On Codes and Learning With Errors Over Function Fields

Maxime Bombar, Alain Couvreur, Thomas Debris-Alazard

LIX, École polytechnique & Inria

Caramba seminar

May 03, 2022

Outline

1 Motivations

2 Function Field Decoding Problem

3 Carlitz module

Instantiations & applications

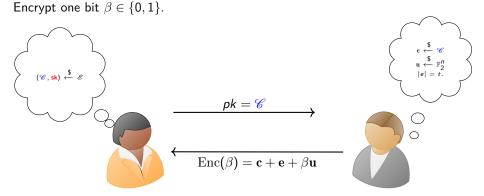
Code-based encryption schemes

Decoding Problem in cryptography

- McEliece (1978)
- Alekhnovich (2003)

Alekhnovich cryptosystem (2003)

 $\begin{array}{l} t \ll n \\ \mathscr{E} = \{(\mathscr{C}, \mathsf{sk}) \mid \ \mathscr{C} \text{ is a code with } \mathsf{sk} \in \mathscr{C}^{\perp} \text{ of weight } t\} \end{array}$



Alekhnovich cryptosystem (2003)

Encrypt one bit $\beta \in \{0, 1\}$.

$$\operatorname{Enc}(\beta) = \begin{cases} \mathbf{c} + \mathbf{e} \quad (\text{where } \mathsf{sk} \bot \mathbf{c}) & \text{if } \beta = 0\\ \text{random} & \text{if } \beta = 1 \end{cases}$$

Decryption

- $\langle \mathbf{sk}, \operatorname{Enc}(0) \rangle = \langle \mathbf{sk}, \mathbf{c} + \mathbf{e} \rangle = \langle \mathbf{sk}, \mathbf{e} \rangle = 0$ w.h.p.
- $\langle \mathbf{sk}, \operatorname{Enc}(1) \rangle = \langle \mathbf{sk}, \operatorname{random} \rangle = 0$ with proba $\frac{1}{2}$.

Message Security

Hard to distinguish c+e from random \approx Code-based analogue of DDH.

Decoding Problems

Search/Computational Decoding Problem

```
Data. Random matrix G and noisy codeword \mathbf{mG} + \mathbf{e} with |\mathbf{e}| = t.
Goal. Recover m.
```

Decisional Decoding Problem

Data. (G, b) where b is either random, or noisy codeword $\mathbf{mG} + \mathbf{e}$ with $|\mathbf{e}| = t$.

Goal. Distinguish between these two cases.

Fisher, Stern (1996)

Decisional Decoding Problem is as hard as Search Decoding Problem.

Efficiency Alekhnovich ?

 $\begin{array}{l} \mathsf{Public-key} = \mathsf{random} \ \mathscr{C} \ \mathsf{represented} \ \mathsf{by} \ \mathbf{G} \in \mathbb{F}_q^{k \times n} \\ \\ \mathsf{Huge} \ \mathsf{public-key:} \ \Theta(n^2) \end{array}$

Reducing the size of the key ?

Quasi-Cyclic codes

Idea: Use codes with many automorphisms, e.g. Quasi-Cyclic.

Codes having a generator (or parity-check) matrix formed by multiple circulant blocks

$$G = \begin{pmatrix} \mathbf{a}^{(1)} & \cdots & \mathbf{a}^{(r)} \\ \circlearrowright & \cdots & \circlearrowright \end{pmatrix}$$

 \Rightarrow Public key is now only one row.

Polynomial representation

$$\mathcal{R} = \mathbb{F}_q[X]/(X^n - 1)$$

Isomorphism between circulant matrices and polynomial ring.

$$\begin{pmatrix} a_0 & a_1 & \dots & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{pmatrix} \xrightarrow{\sim} \mathbf{a}(X) = \sum_{i=0}^{n-1} a_i X^i \in \mathcal{R}$$
$$\mathbf{m} \begin{pmatrix} \mathbf{a}^{(1)} & \mathbf{a}^{(2)} \\ \circlearrowright & \circlearrowright \end{pmatrix} + (\mathbf{e}^{(1)} & \mathbf{e}^{(2)}) \xrightarrow{\sim} \begin{cases} \mathbf{m}(X) \mathbf{a}^{(1)}(X) + \mathbf{e}^{(1)}(X) \in \mathcal{R} \\ \mathbf{m}(X) \mathbf{a}^{(2)}(X) + \mathbf{e}^{(2)}(X) \in \mathcal{R} \end{cases}$$

Structured versions of Decoding Problems

 \mathcal{R} Ring, e.g. $\mathbb{F}_q[X]/(X^n-1)$

Search version

Data. Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)} = \mathbf{ma}^{(i)} + \mathbf{e}^{(i)})$ with same $\mathbf{m} \stackrel{\$}{\leftarrow} \mathcal{R}$, where $\mathbf{a}^{(i)} \stackrel{\$}{\leftarrow} \mathcal{R}$, and $\mathbf{e}^{(i)} \leftarrow \mathcal{R}$ such that $|\mathbf{e}^{(i)}| = t$.

