
A survey of elliptic curves for proof systems

Diego Aranha, Youssef El Housni, Aurore Guillevic
With many slides from Youssef El Housni

Aarhus University and Inria Nancy

June 24, 2022

https://members.loria.fr/AGuillevic/files/talks/22-06-Nancy.pdf

1/53

https://members.loria.fr/AGuillevic/files/talks/22-06-Nancy.pdf

Our work

Diego F. Aranha, Youssef El Housni, and Aurore Guillevic.
A survey of elliptic curves for proof systems.
Cryptology ePrint Archive, Paper 2022/586, 2022.
https://eprint.iacr.org/2022/586.

Youssef El Housni and Aurore Guillevic.
Families of SNARK-friendly 2-chains of elliptic curves.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, volume
13276 of LNCS, pages 367–396. Springer, 2022.
ePrint 2021/1359.
Youssef El Housni and Aurore Guillevic.
Optimized and secure pairing-friendly elliptic curves suitable for one layer proof
composition.
In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20, volume
12579 of LNCS, pages 259–279. Springer, Heidelberg, December 2020.

2/53

https://eprint.iacr.org/2022/586
https://eprint.iacr.org/2021/1359

Outline

Preliminaries on proof systems
Zero-knowledge proof (ZKP)
ZK-SNARK

Pairings

Curves for proof systems
proof composition
SNARK curves

Pairing-friendly curves
2-chains of pairing-friendly elliptic curves

Implementations

3/53

Outline

Preliminaries on proof systems
Zero-knowledge proof (ZKP)
ZK-SNARK

Pairings

Curves for proof systems

Pairing-friendly curves

Implementations

4/53

Zero-Knowledge Proofs

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice must know it

“Prove it”
Challenge

Response

5/53

Zero-Knowledge for public keys: Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c random←− Zp
c

s = r + c · x s g s ?= A · y c

with A · y c = g r · gx ·c

then g r · gx ·c = g r+x ·c

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p

6/53

Zero-Knowledge for public keys: Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c random←− Zp
c

s = r + c · x s g s ?= A · y c

with A · y c = g r · gx ·c

then g r · gx ·c = g r+x ·c

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p

6/53

Zero-Knowledge for public keys: Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c random←− Zp
c

s = r + c · x s g s ?= A · y c

with A · y c = g r · gx ·c

then g r · gx ·c = g r+x ·c

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p

6/53

Zero-Knowledge for public keys: Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c random←− Zp
c

s = r + c · x s

g s ?= A · y c

with A · y c = g r · gx ·c

then g r · gx ·c = g r+x ·c

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p

6/53

Zero-Knowledge for public keys: Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c random←− Zp
c

s = r + c · x s g s ?= A · y c

with A · y c = g r · gx ·c

then g r · gx ·c = g r+x ·c

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p

6/53

Zero-Knowledge for public keys: Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c random←− Zp
c

s = r + c · x s g s ?= A · y c

with A · y c = g r · gx ·c

then g r · gx ·c = g r+x ·c

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p

6/53

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c = H(A, y)
s = r + c · x

π = (A, c, s)
g s ?= A · y c

c ?= H(A, y)

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p

7/53

Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that gx = y

r random←− Zp
A = g r

c = H(A, y)
s = r + c · x

π = (A, c, s)
g s ?= A · y c

c ?= H(A, y)

x ∈ Zp, but A, g , y ∈ G a group of order p, e.g. E (Fq), #E (Fq) = p

7/53

ZKP families

• specific statement vs general statement
• interactive vs non-interactive protocol
• transparent setup vs trapdoored setup vs no setup
• Any verifier vs given verifier
• prover complexity (Alice)
• verifier complexity (Bob)
• communication complexity (size of the proof and the setup)
• security assumptions, cryptographic primitive...
• ...

8/53

Blockchains and ZKP
A blockchain is a public peer-to-peer decentralized , transparent, immutable, paying
ledger.

• Transparent: everything is visible to everyone
• Immutable: nothing can be removed once written
• Paying : everyone should pay a fee to use

Transparent −−−−−→
Problem

confidentiality −−−−−→
Solution

ZKP

setup, prover?, verifier?
Immutable −−−−−→

Problem
scalability −−−−−→

Solution
ZKP

Communication complexity
Paying −−−−−→

Problem
cost −−−−−→

Solution
ZKP

Verifier complexity , prover?

