
• lift t = r × ht + t(x0) and y = r × hy + y(x0) [FK19, GMT20]
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2-chains [CANS2020]
The suggested curve: BW6-761

E : y2 = x3 − 1 over Fq of 761-bit with seed x0 = 0x8508c00000000 and polynomials:
Our curve, k = 6, D = 3, r = qBLS 12−377
r(x) = (x6 − 2x5 + 2x3 + x + 1)/3 = qBLS 12−377(x)
t(x) = x5 − 3x4 + 3x3 − x + 3 + htr(x)
y(x) = (x5 − 3x4 + 3x3 − x + 3)/3 + hy r(x)
q(x) = (t2 + 3y2)/4
qht=13,hy =9(x) = (103x12 − 379x11 + 250x10 + 691x9 − 911x8
−79x7 + 623x6 − 640x5 + 274x4 + 763x3 + 73x2 + 254x + 229)/9
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Inner curves [EC2022]
SNARK-0

Groth16 SNARK
• 128-bit security
• pairing-friendly
• efficient G1, G2, GT and pairing
• p − 1 ≡ r − 1 ≡ 0 mod 2L for large

input L ∈ N∗ (FFTs)

→ BLS (k = 12) family of roughly 384 bits
with seed x ≡ 1 mod 3 · 2L

Universal SNARK
• 128-bit security
• pairing-friendly
• efficient G1, ////G2,/////GT and pairing
• p − 1 ≡ r − 1 ≡ 0 mod 2L for large
L ∈ N∗ (FFTs)

→ BLS (k = 24) family of roughly 320 bits
with seed x ≡ 1 mod 3 · 2L
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Outer curves [EC2022]
SNARK-1

Groth16 SNARK
• 128-bit security
• pairing-friendly
• efficient G1, G2, GT and pairing
• r ′ = p (r ′ − 1 ≡ 0 mod 2L)

→ BW (k = 6) family of roughly 768 bits
with (t mod x) mod r ≡ 0 or 3

Universal SNARK
• 128-bit security
• pairing-friendly
• efficient G1, G2, GT and pairing
• r ′ = p (r ′ − 1 ≡ 0 mod 2L)

→ BW (k = 6) family of roughly 704 bits
with (t mod x) mod r ≡ 0 or 3
→ CP (k = 8) family of roughly 640 bits
→ CP (k = 12) family of roughly 640 bits

All Gi formulae and pairings are given in terms of x and some ht , hy ∈ N.
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Implementation and benchmark
Short-list of curves

We short list few 2-chains of the proposed families that have some additional nice
engineering properties
• Groth16: BLS12-377 and BW6-761
• Universal: BLS24-315 and BW6-633 (or BW6-672)

Table: Cost of S, P and V algorithms for Groth16 and Universal. n =number of multiplication
gates, a =number of addition gates and ` =number of public inputs. MG =multiplication in G
and P=pairing.

S P V
Groth16 3n MG1 , n MG2 (4n − `) MG1 , n MG2 3 P, ` MG1

Universal d≥n+a MG1 , 1 MG2 9(n + a) MG1 2 P, 18 MG1
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Implementation and benchmark
https://github.com/ConsenSys/gnark (Go)

FV : program that checks V (eq. 1) (` = 1, ////////////n = 80000 n = 19378)

Table: Groth16 (ms)

S P V
BLS12-377 387 34 1
BLS24-315 501 54 4
BW6-761 1226 114 9
BW6-633 710 69 6
BW6-672 840 74 7

Table: Universal (ms)

S P V
BLS12-377 87 215 4
BLS24-315 76 173 1
BW6-761 294 634 9
BW6-633 170 428 6
BW6-672 190 459 7
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Play with gnark!
Write SNARK programs at https://play.gnark.io/
Example: Proof of Groth16 V program (eq. 1)
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Conclusion

papers 2-chains: ePrint 2021/1359 (EUROCRYPT 2022)
Survey of elliptic curves for SNARKs: ePrint 2022/586 (submitted)

implementations github/ConsenSys/gnark-crypto (Go)
gitlab/inria/snark-2-chains (SageMath/MAGMA)

follow-up work Co-factor clearing and subgroup membership on pairing-friendly elliptic
curves ePrint 2022/352 (AFRICACRYPT 2022)

THANK YOU!
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