Goal. Find $\mathbf{m} \in \mathcal{R}$.

Decisional version

Data. Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)})$ where either all $\mathbf{b}^{(i)}$ are uniformly random, or are of the form $\mathbf{ma}^{(i)} + \mathbf{e}^{(i)}$.

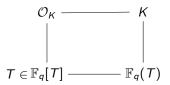
Goal. Distinguish between these two cases.

NO known reduction...

Maxime Bombar

Taking height

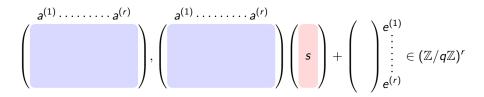
$$\underbrace{\mathbb{F}_{q}[X]/(X^{n}-1)}_{\text{World of Computations}} = \mathbb{F}_{q}[T][X]/(T, X^{n}+T-1) = \underbrace{\mathcal{O}_{K}/T\mathcal{O}_{K}}_{\text{World of Proofs}}$$



Idea:

- Get inspired by Euclidean lattices
- Number field Function field analogy

Learning With Errors (2005)



Search LWE

Data. Samples $(\mathbf{a}^{(i)}, b^{(i)} = \langle \mathbf{a}^{(i)}, \mathbf{s} \rangle + e^{(i)} \in \mathbb{Z}/q\mathbb{Z})$ with same \mathbf{s} , where $\mathbf{a}^{(i)} \xleftarrow{\$} \mathbb{Z}/q\mathbb{Z}$ and $e^{(i)}$ is distributed according to some discrete Gaussian. **Goal.** Recover \mathbf{s} .

Decision LWE

Data. Samples $(\mathbf{a}^{(i)}, b^{(i)})$ where either all $b^{(i)}$ are uniformly random, or are of the form $\langle \mathbf{a}^{(i)}, \mathbf{s} \rangle + e^{(i)} \mod q$.

Goal. Distinguish between these two cases.

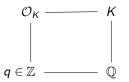
Learning With Errors (2005)

Not very efficient

\Rightarrow Structured versions

Ring-LWE [LPR10]

- K = Q[X]/(Xⁿ + 1), n = 2^ℓ cyclotomic number field
- $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[X]/(X^n + 1)$, ring of integers



• $q \in \mathbb{Z}$ prime.

Search-RLWE

Data. Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)} = \mathbf{a}^{(i)}\mathbf{s} + \mathbf{e}^{(i)})$ with $\mathbf{a}^{(i)} \stackrel{\$}{\leftarrow} \mathcal{O}_{\mathcal{K}}/q\mathcal{O}_{\mathcal{K}}$, $\mathbf{e}^{(i)} \leftarrow$ Gaussian. **Goal.** Find s.

Decision-RLWE

- **Data.** Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)})$ with $\mathbf{a}^{(i)} \stackrel{\$}{\leftarrow} \mathcal{O}_{\mathcal{K}}/q\mathcal{O}_{\mathcal{K}}$ and $\mathbf{b}^{(i)}$ either random or $\mathbf{a}^{(i)}\mathbf{s} + \mathbf{e}^{(i)}$.
- Goal. Distinguish between these two cases.

This Work

This work

- A new generic problem: Function Field Decoding Problem FF-DP,
- A new framework to make proofs,
- A search to decision reduction for QC-codes based on $\mathbb{F}_q[X]/(X^{q-1}-1)$,
- Search to decision reductions for structured versions of LPN,
- Applications to MPC.

Outline

2 Function Field Decoding Problem

3 Carlitz module

Instantiations & applications

Number field - Function field analogy

An old analogy

(Informal) Finite extensions of \mathbb{Q} and finite extensions of $\mathbb{F}_q(T)$ share many properties.