9/53

ZKP literature landmarks
• First ZKP paper [GMR85]
• Non-Interactive ZKP [BFM88]
• Succinct ZKP [K92]
• Succinct Non-Interactive ZKP [M94]
• Succinct NIZK without the PCP Theorem [Groth10]
• “SNARK” terminology and characterization of existence [BCCT11]
• Succinct NIZK without PCP Theorem and Quasi-linear prover time [GGPR13]
• Succinct NIZK without with constant-size proof and constant-time verifier
(Groth16)
• First succinct NIZK with universal and updatable setup [Sonic19]
• Active research and implementation on SNARK with universal and updatable
setup [PLONK19]
• ...

10/53

Zero-knowledge proof
What is a zero-knowledge proof?

"I have a sound, complete and zero-knowledge proof that a statement is true". [GMR85]

Sound
False statement =⇒ cheating prover cannot convince honest verifier.

Complete
True statement =⇒ honest prover convinces honest verifier.

Zero-knowledge
True statement =⇒ verifier learns nothing other than statement is true.

11/53

Zero-knowledge proof
ZK-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

"I have a computationally sound, complete, zero-knowledge, succinct, non-interactive
proof that a statement is true and that I know a related secret".

Succinct
Honestly-generated proof is very “short” and “easy” to verify.

Non-interactive
No interaction between the prover and verifier for proof generation and verification.

ARgument of Knowledge
Honest verifier is convinced that a computationally bounded prover knows a secret
information.

12/53

ZK-SNARK
Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such
that z := F (x ,w).
A ZK-SNARK consists of algorithms S,P,V s.t. for a security parameter λ:

Setup: (pk, vk) ← S(F , 1λ)

Prove: π ← P(x , z ,w , pk)
Verify: false/true ← V (x , z , π, vk)

Anyone (trusted)
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?π

13/53

ZK-SNARK
Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such
that z := F (x ,w).
A ZK-SNARK consists of algorithms S,P,V s.t. for a security parameter λ:

Setup: (pk, vk) ← S(F , 1λ)
Prove: π ← P(x , z ,w , pk)

Verify: false/true ← V (x , z , π, vk)

Anyone (trusted)
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?π

13/53

ZK-SNARK
Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such
that z := F (x ,w).
A ZK-SNARK consists of algorithms S,P,V s.t. for a security parameter λ:

Setup: (pk, vk) ← S(F , 1λ)
Prove: π ← P(x , z ,w , pk)
Verify: false/true ← V (x , z , π, vk)

Anyone (trusted)
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?π

13/53

ZK-SNARK
Preprocessing ZK-SNARK of NP language

Let F be a public NP program, x and z be public inputs, and w be a private input such
that z := F (x ,w).
A ZK-SNARK consists of algorithms S,P,V s.t. for a security parameter λ:

Setup: (pk, vk) ← S(F , 1λ)
Prove: π ← P(x , z ,w , pk)
Verify: false/true ← V (x , z , π, vk)

Anyone (trusted)
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z ,w , pk) V (x , z , π, vk)?π

13/53

ZK-SNARK

Succinctness: An honestly-generated proof is very "short" and "easy" to verify.

Definition [BCTV14b]
A succinct proof π has size Oλ(1) and can be verified in time Oλ(|F |+ |x |+ |z |),
where Oλ(.) is some polynomial in the security parameter λ.

14/53

ZK-SNARKs in a nutshell

main ideas:
1. Reduce a "general statement" satisfiability to a polynomial equation satisfiability.
2. Use Schwartz-Zippel lemma to succinctly verify the polynomial equation with high

probability.
3. Use homomorphic hiding cryptography to blindly verify the polynomial equation.
4. Use Fiat-Shamir transform to make the protocol non-interactive.

To know more about zk-SNARK, see Youssef slides at Aarhus seminar, May 11, 2022.

15/53

Outline

Preliminaries on proof systems

Pairings

Curves for proof systems

Pairing-friendly curves

Implementations

16/53

What is a pairing?

(G1,+), (G2,+), (GT , ·) three cyclic groups of large prime order `
Pairing: map e : G1 × G2 → GT

1. bilinear: e(P1 + P2,Q) = e(P1,Q) · e(P2,Q), e(P,Q1 + Q2) = e(P,Q1) · e(P,Q2)
2. non-degenerate: e(G1,G2) 6= 1 for 〈G1〉 = G1, 〈G2〉 = G2

3. efficiently computable.
Most often used in practice:

e([a]P, [b]Q) = e([b]P, [a]Q) = e(P,Q)ab .

