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Pairings in cryptography

(G1,+), (G2,+), (GT , ·) three cyclic groups of large prime order r
A pairing is a map e : G1 ×G2 → GT

1. bilinear: e(P1 + P2, Q) = e(P1,Q) · e(P2,Q),
e(P,Q1 + Q2) = e(P,Q1) · e(P,Q2)

2. non-degenerate: e(G1,G2) 6= 1 for 〈G1〉 = G1, 〈G2〉 = G2

3. efficiently computable.
Mostly used in practice:

e([a]P, [b]Q) = e([b]P, [a]Q) = e(P,Q)ab

Many applications in asymmetric cryptography.
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Pairing-Friendly Curves – PFCs

ordinary curve E/Fp : y2 = x3 + ax + b

I r | #E (Fp) = p + 1− t, G1 = E (Fp)[r ] (points of order r)
I r |pk − 1, for some reasonably small integer

“embedding degree” k
I G2 ⊂ E (Fpk )[r ], GT = {x ∈ F∗pk : x r = 1}
I E as secure and efficient as for ECC.
I DL problem hard in E (Fp) and in Fpk

I Hasse bound: #E (Fp) = p + 1− t, |t| ≤ 2√p
I Parameter size efficiency: ratio ρ = log2 p/ log2 r ≥ 1 small,

ideally ρ = 1.
I E with sextic twists for efficient pairings (⇒ 6|k and a CM

discriminant of D = 3 (j(E ) = 0, E/Fp : y2 = x3 + b))
I k = 2i3j for efficient implementation of Fpk arithmetic
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The candidates

I Candidate curves and curve families are described in the
Freeman, Scott, Teske taxonomy paper [FST10]

I Non-parameterised Cocks-Pinch curves, easy to find for any k,
but ρ = 2

I Parameterised curves, where p and r have a simple polynomial
description

I For example MNT curves [MNT01], p = x2 + 1,
r = x2 − x + 1, k = 6, ρ = 1 Pell equation and CM method
needed

I But very rare, D 6= 3, lacks a fortuitous match between size of
r and size of pk for ECC and DL security resp.

I Most popular PFCs are small discriminant parameterised
families ([BN06], [BLS02], [KSS08])
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BN curves
I Embedding degree of k = 12, ρ=1.
I For 128-bit security, an r of 256 bits as required for ECC

security matches pk of 3072 bits as (apparently) required for
DL security!

I A match made in heaven!
I That 3072-bit value derives from extensive historical analysis

of RSA security, and the assumption that finite field DL
problem is if anything harder.

I But murmurings from the background – surely the
parameterised form of p might make the DL problem easier
(Schirokauer [Sch06])? First weakness found by Joux–Pierrot
[JP13].

I And anyhow how about 192 and 256-bit security. Here BN
curves are not such a good match.

I Maybe BLS or KSS curves might be a better fit for these.
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New DL results
I Schirokauer was right! Kim and Barbulescu [KB16] attack,

analysed by Menezes–Sarkar–Singh [MSS16], Barbulescu and
Duquesne [BD18]

I However low discriminant parameterised families are still
optimal. We just need to revise upwards the size of pk

DL Algorithm complexity 2128 2192 2256

NFS (Lpk [1/3, 1.923]) 3072 7680 15360
TowerNFS medium (Lpk [1/3, 1.747]) 3618 9241 18480
SpecialTowerNFS medium (Lpk [1/3, 1.526]) 5004 12871 27410

Table: Recommended extension field sizes (rough estimate)
Lpk = exp(c(log pk)(log log pk)2/3)

Practicality and performances of TNFS, SNFS and STNFS
depends on k and the PFC family.
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The response

I Recently Kiyomura et al. [KIK+17] considered 256-bit security
and, responding to our new understanding, suggested that a
k = 48 BLS curve might be optimal.

I The FST taxonomy only considered embedding degrees up to
k = 50!

I Might be appropriate to go back and have another look...
I BLS are a family of families of PFCs, which supports for

example the implementation-friendly values of
k = 12, 24, 48.., but not k = 18, 36

I The ρ value is (k + 6)/k
I KSS curves are “sporadics” which happily fill in the gaps for

k = 18, 36, and feature the same ρ formula.
I but maybe we should look at the next one up, k = 54?
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The Discovery

I A new discovery is one of the most pleasing outcomes of
research

I but its often more accident than design
I We re-ran our old KSS discovery code for values of k > 50
I and out popped a new solution for k = 54 almost

immediately. At first we ignored it, hoping to find a BN-like
solution with ρ = 1

I It didn’t look like a typical KSS curve, for example KSS k=18
I p = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 +

1763x + 2401)/21
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A new family of PFCs

p = 1 + 3u + 3u2 + 35u9 + 35u10 + 36u10 + 36u11

+ 39u18 + 310u19 + 310u20

r = 1 + 35u9 + 39u18

t = 1 + 35u10

c = 1 + 3u + 3u2, r · c = p + 1− t

(1)
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What exactly have we got here?