 $\mathbb{F}_q(T)$ Q Z $\mathbb{F}_{a}[T]$ Prime numbers $q \in \mathbb{Z}$ Irreducible polynomials $Q \in \mathbb{F}_{q}[T]$ $K = \mathbb{Q}[X]/(f(X))$ $K = \mathbb{F}_{q}(T)[X]/(f(T,X))$ \mathcal{O}_{κ} OK = Integral closure of $\mathbb{F}_{q}[T]$ = Integral closure of \mathbb{Z} Dedekind domain Dedekind domain characteristic 0 characteristic p

Function Field Decoding Problem - FF-DP

- $K = \mathbb{F}_q(T)[X]/(f(T,X))$
- \mathcal{O}_K ring of integers
- $Q \in \mathbb{F}_q[T]$ irreducible.
- ψ some probability distribution over O_K/QO_K.

Search FF-DP

Data. Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)} = \mathbf{ma}^{(i)} + \mathbf{e}^{(i)})$ with $\mathbf{a}^{(i)} \stackrel{\$}{\leftarrow} \mathcal{O}_K / Q\mathcal{O}_K$, $\mathbf{e}^{(i)} \leftarrow \psi$. **Goal.** Find $\mathbf{m} \in \mathcal{O}_K / Q\mathcal{O}_K$.

Decision FF-DP

- **Data.** Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)})$ with $\mathbf{a}^{(i)} \stackrel{\$}{\leftarrow} \mathcal{O}_{\mathcal{K}}/\mathcal{QO}_{\mathcal{K}}$ and $\mathbf{b}^{(i)}$ either all random or $\mathbf{ma}^{(i)} + \mathbf{e}^{(i)}$.
- Goal. Distinguish between these two cases.

Main theorem

Let K be a function field with constant field \mathbb{F}_q , $Q \in \mathbb{F}_q[T]$ irreducible.

Assume that

- (1) K is a Galois extension of $\mathbb{F}_q(T)$ of not too large degree.
- (2) Ideal $\mathfrak{P} = \mathcal{QO}_{\mathcal{K}}$ does not ramify and has not too large inertia.
- (3) For all $\sigma \in \operatorname{Gal}(K/\mathbb{F}_q(T))$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.

(2) $\Leftrightarrow \mathfrak{P} = \mathfrak{P}_1 \dots \mathfrak{P}_r$ with \mathfrak{P}_i prime ideals and $\mathcal{O}_K/\mathfrak{P}_i = \mathbb{F}_{q^\ell}$ with ℓ small.

as
$$+ e \in \mathcal{O}_{\mathcal{K}}/\mathfrak{P} \simeq \mathcal{O}_{\mathcal{K}}/\mathfrak{P}_1 imes \cdots imes \mathcal{O}_{\mathcal{K}}/\mathfrak{P}_r$$

With CRT notations,

$$\mathcal{H}_i = \left\{ (\mathbf{r}_1, \dots, \mathbf{r}_i, (\mathbf{as} + e \mod \mathfrak{P}_{i+1}), \dots, (\mathbf{as} + e \mod \mathfrak{P}_r)) \mid \mathbf{r}_\ell \xleftarrow{\$} \mathcal{O}_K / \mathfrak{P}_\ell \right\}$$

$$\mathcal{H}_0 =$$
 Distribution of $as + e$
 $\mathcal{H}_r =$ Uniform distribution

(Step 1) Hybrid Argument

If \mathscr{A} distinguishes \mathcal{H}_0 from \mathcal{H}_r then \mathscr{A} distinguishes \mathcal{H}_{i_0} from \mathcal{H}_{i_0-1} for some i_0 .

$$as + e \in \mathcal{O}_K/\mathfrak{P} \simeq \mathcal{O}_K/\mathfrak{P}_1 \times \cdots \times \mathcal{O}_K/\mathfrak{P}_r$$

$$\mathcal{H}_i = \left\{ (\mathbf{r}_1, \dots, \mathbf{r}_i, (\mathbf{as} + e \mod \mathfrak{P}_{i+1}), \dots, (\mathbf{as} + e \mod \mathfrak{P}_r)) \mid \mathbf{r}_\ell \stackrel{\$}{\leftarrow} \mathcal{O}_K / \mathfrak{P}_\ell \right\}$$

(Step 2) Guess and search

•
$$\mathbf{g} \in \mathcal{O}_{\mathcal{K}} / \mathfrak{P}_{i_0}$$
 guess for $s \mod \mathfrak{P}_{i_0}$.