; Many applications in asymmetric cryptography.

17/53

Pairings in cryptography: 1993 and 2001

1993
Menezes–Okamoto–Vanstone attack on supersingular curves

2001
• Joux’ tri-partite key exchange
• Boneh Frankin Identity based encryption
• Boneh Lynn Shacham short signature

18/53

Pairing setting: elliptic curves

E/Fp : y2 = x3 + ax + b, a, b ∈ Fp, p ≥ 5

• proposed in 1985 by Koblitz, Miller
• E (Fp) has an efficient group law (chord an tangent rule) → G1
• #E (Fp) = p + 1− t, trace t: |t| ≤ 2√p
• efficient group order computation (point counting)

• large subgroup of prime order ` s.t. ` | p + 1− t and ` coprime to p
• E (Fp)[`] = {P ∈ E (Fp) : [`]P = O} has order `
• E [`] ' Z/`Z× Z/`Z (for crypto)
• only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
• optimal parameter sizes

19/53

Pairing setting: elliptic curves

E/Fp : y2 = x3 + ax + b, a, b ∈ Fp, p ≥ 5

• proposed in 1985 by Koblitz, Miller
• E (Fp) has an efficient group law (chord an tangent rule) → G1
• #E (Fp) = p + 1− t, trace t: |t| ≤ 2√p
• efficient group order computation (point counting)
• large subgroup of prime order ` s.t. ` | p + 1− t and ` coprime to p
• E (Fp)[`] = {P ∈ E (Fp) : [`]P = O} has order `
• E [`] ' Z/`Z× Z/`Z (for crypto)
• only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
• optimal parameter sizes

19/53

Tate Pairing and modified Tate pairing

` | pn − 1, E [`] ⊂ E (Fpn)
Tate Pairing: For cryptography,
• G1 = E (Fp)[`] = {P ∈ E (Fp), [`]P = O}
• embedding degree n > 1 w.r.t. `: smallest1 integer n s.t. ` | pn − 1
⇔ E [`] ⊂ E (Fpn)

• G2 ⊂ E (Fpn)[`]
• G1 ∩ G2 = O by construction for practical applications
• GT = µ` = {u ∈ F∗pn , u` = 1} ⊂ F∗pn

When n is small i.e. 1 6 n 6∼ 50, the curve is pairing-friendly.
This is very rare: For a given curve, log n ∼ log ` (Balasubramanian–Koblitz).

1n = 1 is possible too in rare circumstances
20/53

Modified Tate pairing
Ensure the pairing is non-degenerate: G1 ∩ G2 = O

E [`] = Z/`Z× Z`Z = G1 × G2

Let P ∈ G1 = E (Fp)[`],Q ∈ G2 ⊂ E (Fpn)[`].
Let f`,P the function s. t. Div(f`,P) = `(P)− `(O).
f`,P is a function in Fpn [x , y] with a zero at P of multiplicity ` and a pole at O of
mult. `
Modified Tate pairing (in cryptography):

E (Fp)[`] E (Fpn)[`]
∼ = ∪

eTate : G1 × G2 → µ` ⊂ F∗pn

(P,Q) 7→ (f`,P(Q))
pn−1

`

21/53

Miller Loop

Input: integer s, points P, Q of order s
Output: m = fs,P(Q), where Div(f) = s(P)− s(O)

1 m← 1; S ← P;
2 for b from the second most significant bit of s to the least do
3 `← `S,S(Q); S ← [2]S ; // Double Line
4 v ← v[2]S(Q) ; // Vertical Line
5 m← m2 · `/v ; // Update 1
6 if b = 1 then
7 `← `S,P(Q); S ← S + P ; // Add Line
8 v ← vS+Q(Q) ; // Vertical Line
9 m← m · `/v ; // Update 2

10 return m;

22/53

Outline

Preliminaries on proof systems

Pairings

Curves for proof systems
proof composition
SNARK curves

Pairing-friendly curves

Implementations

23/53

Proof composition
A proof

Example: Groth16 [Gro16]
Given an instance Φ = (a0, . . . , a`) ∈ F`r of a public NP program F
• (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}`i=0, vkγ , vkδ) ∈ GT × G`+1
1 × G2 × G2

• π ← P(Φ,w , pk) where

π = (A,B,C) ∈ G1 × G2 × G1 (Oλ(1))

• 0/1← V (Φ, π, vk) where V is

e(A,B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑`

i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ)
can be computed in the trusted setup for (vkα, vkβ) ∈ G1 × G2.

