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Pairings in cryptography

(G1,4),(Ga,4), (G, ") three cyclic groups of large prime order r
A pairingis amap e: G; X G — Gt

1. bilinear: e(P1 + P2, Q) = e(P1,Q) - e(P2, Q),

e(P, Q1+ @) = e(P, Q1) - e(P, Q)
2. non-degenerate: e(Gi, Go) # 1 for (G1) = G1, (G2) = G2
3. efficiently computable.

Mostly used in practice:

e([a]P, [b]Q) = e([b]P, [a] Q) = e(P, Q)"

Many applications in asymmetric cryptography.
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Pairing-Friendly Curves — PFCs

v

ordinary curve E/F, : v2=x3+ax+b

r| #E(F,)=p+1—1t, Gy = E(Fp)[r] (points of order r)
r|p¥ — 1, for some reasonably small integer
“embedding degree” k

Ga C E(Fpu)[r], G ={x € Fro: xM = 1}

E as secure and efficient as for ECC.

DL problem hard in E(F,) and in FF

Hasse bound: #E(F,) =p+1—1t, [t| <2,/p

Parameter size efficiency: ratio p = log, p/ log, r > 1 small,

ideally p = 1.
E with sextic twists for efficient pairings (= 6|k and a CM
discriminant of D =3 (j(E) =0, E/F, : y?> = x> + b))

k = 273/ for efficient implementation of [« arithmetic
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The candidates

Candidate curves and curve families are described in the
Freeman, Scott, Teske taxonomy paper [FST10]
Non-parameterised Cocks-Pinch curves, easy to find for any k,
but p =2

Parameterised curves, where p and r have a simple polynomial
description

For example MNT curves [MNTO1], p = x? + 1,
r=x2—x+1, k=6, p = 1 Pell equation and CM method
needed

But very rare, D # 3, lacks a fortuitous match between size of
r and size of p¥ for ECC and DL security resp.

Most popular PFCs are small discriminant parameterised
families ([BNO6], [BLS02], [KSS08])
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BN curves

» Embedding degree of k = 12, p=L1.

> For 128-bit security, an r of 256 bits as required for ECC
security matches pX of 3072 bits as (apparently) required for
DL security!

> A match made in heaven!

» That 3072-bit value derives from extensive historical analysis
of RSA security, and the assumption that finite field DL
problem is if anything harder.

» But murmurings from the background — surely the
parameterised form of p might make the DL problem easier
(Schirokauer [Sch06])? First weakness found by Joux—Pierrot
[JP13].

> And anyhow how about 192 and 256-bit security. Here BN
curves are not such a good match.

» Maybe BLS or KSS curves might be a better fit for these.



New DL results

» Schirokauer was right! Kim and Barbulescu [KB16] attack,

analysed by Menezes—Sarkar—Singh [MSS16], Barbulescu and

Duquesne [BD18]

» However low discriminant parameterised families are still
optimal. We just need to revise upwards the size of p¥

DL Algorithm complexity 2128 [ 2192 2256
NFS (Lp[1/3,1.923]) 3072 | 7680 | 15360
ToweNFS medium (L,«[1/3,1.747]) 3618 | 9241 | 18480
Seecia TowerNFS medium (L,«[1/3,1.526]) | 5004 | 12871 | 27410

Table: Recommended extension field sizes (rough estimate)

Ly« = exp(c(log p*)(log log p¥)?/?)

Practicality and performances of TNFS, SNFS and STNFS

depends on k and the PFC family.

6
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The response

Recently Kiyomura et al. [KIK*17] considered 256-bit security
and, responding to our new understanding, suggested that a
k = 48 BLS curve might be optimal.

The FST taxonomy only considered embedding degrees up to
k = 50!

Might be appropriate to go back and have another look...

BLS are a family of families of PFCs, which supports for
example the implementation-friendly values of
k =12,24,48.., but not kK = 18,36

The p value is (k +6)/k

KSS curves are “sporadics” which happily fill in the gaps for
k = 18,36, and feature the same p formula.

but maybe we should look at the next one up, k = 547
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The Discovery

v

A new discovery is one of the most pleasing outcomes of
research

but its often more accident than design
We re-ran our old KSS discovery code for values of k > 50

and out popped a new solution for k = 54 almost
immediately. At first we ignored it, hoping to find a BN-like
solution with p =1

It didn't look like a typical KSS curve, for example KSS k=18

p = (x®+5x" + 7x5 + 37x° + 188x* + 259x3 + 343x2 +
1763x + 2401)/21



A new family of PFCs

p=1+43u+3u?+3%° +3°u10 + 3%410 4 30,11
+ 39418 4 310,19 4 310,20

r=14+3%9 +3%9,18

C:1+3U+3u2, rC:p+1_t



What exactly have we got here?