•
$$\mathbf{v} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{O}_{\mathcal{K}}/\mathfrak{P}_{i_0}$$
 ; $\mathbf{h} = \operatorname{CRT}^{-1}(\mathbf{r_1}, \dots, \mathbf{r_{i_0-1}}, 0, \dots, 0)$

•
$$(\mathbf{a}, \mathbf{b} = \mathbf{as} + \mathbf{e}) \mapsto (\mathbf{a}', \mathbf{b}') = (\mathbf{a} + \mathbf{v}, \mathbf{b} + \mathbf{vg} + \mathbf{h})$$

•
$$\mathbf{b}' = \mathbf{a}'\mathbf{s} + (\mathbf{g} - \mathbf{s})\mathbf{v} + \mathbf{e} + \mathbf{h}$$

$$\mathbf{b}' = \begin{cases} \mathbf{a's} + \mathbf{e} \mod \mathfrak{P}_{i_0} & \text{ If guess } \mathbf{g} \text{ is good} \\ \text{random} \mod \mathfrak{P}_{i_0} & \text{ If guess } \mathbf{g} \text{ is wrong} \end{cases}$$

as
$$+ e \in \mathcal{O}_{\mathcal{K}}/\mathfrak{P} \simeq \mathcal{O}_{\mathcal{K}}/\mathfrak{P}_1 imes \cdots imes \mathcal{O}_{\mathcal{K}}/\mathfrak{P}_r$$

$$\mathcal{H}_i = \left\{ (r_1, \dots, r_i, (as + e \mod \mathfrak{P}_{i+1}), \dots, (as + e \mod \mathfrak{P}_r)) \mid r_\ell \stackrel{\$}{\leftarrow} \mathcal{O}_K / \mathfrak{P}_\ell \right\}$$

(Step 2 cont'd) Guess and search • $\mathbf{a}' = random$ • $\mathbf{b}' \leftarrow \begin{cases} \mathcal{H}_{i_0-1} & \text{If guess is good} \\ \mathcal{H}_{i_0} & \text{If guess is wrong} \end{cases}$ • $\Rightarrow \mathscr{A}$ can tell whether we guessed correctly !

We can recover s mod \mathfrak{P}_{i_0} with an exhaustive search in $\mathcal{O}_{\mathcal{K}}/\mathfrak{P}_{i_0} = \mathbb{F}_{q^\ell}$.

$$\mathfrak{s} = \mathfrak{o} \in \mathcal{O}_{\mathcal{K}}/\mathfrak{P} \simeq \mathcal{O}_{\mathcal{K}}/\mathfrak{P}_1 imes \cdots imes \mathcal{O}_{\mathcal{K}}/\mathfrak{P}_r$$

We can recover s mod \mathfrak{P}_{i_0} .

Fact. For any *j* there exists $\sigma \in \operatorname{Gal}(K/\mathbb{F}_q(T))$ such that $\sigma(\mathfrak{P}_j) = \mathfrak{P}_{i_0}$.

(Step 3) Permute the factors

- $(\mathbf{a}, \mathbf{b}) \mapsto (\sigma(\mathbf{a}), \sigma(\mathbf{b}))$
 - $\sigma(\mathbf{a}) \xleftarrow{\$} \mathcal{O}_K/\mathfrak{P};$
 - $\sigma(\mathbf{b}) = \sigma(\mathbf{a})\sigma(\mathbf{s}) + \sigma(\mathbf{e});$
 - If $\sigma(\mathbf{s}) \equiv s_{i_0} \mod \mathfrak{P}_{i_0}$ then $\mathbf{s} \equiv \sigma^{-1}(s_{i_0}) \mod \mathfrak{P}_j$;
 - $\Delta \sigma$ needs to keep distribution of e.

How to instantiate FF-DP ?

What do we need ?

- Galois function field $K/\mathbb{F}_q(T)$ with small field of constants;
- Nice behaviour of places;
- Galois invariant distribution.

Ring-LWE instantiation with cyclotomic number fields.

Outline

2 Function Field Decoding Problem

3 Carlitz module

Instantiations & applications

Cyclotomic function field (Bad idea)

We want an analogue of cyclotomic number field.

 $\mathbb{Q}[\zeta_n]$ is built by adding the *n*-th roots of 1. What about $\mathbb{F}_q(T)$?

A false good idea

Adding roots of 1 to $\mathbb{F}_q(T)$ yields extension of constants \Rightarrow We get $\mathbb{F}_{q^m}(T)$.

Reduction needs an exhaustive search ...