24/53

Recursive ZK-SNARKs
An arithmetic mismatch

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)
V verification (eq. 1) is done in F∗qk

FV program of V is natively expressed in F∗qk not Fr

• 1st attempt: choose a curve for which q = r (impossible)
• 2nd attempt: simulate Fq operations via Fr operations (× log q blowup)
• 3rd attempt: use a cycle/chain of pairing-friendly elliptic

curves [CFH+15, BCTV14a, BCG+20]

25/53

Recursive ZK-SNARKs
An arithmetic mismatch

P

F

Fr
FV VFqk

F any program is expressed in Fr

P proving is performed over G1 (and G2) (of order r)
V verification (eq. 1) is done in F∗qk

FV program of V is natively expressed in F∗qk not Fr

• 1st attempt: choose a curve for which q = r (impossible)
• 2nd attempt: simulate Fq operations via Fr operations (× log q blowup)
• 3rd attempt: use a cycle/chain of pairing-friendly elliptic
curves [CFH+15, BCTV14a, BCG+20]

25/53

Recursive ZK-SNARKs
A proof of a proof

inner curve:
curve E0(Fq)

of prime order r

outer curve:
curve E1(Fs)
of order h × q

Given q, search for a pairing-friendly curve
E1 of order h · q over a field Fs

SNARK-0 with
a pairing e :

G1 × G2 → GT
#Gi = r

computation
in Fq[X]

SNARK-1 with
a pairing e :

G1 × G2 → GT
#Gi = q

pairing
statement

proof of
statement

26/53

Proof composition
cycles and chains of pairing-friendly elliptic curves

Definition
An m-chain of elliptic curves is a list of distinct curves

E1/Fq1 , . . . ,Em/Fqm

where q1, . . . , qm are large primes and

#E2(Fq2) = q1, . . . , #Ei (Fqi) = qi−1, . . . , #Em(Fqm) = qm−1 . (2)

Definition
An m-cycle of elliptic curves is an m-chain, with

#E1(Fq1) = qm . (3)

27/53

Choice of elliptic curves
ZK-curves

• SNARK
• E/Fq BN, BLS12, BW12?, KSS16? . . . [FST10]

I pairing-friendly
I r − 1 highly 2-adic (efficient FFT)

• Recursive SNARK (2-cycle)
• E1/Fq1 and E2/Fq2 MNT4/MNT6 [FST10, Sec.5], ? [CCW19]

I both pairing-friendly
I r2 = q1 and r1 = q2
I r{1,2} − 1 highly 2-adic (efficient FFT)
I q{1,2} − 1 highly 2-adic (efficient FFT)

• Recursive SNARK (2-chain)
• E1/Fq1 BLS12 (seed ≡ 1 mod 3 · 2large) [BCG+20], ?

I pairing-friendly
I r1 − 1 highly 2-adic
I q1 − 1 highly 2-adic

• E2/Fq2 Cocks–Pinch algorithm
I pairing-friendly
I r2 = q1

28/53

Outline

Preliminaries on proof systems

Pairings

Curves for proof systems

Pairing-friendly curves
2-chains of pairing-friendly elliptic curves

Implementations

29/53

First ordinary pairing-friendly curves: MNT
Miyaji, Nakabayashi, Takano, #E (Fp) = p(u) + 1− t(u), r(u) | #E (Fp)
k param MNT

t(u) −1± 6u
3 r(u) 12u2 ∓ 6u + 1

p(u) 12u2 − 1
Dy2 12u2 ± 12u − 5

4 t(u) −u, u + 1
r(u) u2 + 2u + 2, u2 + 1
p(u) u2 + u + 1
Dy2 3u2 + 4u + 4

6 t(u) 1± 2u
r(u) 4u2 ∓ 2u + 1
p(u) 4u2 + 1
Dy2 12u2 − 4u + 3

CODA: k = 6, 753 bits, ≈ 137 bits of security, D = −241873351932854907, seed u =
0xaa3a58eb20d1fec36e5e772ee6d3ff28c296465f137300399db8a5521e18d33581a262716214583d3b89820dd0c000