v

Its pretty!
The p value is 10/9, which is again (k + 6)/k
But it doesn’t have the look and feel of a typical KSS curve

v

v

v

But then again the KSS method also finds the BN curves.

v

Is it a sporadic family of curves, or a member of a larger
family of families?
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A similar pattern: supersingular curves over GF(3")
Pairings in 2001-2014: ¢ odd,

E/F3:y?>=x>—x+b, b=+l

H#HE(F3) =p+1—t where p =3, t = £3((+1D/2
Embedding degree: smallest k s.t. r | ®x(p)
>t = —30HD/2 L E(Fy,) = (3¢ 4 30H1/2 1),
#E(F3) | ®3(p), k=3
» t=30HD/2) L E(Fy) = (3¢ — 3UHD/2 4 1),
#E(F3) | ®6(p), k=6

Factorisation pattern
®3(—3u?) = d6(3u°) = (3u® 4 3u + 1)(3u® — 3u + 1)

» p=32"H1 =342 r =32 +3u+1,t=3u

11 /24



Factorisation patterns in pairing-friendly curves

Galbraith, McKee and Valenca patterns [GMV07]:
> O15(60?) = r(u)r(—u), r(u) = 36u* + 36u3 + 18u? + 6u + 1
— Barreto—Naehrig curves
> &15(20?) = r(u)r(—u), r(u) = 4u* + 403 +20% +2u + 1
> ®5(502) = d1o(—5u?) = r(u)r(—u),
r(u) = 25u* 4+ 2503 + 1502 + 5u + 1
— Freeman curves
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Cunningham project!

Aim: factor large integers b" £+ 1, where
be{2,3,56,7,10,11,12}
> algebraic factorisation: b" —1 =[]y, ®4(b)

> Aurifeuillean factorisation for matching b, n

Aurifeuillean factorisation Aurifeuille, Schinzel, Brent, Stevenhagen
k > 1 integer, ®,(u) k-th cyclotomic polynomial. Let a be a
square-free integer and u an integer. Then ®,(au?) will factor if
» a=1 (mod 4) and k = a (mod 2a)
» or a=2,3 (mod 4) and k = 2a (mod 4a).

'http://www.cerias.purdue.edu/homes/ssw/cun/index.html
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Brezing-Weng construction [BWO05]

Input: Embedding degree k, square-free D > 0 s.t. —D square in
Q(Ck)
r(u) < ®4(u)
s(u) < v/—=D mod r(u), i.e. 1/s?(u) = —D mod r(u)
foreinl,... . k—1, gcd(e, k) =1 do
t(u) = u®+ 1 mod r(u)
y(u) = (t(u) — 2)/s(u) mod r(u)
p(u) = (t*(u) + Dy*(u))/4
if p(u) represents primes and leading coeffr) > 0 then
| return k,D,r t,y,p

end

end

Issues:

» very small choice of D

» p(u) not irreducible, or never takes prime integer values
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Aurifeuillean pairing-friendly curves

Modification of Brezing-Weng construction:

Look for a € {—2k, —2k — 1, ..., 2k} s.t. ®y(av?) = r(u)r(—u) has
Aurifeuillean factorisation, continue with r(u) and

t(u) = (au?)® + 1 mod r(u), ged(e, k) = 1.

Example: k=9

®g(—3u?) = r(u)r(—u) where r(u) = 27u® +9u3 +1

Take D = 3: three families:

t=(-3u?)2+1, (-3u?)5+1, (—3u?)®+ 1 mod r(u)

ti(u) = —18u* —3u+1=(-3u?)°+ 1 mod r(uv)

yi(u) = —6u3+u—1

pi(u) = 8lu® +27ub +27u® — 18u* + 903 +3u? —3u+1
And p = degp/degr = 4/3 as good as former construction.

=
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Our construction for k =2 -3/

by5i(u) = O3i(—u) =u™ — um? +1, where m=k/3 .
Take a = 3:
®.3(30%) = b3i(—3u?) = r(u)r(—u)

where r(u) = 3m/2y™ 4 3(m+2)/4ym/2 4 1,
Take D = 3: 1y/=3 = 2-3(m=2/4ym/2 11 mod r(u).
Continue Brezing-Weng with r, D

— minimise max(deg t(u), deg y(u)).

Odd j:
ec{(m+2)/4, m+(m+2)/4, 2m+ (m+2)/4}
p=(m+2)/m=(k+6)/k

Any j:
ec{l, 1+ m, 1+2m}
p=(m+4)/m=(k+12)/k
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And so for k=54...