I Its pretty!
I The ρ value is 10/9, which is again (k + 6)/k
I But it doesn’t have the look and feel of a typical KSS curve
I But then again the KSS method also finds the BN curves.
I Is it a sporadic family of curves, or a member of a larger

family of families?
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A similar pattern: supersingular curves over GF(3`)
Pairings in 2001–2014: ` odd,

E/F3` : y2 = x3 − x + b, b = ±1

#E (F3`) = p + 1− t where p = 3`, t = ±3(`+1)/2

Embedding degree: smallest k s.t. r | Φk(p)
I t = −3(`+1)/2,#E (F3`) = (3` + 3(`+1)/2 + 1),

#E (F3`) | Φ3(p), k = 3
I t = 3(`+1)/2, #E (F3`) = (3` − 3(`+1)/2 + 1),

#E (F3`) | Φ6(p), k = 6

Factorisation pattern

Φ3(−3u2) = Φ6(3u2) = (3u2 + 3u + 1)(3u2 − 3u + 1)

I p = 32m+1 = 3u2, r = 3u2 + 3u + 1, t = 3u
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Factorisation patterns in pairing-friendly curves

Galbraith, McKee and Valença patterns [GMV07]:
I Φ12(6u2) = r(u)r(−u), r(u) = 36u4 + 36u3 + 18u2 + 6u + 1
→ Barreto–Naehrig curves

I Φ12(2u2) = r(u)r(−u), r(u) = 4u4 + 4u3 + 2u2 + 2u + 1
I Φ5(5u2) = Φ10(−5u2) = r(u)r(−u),

r(u) = 25u4 + 25u3 + 15u2 + 5u + 1
→ Freeman curves
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Cunningham project1

Aim: factor large integers bn ± 1, where
b ∈ {2, 3, 5, 6, 7, 10, 11, 12}

I algebraic factorisation: bn − 1 =
∏

d |n Φd (b)
I Aurifeuillean factorisation for matching b, n

Aurifeuillean factorisation Aurifeuille, Schinzel, Brent, Stevenhagen
k > 1 integer, Φk(u) k-th cyclotomic polynomial. Let a be a
square-free integer and u an integer. Then Φk(au2) will factor if

I a ≡ 1 (mod 4) and k ≡ a (mod 2a)
I or a ≡ 2, 3 (mod 4) and k ≡ 2a (mod 4a).

1http://www.cerias.purdue.edu/homes/ssw/cun/index.html
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Brezing-Weng construction [BW05]
Input: Embedding degree k, square-free D > 0 s.t. −D square in

Q(ζk)
r(u)← Φk(u)
s(u)←

√
−D mod r(u), i.e. 1/s2(u) = −D mod r(u)

for e in 1, . . . , k − 1, gcd(e, k) = 1 do
t(u) = ue + 1 mod r(u)
y(u) = (t(u)− 2)/s(u) mod r(u)
p(u) = (t2(u) + Dy2(u))/4
if p(u) represents primes and leading coeff(r) > 0 then

return k,D, r , t, y , p
end

end

Issues:
I very small choice of D
I p(u) not irreducible, or never takes prime integer values
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Aurifeuillean pairing-friendly curves

Modification of Brezing-Weng construction:
Look for a ∈ {−2k,−2k − 1, ..., 2k} s.t. Φk(au2) = r(u)r(−u) has
Aurifeuillean factorisation, continue with r(u) and
t(u) = (au2)e + 1 mod r(u), gcd(e, k) = 1.

Example: k = 9
Φ9(−3u2) = r(u)r(−u) where r(u) = 27u6 + 9u3 + 1
Take D = 3: three families:
t = (−3u2)2 + 1, (−3u2)5 + 1, (−3u2)8 + 1 mod r(u)

t1(u) = −18u4 − 3u + 1 = (−3u2)5 + 1 mod r(u)
y1(u) = −6u3 + u − 1
p1(u) = 81u8 + 27u6 + 27u5 − 18u4 + 9u3 + 3u2 − 3u + 1

And ρ = deg p/ deg r = 4/3 as good as former construction.
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Our construction for k = 2 · 3j

Φ2·3j (u) = Φ3j (−u) = um − um/2 + 1, where m = k/3 .
Take a = 3:

Φ2·3j (3u2) = Φ3j (−3u2) = r(u)r(−u)

where r(u) = 3m/2um + 3(m+2)/4um/2 + 1.
Take D = 3: 1

√
−3 = 2 · 3(m−2)/4um/2 + 1 mod r(u).

Continue Brezing-Weng with r ,D

→ minimise max(deg t(u), deg y(u)).

Odd j :
e ∈ {(m + 2)/4, m + (m + 2)/4, 2m + (m + 2)/4}
ρ = (m + 2)/m = (k + 6)/k

Any j :
e ∈ {1, 1 + m, 1 + 2m}
ρ = (m + 4)/m = (k + 12)/k
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And so for k=54...

Φ54(3u2) = (1 + 35u9 + 39u18)(1− 35u9 + 39u18)

I Choose r(u) = 1 + 35u9 + 39u18

I D = 3
I m = 2k/3 = 18
I e = (m + 2)/4 = 5
I So t(u) = 1 + (3u2)5 = 1 + 35u10

I y(u) = 35u10 + 2.34.u9 + 2u + 1
I p(u) = (t(u)2 + 3y(u)2)/4 = 1 + 3u + 3u2 + 35u9 + 35u10 +

36u10 + 36u11 + 39u18 + 310u19 + 310u20

I ρ = (k + 6)/k = 10/9
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Conclusion

I Mystery solved!
I So our new discovery was indeed just one member of a family

of families of PFCs
I New families with competitive ρ for k ∈
{9, 15, 21, 30, 33, 39, 42, 45, 51, 54, 57, 66, 69, 75, 78, 81, 87, 90, 93}

I Not applicable for 8 | k (no Aurifeuillean factorisation)
I The new k = 54 case could be of future use for 256-bit

security (maybe better than BLS-48?)
I Nice alternate construction for k = 9
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