30/53

Cycle of curves

elliptic curve
E1(Fp) of prime order r

elliptic curve
E0(Fr) of prime order p

statement
in a group of
prime order p
over a field Fr

statement
in a group of
prime order r
over a field Fp

31/53

MNT-4 and MNT-6 curves form a cycle

k = 4, MNT-4 parameters t4 = −v , r4 = v2 + 1, p4 = v2 + v + 1
k = 6, MNT-6 parameters t6 = 1− 2u, r6 = 4u2 + 2u + 1, p6 = 4u2 + 1

r4 = p6
and

p4 = r6
⇐⇒

v = 2u
and

r4, r6 are primes

Unique known cycle of pairing-friendly curves.
Impossibility results:

Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
On cycles of pairing-friendly elliptic curves.
SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.

32/53

Very popular pairing-friendly curves: Barreto-Naehrig (BN)

EBN : y2 = x3 + b, p ≡ 1 mod 3, D = −3 (ordinary)

p = 36x4 + 36x3 + 24x2 + 6x + 1
t = 6x2 + 1
` = p + 1− t = 36x4 + 36x3 + 18x2 + 6x + 1

t2 − 4p = −3(6x2 + 4x + 1)2 → no CM method needed
Comes from the Aurifeuillean factorization of Φ12 :
Φ12(6x2) = `(x)`(−x)

Security level log2 ` finite field n log2 p degP, p = P(u) ρ

102 256 3072 12 256 4 1
123 384 4608 12 384 4 1
132 448 5376 12 448 4 1

33/53

BLS12

Barreto, Lynn, Scott method.
Becomes more and more popular, replacing BN curves

EBLS : y2 = x3 + b, p ≡ 1 mod 3, D = −3 (ordinary)

p = (u − 1)2/3(u4 − u2 + 1) + u
t = u + 1
r = (u4 − u2 + 1) = Φ12(u)

p + 1− t = (u − 1)2/3(u4 − u2 + 1)
t2 − 4p = −3y(u)2 → no CM method needed

BLS12-381 with seed -0xd201000000010000

34/53

The Cocks–Pinch method
Three equations:

` | p + 1− t (4)
` | Φn(p) (5)

t2 − 4p = −Dy2 (6)
From (4), p ≡ t − 1 mod `
From (5) and (4), ` | Φn(t − 1) ⇐⇒ t − 1 = ζn mod `
where ζn is a primitive n-th root of unity modulo `, ζn exists ⇐⇒ ` ≡ 1 mod n.

t = ζn + 1 mod `
From (6) and (4), with p = (t2 + Dy2)/4,

p + 1− t = 1
4
(
t2 − 4t + 4 + Dy2

)
= 1

4
(

(t − 2)2 + Dy2
)

Because ` | p + 1− t, assuming ` odd,

(t − 2)2 + Dy2 = 0 mod ` =⇒ y =
t − 2
√
−D

mod `
35/53

The Cocks–Pinch method

Input: A positive integer n and a positive square-free integer D
Output: E/Fq with an order-` subgroup and embedding degree n

1 Choose a prime ` such that n divides `− 1 and −D is a square modulo `
2 Compute t = 1 + x (`−1)/n for x a generator of (Z/`Z)×, t − 1 ≡ ζn mod `
3 Compute y = (t − 2)/

√
−D mod `

4 Lift t and y in Z
5 Compute q = (t2 + Dy2)/4 in Q
6 if q is a prime integer then
7 Use CM method (D < 1020) to get the coefficients of E/Fq with order-`

subgroup
8 else
9 Go back to 1

10 return E/Fq with an order-` subgroup and embedding degree n

36/53

The Cocks–Pinch method
Drawback: log |t|, log |y | ≈ log ` =⇒ log p ≈ 2 log `
rho-value:

ρ = log p
log ` ≈ 2

The optimal would be ρ = 1 for a prime-order curve, ` = p + 1− t.

