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Algebraic cryptanalysis

» Reduce some cryptanalytic problems to the resolution of
some systems of multivariate polynomial equations

» Systems usually solved with Grobner basis algorithms

» Success stories :

» HFE and variants

» Isomorphism of polynomials

» MacEliece variants

» Algebraic side-channel attacks
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Structured systems

» Generic systems are hard to solve, but
“cryptanalysis” systems are far from generic

» The special structure of these systems
helps their resolution

» Sometimes, dedicated algorithms can be built
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Structured systems

» Generic systems are hard to solve, but
“cryptanalysis” systems are far from generic

» The special structure of these systems
helps their resolution

» Sometimes, dedicated algorithms can be built

» This talk : a class of polynomial systems, their analysis,
and some cryptographic applications (including ECDLP)
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Outline

Algebraic cryptanalysis

Polynomial systems arising from a Weil descent

Application to ECDLP

Further applications
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Outline

Algebraic cryptanalysis
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Polynomial systems

» Let K be a field and R := K|[xy, ..., Xy).
Let f1,...,f, € R.

Solve
f(x,...,x,) =0

fmn(X1, ..., x,) =0

LCChpiCITip Ch.Petit - Loria - Nov 2012



Polynomial systems

» Let K be a field and R := K|[xy, ..., Xy).
Let f1,...,f, € R.

Solve
f(x,...,x,) =0

fmn(X1, ..., x,) =0

» Linear systems can be solved by triangulation with
Gaussian elimination.
What about polynomial systems?
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Linearization

» Construct all products
gij = tif;

where t; is a monomial and deg(g;;) < d
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Linearization

» Construct all products
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where t; is a monomial and deg(g;;) < d

» Decompose each product in monomial terms

K
8ij = E GijMk
K
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Linearization

» Construct all products
gij = tif;

where t; is a monomial and deg(g;;) < d
» Decompose each product in monomial terms

K
8ij = E GijMk
K

» Write all coefficients in a Macaulay matrix M,
each row corresponding to one polynomial g;; and
each column corresponding to one monomial term my
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Linearization

» If d large enough, some linear combinations of the rows
lead to new polynomials with lower degrees
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Linearization

» If d large enough, some linear combinations of the rows
lead to new polynomials with lower degrees

» If d large enough, linear algebra on M provides a new
“triangular” system of equations

gi(xt, . Xp 1,%) = 0

gm’—l(Xn—laxn) =0
gm’(xn) =0
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Linearization

» If d large enough, some linear combinations of the rows
lead to new polynomials with lower degrees

» If d large enough, linear algebra on M provides a new
“triangular” system of equations

gi(xt, . Xp 1,%) = 0

gm’—l(Xn—laxn) =0
gm’(xn) =0

» The new system is in fact a Grobner basis for the
lexicographic ordering
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Grobner bases

» Given an ideal /(f,...,f,) and a monomial ordering >,
a Grobner basis (GB) for this ordering is
a basis {f/,...,f,} such that for any f € I(f,... 1),
there exists i € {1,...,¢'} such that LT(f/)|LT(f)
(LT = leading term for the ordering)

» Any f € | can be (uniquely) reduced by the GB
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Grobner bases

» Given an ideal /(f,...,f,) and a monomial ordering >,
a Grobner basis (GB) for this ordering is
a basis {f/,...,f,} such that for any f € I(f,... 1),
there exists i € {1,...,¢'} such that LT(f/)|LT(f)
(LT = leading term for the ordering)

» Any f € | can be (uniquely) reduced by the GB
» ldeal membership (f € [7?) trivial given GB
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Grobner basis algorithms

» First algorithm by Buchberger [B65]
» Connection with linear algebra by Lazard [L83]
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Grobner basis algorithms

v

First algorithm by Buchberger [B65]
Connection with linear algebra by Lazard [L83]

v

v

Best algorithms today are Faugere's F4 and F5 [F99,F02]

In F4 and F5, Macaulay matrices of increasing size are
successively computed and linearly dependent rows are
removed with linear algebra until a Grobner basis is found

v
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Grobner basis algorithms

» First algorithm by Buchberger [B65]
» Connection with linear algebra by Lazard [L83]

» Best algorithms today are Faugere's F4 and F5 [F99,F02]

» In F4 and F5, Macaulay matrices of increasing size are
successively computed and linearly dependent rows are
removed with linear algebra until a Grobner basis is found

» In F5, some rows of the Macaulay matrices are omitted to
avoid trivial relations like 0 = f1f, — hLf

» In F4, the reductions are parallelized
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Complexity of Grobner basis algorithms

» Complexity of GB algorithms
~ cost of linear algebra on the largest Macaulay matrix
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Complexity of Grobner basis algorithms

» Complexity of GB algorithms
~ cost of linear algebra on the largest Macaulay matrix

» Important parameter : degree of regularity

maximal degree D,e, of all polynomials computed

» # monomials at this degree bounded by nPr
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Complexity of Grobner basis algorithms

v

Complexity of GB algorithms
~ cost of linear algebra on the largest Macaulay matrix

v

Important parameter : degree of regularity
maximal degree D, of all polynomials computed
Dreg

v

# monomials at this degree bounded by n

v

Total cost (n variables) bounded in time and memory by

w Dreg 2 Dreg

n and n

w < 3 linear algebra constant
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“Random” systems