Cyclotomic function field (Good idea)

Intuition:

- $\overline{\mathbb{Q}}^{x}$ is endowed with a \mathbb{Z} -module structure by $n \cdot z \stackrel{\text{def}}{=} z^{n}$.
- $\mathbb{U}_n = \{z \in \overline{\mathbb{Q}} \mid z^n = 1\} = n$ -torsion elements.

Idea:

- $\mathbb{Z} \leftrightarrow \mathbb{F}_q[T] \Rightarrow$ Consider a new $\mathbb{F}_q[T]$ -module structure on $\overline{\mathbb{F}_q(T)}$.
- Add torsion elements to $\mathbb{F}_q(T)$.

Carlitz Polynomials

For $M \in \mathbb{F}_q[T]$ define $[M] \in \mathbb{F}_q(T)[X]$ by:

- [1](X) = X
- $[T](X) = X^q + TX$
- \mathbb{F}_q -Linearity + $[M_1M_2](X) = [M_1]([M_2](X))$

Fact. [M] is a q-polynomial in X with coefficients in $\mathbb{F}_q[T]$.

Examples:

• For $c \in \mathbb{F}_q$, [c](X) = cX

•
$$[T^2](X) = (X^q + TX)^q + T(X^q + TX) = X^{q^2} + (T^q + T)X^q + T^2X$$

Carlitz Module

Fact. $\mathbb{F}_q[T]$ acts on $\overline{\mathbb{F}_q(T)}$ by $M \cdot z = [M](z)$. $\overline{\mathbb{F}_q(T)}$ endowed with this action is called the \mathbb{F}_q -Carlitz module.

• $\Lambda_M \stackrel{\text{def}}{=} \{z \in \overline{\mathbb{F}_q(T)} \mid [M](z) = 0\}$ *M*-torsion elements $\simeq \mathbb{U}_n$.

•
$$\mathbb{F}_q(T)[\Lambda_M] = \underline{\text{cyclotomic}}$$
 function field.

• $\operatorname{Gal}(K/\mathbb{F}_q(T)) \simeq (\mathbb{F}_q[T]/(M))^{\times}$ (Efficiently computable).

Cyclotomic VS Carlitz

$\mathbb{Q}_{\mathbb{Z}}$ Prime numbers $q\in\mathbb{Z}$			
$\mathbb{U}_n = \langle \zeta \rangle \simeq \mathbb{Z}/(n)$ (groups)	$\Lambda_M = \langle \lambda angle \simeq \mathbb{F}_q[T]/(M) \text{ (modules)}$		
$d \mid n \Leftrightarrow \mathbb{U}_d \subset \mathbb{U}_n$ (subgroups)	$D \mid M \Leftrightarrow \Lambda_D \subset \Lambda_M$ (submodules)		
$\begin{split} \mathcal{K} &= \mathbb{Q}[\zeta]\\ \mathcal{O}_{\mathcal{K}} &= \mathbb{Z}[\zeta] \end{split}$	$\begin{aligned} \mathcal{K} &= \mathbb{F}_q(T)[\lambda] \\ \mathcal{O}_{\mathcal{K}} &= \mathbb{F}_q[T][\lambda] \end{aligned}$		
$\operatorname{Gal}({\mathcal K}/{\mathbb Q})\simeq ({\mathbb Z}/(n))^{ imes}$ Cyclotomic	$\operatorname{Gal}({\mathcal K}/{\mathbb F}_q({\mathcal T}))\simeq ({\mathbb F}_q[{\mathcal T}]/({\mathcal M}))^{ imes}$ Carlitz		

Important example

$$[T](X) = X^q + TX$$

$$\Lambda_T = \{ z \mid z^q + Tz = 0 \} = \{ 0 \} \cup \{ z \mid z^{q-1} = -T \};$$

$$K = \mathbb{F}_q(T)(\Lambda_T) = \mathbb{F}_q(T)[X]/(X^{q-1} + T);$$

$$\mathcal{O}_{\mathcal{K}} = \mathbb{F}_q[T][X]/(X^{q-1}+T);$$

 $\operatorname{Gal}(K/\mathbb{F}_q(T)) = (\mathbb{F}_q[T]/T)^{\times} = \mathbb{F}_q^{\times};$

 $\mathcal{O}_{\mathcal{K}}/((T+1)\mathcal{O}_{\mathcal{K}}) = \mathbb{F}_{q}[T][X]/(X^{q-1}+T,T+1) = \mathbb{F}_{q}[X]/(X^{q-1}-1).$