How to compute primitive n-th roots of unity:
Input: prime `, integer n > 0, ` ≡ 1 mod n
Output: ζn mod `

1 z ← random(`)
2 z ← z(`−1)/n

3 while Φn(z) 6= 0 mod ` (or: zd = 1 mod ` for some d | n, 1 ≤ d < n) do
4 z ← random(`)
5 z ← z(`−1)/n

6 return z

37/53

The CM method (Complex Multiplication)

Hard problem to compute the curve coefficients (a, b) given a prime p and a trace t.
The other way: given p and (a, b) in E/Fp : : y2 = x3 + ax + b and computing the
order #E (Fp) is done with the SEA algorithm (Schroof–Elkies–Atkin).
The CM method computes a j-invariant, given p, t.
1. Compute the discriminant −D as the square-free part in t2 − 4p = −Dy2

2. If D ≡ 1, 2 mod 4, D ← 4D
3. Compute a Hilbert Class Polynomial H−D(X) mod p with Sutherland’s software

classpoly at https://math.mit.edu/~drew/

4. Compute a root j0 of H−D(X) mod p
5. Set E : y2 = x3 + 3j0

1728−j0 x + 2j0
1728−j0

38/53

https://math.mit.edu/~drew/

The CM method

For specific (small) values of −D, the j-invariants are known:
• −D = −3, j = 0
• −D = −4, j = 1728
• −D = −8, j = 8000
• −D = −7, j = −3375
• −D = −11, j = −32768
• −D = −19, j = −884736
• −D = −43, j = −884736000
• −D = −67, j = −147197952000
• −D = −163, j = −262537412640768000

39/53

The Brezing–Weng method: The Cocks–Pinch method with polynomials

Start with r(x) an irreducible polynomial s.t. the number field K = Q[x]/(r(x))
contains ζn and

√
−D

Algorithm 1: Idea of Barreto–Lynn–Scott and Brezing–Weng methods
Input: A positive integer n and a positive square-free integer D
Output: Polynomials p(x), r(x), t(x) s.t. t2(x)− 4p(x) = −Dy2(x),

r(x) | p(x) + 1− t(x), r(x) | Φn(p(x))
1 Choose an irreducible polynomial r(x) ∈ Z[x] with positive leading coefficient such

that
√
−D and ζn ∈ K = Q[x]/(r(x))

2 Choose t(x) ∈ Q[x] a polynomial representing ζn + 1 in K
3 Set y(x) ∈ Q[x] a polynomial mapping to (ζn − 1)/

√
−D in K

4 Compute p(x) = (t2(x) + Dy2(x))/4 in Q[x]
5 If p(x) does not represent primes go back to 1 or 2
6 return p(x), r(x), t(x)

40/53

The BLS family
If 3 | n, then

√
−3 ∈ K = Q[x]/(Φn(x))

• n = 3: ζ3 = −1+
√
−3

2 ∈ C, Φ3 = x2 + x + 1
For n ≡ 3 mod 6, ζ3 = xn/3 mod Φn(x)√
−3 = 2xn/3 + 1 and 1/

√
−3 =

√
−3/3 = (2xn/3 + 1)/3

• n = 6: ζ6 = 11+
√
−3

2 ∈ C, Φ6 = x2 − x + 1
For n ≡ 0 mod 6, ζ6 = xn/6 mod Φn(x)√
−3 = 2xn/6 − 1 and 1/

√
−3 =

√
−3/3 = (2xn/6 − 1)/3

Given n multiple of 3,
1. r(x)← Φn(x)
2. t(x)← x + 1
3. y(x)← (x − 1)/

√
−3

• y(x) = (x − 1)(2xn/3 + 1)/3 if n ≡ 3 mod 6
• y(x) = (x − 1)(2xn/6 − 1)/3 if n ≡ 0 mod 6

4. p(x) = (t2(x) + 3y2(x))/4
41/53

Finding 2-chains of elliptic curves
Curve E2/Fq2

• q is a prime or a prime power
• t is relatively prime to q
• r is prime
• r divides q + 1− t
• r divides qk − 1 (smallest k ∈ N∗)
• 4q − t2 = Dy2 (for D < 1012) and some integer y

r is a fixed chosen prime
that divides q + 1− t
and qk − 1 (smallest k ∈ N∗)

Algorithm 2: Cocks–Pinch method
1 Fix k and D and choose a prime r s.t. k|r − 1 and (−D

r) = 1;
2 Compute t = 1 + x (r−1)/k for x a generator of (Z/rZ)×;
3 Compute y = (t − 2)/

√
−D mod r ;

4 Lift t and y in Z;
5 Compute q = (t2 + Dy2)/4 (in Q);
6 back to 1 if q is not a prime integer;

42/53

2-chains
Limitations and improvements

• ρ = log2 q/ log2 r ≈ 2 (because q = f (t2, y2) and t, y $←− modr).
• The curve parameters (q, r , t) are not expressed as polynomials.