¢54(3U2) — (1 + 35U9 + 39U18)(1 . 35U9 + 39U18)

» Choose r(u) =1+ 3°u° 4 3%u'®
> D:3
> m=2k/3=18

v

e=(m+2)/4=5
So t(u) =1+ (3u?)5 =1+ 3°u%0

y(u) = 3w+ 2340 +2u+1

p(u) = (t(u)? + 3y(u)?)/4 = 1+ 3u+ 3u? + 350 + 35510 4
36u10 4 36U11 4 39u18 4 310u19 4 310U20
p=(k+6)/k=10/9

v

v

v

v
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Conclusion

» Mystery solved!

» So our new discovery was indeed just one member of a family
of families of PFCs

» New families with competitive p for k €
{9,15,21, 30, 33, 39, 42, 45, 51, 54, 57, 66, 69, 75, 78, 81, 87,90, 93}

» Not applicable for 8 | k (no Aurifeuillean factorisation)

» The new k = 54 case could be of future use for 256-bit
security (maybe better than BLS-487)

» Nice alternate construction for k =9

18 /24



References |

@ Razvan Barbulescu and Sylvain Duquesne.
Updating key size estimations for pairings.

Journal of Cryptology, Jan 2018.

[ P.S.L. M. Barreto, B. Lynn, and M. Scott.
Constructing elliptic curves with prescribed embedding degrees.
In Security in Communication Networks — SCN'2002, volume 2576
of LNCS, pages 263-273. Springer-Verlag, 2002.
@ P.S.L.M. Barreto and M. Naehrig.
Pairing-friendly elliptic curves of prime order.

In Selected Areas in Cryptography — SAC’2005, volume 3897 of
LNCS, pages 319-331. Springer-Verlag, 2006.

19 /24



References |l

@ Friederike Brezing and Annegret Weng.
Elliptic curves suitable for pairing based cryptography.
Des. Codes Cryptography, 37(1):133-141, 2005.
https://eprint.iacr.org/2003/143.

@ D. Freeman, M. Scott, and E. Teske.
A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology, 23(2):224-280, 2010.
http://eprint.iacr.org/2006/372.

@ S.D. Galbraith, J.F. McKee, and P.C. Valenca.
Ordinary abelian varieties having small embedding degree.
Finite Fields and Their Applications, 13(4):800 — 814, 2007.
https://eprint.iacr.org/2004/365.

20/24


https://eprint.iacr.org/2003/143
http://eprint.iacr.org/2006/372

References 1l

Andrew Granville and Peter Pleasants.

Aurifeuillian factorization.

Math. Comp., 75(253):497-508, 2006.
https://doi.org/10.1090/S0025-5718-05-01766-7.

Antoine Joux and Cécile Pierrot.

The special number field sieve in IFy» - application to pairing-friendly
constructions.

In Zhenfu Cao and Fangguo Zhang, editors, Pairing-Based
Cryptography - Pairing 2013 - 6th International Conference, Beijing,
China, November 22-24, 2013, Revised Selected Papers, volume
8365 of LNCS, pages 45—61. Springer, 2013.

https://eprint.iacr.org/2013/582.

21 /24


https://doi.org/10.1090/S0025-5718-05-01766-7
https://eprint.iacr.org/2013/582

References IV

[ T.Kim and R. Barbulescu.

The extended tower number field sieve: A new complexity for the
medium prime case.

In Crypto 2016, volume 9814 of LNCS, pages 543-571.
Springer-Verlag, 2016.

ﬁ Y. Kiyomura, A. Inoue, Y. Kawahara, M. Yasuda, T. Takagi, and
T. Kobayashi.

Secure and efficient pairing at 256-bit security level.

In ACNS 2017, volume 10355 of LNCS, pages 59-79.
Springer-Verlag, 2017.

@ E. Kachisa, E.F. Schaefer, and M. Scott.

Constructing Brezing-Weng pairing friendly elliptic curves using
elements in the cyclotomic field.

In Pairing 2008, volume 5209 of LNCS, pages 126-135.
Springer-Verlag, 2008.

22/24



References V

ﬁ N. El Mrabet and M. Joye, editors.
Guide to Pairing-Based Cryptography.
Chapman and Hall/CRC, 2016.

@ A. Miyaji, M. Nakabayashi, and S. Takano.
New explicit conditions of elliptic curve traces for FR-reduction.
IEICE Transactions on Fundamentals, E84-A(5):1234-1243, 2001.

@ A. Menezes, P. Sarkar, and S. Singh.

Challenges with assessing the impact of NFS advances on the
security of pairing-based cryptography.

In Mycrypt 2016, volume 10311 of LNCS, pages 83-108.
Springer-Verlag, 2016.

23 /24



References VI

@ 0. Schirokauer.
The number field sieve for integers of low weight.
Cryptography ePrint Archive, Report 2006/107, 2006.
http://eprint.iacr.org/2006/107.

24 /24


http://eprint.iacr.org/2006/107 

	First part
	Aurifeuillean construction
	Other part