Outline

1 Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations & applications

Quasi-Cyclic Decoding

- $\mathcal{K} = \mathbb{F}_q(T)[\Lambda_T],$ $\mathcal{O}_{\mathcal{K}}/(T+1)\mathcal{O}_{\mathcal{K}} = \mathbb{F}_q[X]/(X^{q-1}-1).$
- $\operatorname{Gal}(K/\mathbb{F}_q(T)) = \mathbb{F}_q^{\times}$ acts on $\mathbb{F}_q[X]/(X^{q-1}-1)$ via
 - $\zeta \cdot P(X) = P(\zeta X) \Rightarrow$ Support is Galois invariant !

Search to decision reduction

Decision QC-decoding in $\mathbb{F}_q[X]/(X^{q-1}-1)$ is as hard as Search.

 \rightarrow It proves an asumption made in MPC.

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples $(\mathbf{a}^{(i)}, \mathbf{a}^{(i)}\mathbf{s} + \mathbf{e}^{(i)})$.
- What is the error distribution ?

$$e(X) = e_0 + e_1 X + \cdots + e_{r-1} X^{r-1}$$
 with independent $e_i \leftarrow \mathcal{B}_q(p)$.

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples $(\mathbf{a}^{(i)}, \mathbf{a}^{(i)}\mathbf{s} + \mathbf{e}^{(i)})$.
- What is the error distribution ?

$$\mathbf{e}(X) = e_0 + e_1 X + \dots + e_{r-1} X^{r-1}$$
 with independent $e_i \leftarrow \mathcal{B}_q(p)$.

Not Galois invariant ...

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples $(a^{(i)}, a^{(i)}s + e^{(i)})$.
- What is the error distribution ?

 $\mathbf{e}(X) = e_0 + e_1 X + \dots + e_{r-1} X^{r-1}$ with independent $e_i \leftarrow \mathcal{B}_q(p)$.

Not Galois invariant ...

Idea: Change the basis

M	axir	ne	Bo	mb	a

- $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.
 - Samples $(\mathbf{a}, \mathbf{as} + \mathbf{e})$ where $\mathbf{e} = e_0\beta_0 + \cdots + e_{r-1}\beta_{r-1}$ and $e_i \leftarrow \mathcal{B}_q(p)$.
- e.g. Canonical basis $(1, X, \ldots, X^{r-1})$.

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples $(\mathbf{a}, \mathbf{as} + \mathbf{e})$ where $\mathbf{e} = e_0\beta_0 + \cdots + e_{r-1}\beta_{r-1}$ and $e_i \leftarrow \mathcal{B}_q(p)$.
- e.g. Canonical basis $(1, X, \ldots, X^{r-1})$.

Normal Distribution Ring-LPN

- If $f_i(X)$ have the same degree d, then $\mathcal{R} \simeq \mathcal{O}_K / T \mathcal{O}_K$ where K is some explicit Carlitz extension in which T has inertia d and does not ramify.
- $\mathcal{O}_{\mathcal{K}}/\mathcal{T}\mathcal{O}_{\mathcal{K}}$ admits many \mathbb{F}_q -Galois invariant basis.
- Decision Ring-LPN with respect to such a basis is as hard as Search.

Conclusion

	Ring-LWE	FF-DP	
2010:	Cyclotomic number fields Special modulus	Galois function fields Special modulus	\checkmark
2014:	Any modulus	?	×
2017-2018:	Any number field Completely different technique: OHCP	?	×

Already useful for special QC codes used in MPC, or for particular Ring-LPN.

Extension to any function field would apply to codes like in BIKE/HQC (NIST).

Conclusion and perspectives

FF-DP

- Other meaningful examples ?
- Other metrics ?
- Develop a "Switching-Modulus" technique
- Extensions to more general function fields

For MPC we would like K such that

- $\mathcal{O}_K/\mathcal{TO}_K \simeq \mathbb{F}_2^N$ with $N \simeq 2^{20}$ or 2^{30}
- Efficient representation of *sparse* elements of \mathcal{O}_K or $\mathcal{O}_K/\mathcal{T}\mathcal{O}_K$
- Efficient multiplication in $\mathcal{O}_{\mathcal{K}}$ or $\mathcal{O}_{\mathcal{K}}/\mathcal{T}\mathcal{O}_{\mathcal{K}}$.

Thank you for your attention.