Algorithm 3: Brezing–Weng method
1 Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x] with positive leading

coefficient 1 s.t.
√
−D and the primitive k-th root of unity ζk are in

K = Q[x]/r(x);
2 Choose t(x) ∈ Q[x] be a polynomial representing ζk + 1 in K ;
3 Set y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/

√
−D in K ;

4 Compute q(x) = (t2(x) + Dy2(x))/4 in Q[x];

• ρ = 2max (deg t(x), deg y(x))/ deg r(x) < 2
• r(x), q(x), t(x) but does ∃ x0 ∈ Z∗, r(x0) = rfixed and q(x0) is prime ?
1conditions to satisfy Bunyakovsky conjecture which states that such a polynomial produces

infinitely many primes for infinitely many integers.
43/53

2-chains
Notes

• G2 ⊂ E (Fqk) ∼= E ′[r](Fqk/d) for a twist E ′ of degree d .
• When −D = −3, there exists a twist E ′ of degree d = 6.
• Associated with a choice of ξ ∈ Fqk/6 s.t. x6 − ξ ∈ Fqk/6 [x] is irreducible, the
equation of E ′ can be either
• y2 = x3 + b/ξ and we call it a D-twist or
• y2 = x3 + b · ξ and we call it a M-twist.

• For the D-type, E ′ → E : (x , y) 7→ (ξ1/3x , ξ1/2y),
• For the M-type E ′ → E : (x , y) 7→ (ξ2/3x/ξ, ξ1/2y/ξ)

44/53

2-chains
Suggested construction: combines CP and BW

1. Cocks–Pinch method
• k = 6 and −D = −3 =⇒ 128-bit security, G2 coordinates in Fq, GLV multiplication

over G1 and G2
• restrict search to size(q) ≤ 768 bits =⇒ smallest machine-word size

2. Brezing–Weng method
• choose r(x) = qBLS 12−377(x)
• q(x) = (t2(x) + 3y2(x))/4 factors =⇒ q(x0) cannot be prime
• lift t = r × ht + t(x0) and y = r × hy + y(x0) [FK19, GMT20]

45/53

2-chains [CANS2020]
The suggested curve: BW6-761

E : y2 = x3 − 1 over Fq of 761-bit with seed x0 = 0x8508c00000000 and polynomials:
Our curve, k = 6, D = 3, r = qBLS 12−377
r(x) = (x6 − 2x5 + 2x3 + x + 1)/3 = qBLS 12−377(x)
t(x) = x5 − 3x4 + 3x3 − x + 3 + htr(x)
y(x) = (x5 − 3x4 + 3x3 − x + 3)/3 + hy r(x)
q(x) = (t2 + 3y2)/4
qht=13,hy =9(x) = (103x12 − 379x11 + 250x10 + 691x9 − 911x8
−79x7 + 623x6 − 640x5 + 274x4 + 763x3 + 73x2 + 254x + 229)/9

46/53

Inner curves [EC2022]
SNARK-0

Groth16 SNARK
• 128-bit security
• pairing-friendly
• efficient G1, G2, GT and pairing
• p − 1 ≡ r − 1 ≡ 0 mod 2L for large

input L ∈ N∗ (FFTs)

→ BLS (k = 12) family of roughly 384 bits
with seed x ≡ 1 mod 3 · 2L

Universal SNARK
• 128-bit security
• pairing-friendly
• efficient G1, ////G2,/////GT and pairing
• p − 1 ≡ r − 1 ≡ 0 mod 2L for large
L ∈ N∗ (FFTs)

→ BLS (k = 24) family of roughly 320 bits
with seed x ≡ 1 mod 3 · 2L

47/53

Outer curves [EC2022]
SNARK-1

Groth16 SNARK
• 128-bit security
• pairing-friendly
• efficient G1, G2, GT and pairing
• r ′ = p (r ′ − 1 ≡ 0 mod 2L)

→ BW (k = 6) family of roughly 768 bits
with (t mod x) mod r ≡ 0 or 3

Universal SNARK
• 128-bit security
• pairing-friendly
• efficient G1, G2, GT and pairing
• r ′ = p (r ′ − 1 ≡ 0 mod 2L)

→ BW (k = 6) family of roughly 704 bits
with (t mod x) mod r ≡ 0 or 3
→ CP (k = 8) family of roughly 640 bits
→ CP (k = 12) family of roughly 640 bits

All Gi formulae and pairings are given in terms of x and some ht , hy ∈ N.

48/53

Outline

Preliminaries on proof systems

Pairings

Curves for proof systems

Pairing-friendly curves

Implementations

49/53

Implementation and benchmark
Short-list of curves

We short list few 2-chains of the proposed families that have some additional nice
engineering properties
• Groth16: BLS12-377 and BW6-761
• Universal: BLS24-315 and BW6-633 (or BW6-672)

Table: Cost of S, P and V algorithms for Groth16 and Universal. n =number of multiplication
gates, a =number of addition gates and ` =number of public inputs. MG =multiplication in G
and P=pairing.

S P V
Groth16 3n MG1 , n MG2 (4n − `) MG1 , n MG2 3 P, ` MG1

Universal d≥n+a MG1 , 1 MG2 9(n + a) MG1 2 P, 18 MG1

50/53

Implementation and benchmark
https://github.com/ConsenSys/gnark (Go)

FV : program that checks V (eq. 1) (` = 1, ////////////n = 80000 n = 19378)

Table: Groth16 (ms)

S P V
BLS12-377 387 34 1
BLS24-315 501 54 4
BW6-761 1226 114 9
BW6-633 710 69 6
BW6-672 840 74 7

Table: Universal (ms)

S P V
BLS12-377 87 215 4
BLS24-315 76 173 1
BW6-761 294 634 9
BW6-633 170 428 6
BW6-672 190 459 7

51/53

Play with gnark!
Write SNARK programs at https://play.gnark.io/
Example: Proof of Groth16 V program (eq. 1)

52/53

https://play.gnark.io/

Conclusion

papers 2-chains: ePrint 2021/1359 (EUROCRYPT 2022)
Survey of elliptic curves for SNARKs: ePrint 2022/586 (submitted)

implementations github/ConsenSys/gnark-crypto (Go)
gitlab/inria/snark-2-chains (SageMath/MAGMA)

follow-up work Co-factor clearing and subgroup membership on pairing-friendly elliptic
curves ePrint 2022/352 (AFRICACRYPT 2022)

THANK YOU!

53/53

https://eprint.iacr.org/2021/1359
https://eprint.iacr.org/2022/586
https://github.com/ConsenSys/gnark-crypto
https://gitlab.inria.fr/zk-curves/snark-2-chains
https://eprint.iacr.org/2022/352.pdf

References I
Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu.
Zexe: Enabling decentralized private computation.
In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los
Alamitos, CA, USA, may 2020. IEEE Computer Society.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Scalable zero knowledge via cycles of elliptic curves.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 276–294. Springer, Heidelberg, August 2014.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Succinct non-interactive zero knowledge for a von neumann architecture.
In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 781–796.
USENIX Association, August 2014.

1/3

References II
Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
On cycles of pairing-friendly elliptic curves.
SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur.
Geppetto: Versatile verifiable computation.
In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 253–270. IEEE Computer Society, 2015.
ePrint 2014/976.

Georgios Fotiadis and Elisavet Konstantinou.
TNFS resistant families of pairing-friendly elliptic curves.
Theoretical Computer Science, 800:73–89, 31 December 2019.

2/3

https://eprint.iacr.org/2014/976

References III
David Freeman, Michael Scott, and Edlyn Teske.
A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, 23(2):224–280, April 2010.

Aurore Guillevic, Simon Masson, and Emmanuel Thomé.
Cocks–Pinch curves of embedding degrees five to eight and optimal ate pairing
computation.
Des. Codes Cryptogr., 88:1047–1081, March 2020.

Jens Groth.
On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

3/3

	Preliminaries on proof systems
	Zero-knowledge proof (ZKP)
	ZK-SNARK

	Pairings
	Curves for proof systems
	proof composition
	SNARK curves

	Pairing-friendly curves
	2-chains of pairing-friendly elliptic curves

	Implementations
	Appendix