» For a random system of n polynomial equations with
degrees di,...,d, in n variables,

Dieg =1+ (d;—1)
i=1
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“Random” systems

» For a random system of n polynomial equations with
degrees di,...,d, in n variables,

Dieg =1+ (d;—1)
i=1

» Overdetermined systems have lower degrees of regularity
Adding new equations helps
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Polynomial systems over finite fields

» If K =T,
add the field equations x; — x; = 0 to the system

( A(x, ..., x,) = 0

fm(X1,...,x,) = 0

xX—x =0

X! —x, = 0
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Polynomial systems over finite fields

» If K =T,
add the field equations x; — x; = 0 to the system

( A(x, ..., x,) = 0

fm(X1,...,x,) = 0

xX—x =0

q _ _
L X! —x, = 0

» Degrees of regularity known for “generic” binary
systems [BFS04,BFS05]
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First fall degree

» Other important parameter : first fall degree Dy
Lowest degree d such that there exist
non trivial g; € R with

maxdeg(gif) = d,  deg (Z g,-f,-> <d
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First fall degree

» Other important parameter : first fall degree Dy
Lowest degree d such that there exist
non trivial g; € R with

maxdeg(gif) = d,  deg (Z g,-f,-> <d

» Trivial degree fall relations

D efi=0 o (f-1)fi=0
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First fall degree

» Other important parameter : first fall degree Dy
Lowest degree d such that there exist
non trivial g; € R with

maxdeg(gif) = d,  deg (Z g,-f,-> <d
» Trivial degree fall relations
D efi=0 o (f-1)fi=0

» Sometimes called degree of regularity in the
literature [DG10,DH11]

UCL Crypto Group
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Degree of reqularity vs. first fall degree

» For many classes of systems :
first fall degree D =~  degree of regularity Do

» Not true in general but experimental evidence
for “random"” systems and many “crypto” systems,
including HFE and some variants
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» For many classes of systems :
first fall degree D =~  degree of regularity Do

» Not true in general but experimental evidence
for “random"” systems and many “crypto” systems,
including HFE and some variants

» Intuition : for these systems, there are in fact
many degree fall relations at Dg# or D + 1, that in turn
produce many further lower degree relations, etc
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Degree of reqularity vs. first fall degree

» For many classes of systems :
first fall degree D =~  degree of regularity Do

» Not true in general but experimental evidence
for “random"” systems and many “crypto” systems,
including HFE and some variants

» Intuition : for these systems, there are in fact
many degree fall relations at Dg# or D + 1, that in turn
produce many further lower degree relations, etc

» Assumption Dy ~ D, used in our analysis
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Outline

Polynomial systems arising from a Weil descent
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Polynomial systems arising from a Weil descent

» Parameters : n,n’, m, t
f € Fan[xq, ... Xxn] with degrees < 2' — 1 in all variables
V' a vector subspace of F,./IF, with dimension n’

» Problem : find x; € V,i =1,..., m such that

f(x1,...,xm) =0.
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Polynomial systems arising from a Weil descent

» Parameters : n,n’, m, t
f € Fan[xq, ... Xxn] with degrees < 2' — 1 in all variables
V' a vector subspace of F,./IF, with dimension n’

» Problem : find x; € V,i =1,..., m such that

f(x1,...,xm) =0.

» If V :=[F>n, we can use Berlekamp [B70]
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Polynomial systems arising from a Weil descent

v

Parameters : n,n’, m, t
f € Fan[xq, ... Xxn] with degrees < 2' — 1 in all variables
V' a vector subspace of F,./IF, with dimension n’

v

Problem : find x; € V,i=1,..., m such that

f(x1,...,xm) =0.

» If V :=[F>n, we can use Berlekamp [B70]

v

If mn’ =~ n, we expect ~ 1 solution
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Polynomial systems arising from a Weil descent

» Weil descent : if {vy,..., vy} is a basis of V and
{61,...,0,} is a basis of Fa. over I,
define binary variables x; such that x; = Zj XijV;j
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Polynomial systems arising from a Weil descent

» Weil descent : if {vy,..., vy} is a basis of V and
{61,...,0,} is a basis of F,. over F,
define binary variables x; such that x; = . x;v;
substitute in f and “reduce modulo x§ — x; = 0"
decompose in the basis {0y,...,0,}

0 = f(xl,...,xm):f(lejvj,...,mejvj)
j=1 j=1
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Polynomial systems arising from a Weil descent

» Weil descent : if {vy,..., vy} is a basis of V and
{61,...,0,} is a basis of Fa. over I,
define binary variables x; such that x; = . x;v;
substitute in f and “reduce modulo x§ — x; = 0"
decompose in the basis {0y,...,0,}

0 = f(xl,...,xm):f(lejvj,...,mejvj)
j=1 j=1
= [fl{6: +... +[f]}0,

» We get n equations [f]} = 0 in mn’ variables x;
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Applications

» Index calculus for binary elliptic curves
Semaev's polynomials : degree 2™~1 in each variable

» Hidden Field Equation (HFE) polynomial
degree bounded by 2" — 1 but quadratic system over [F,

» Index calculus for [F3,
degree 1 in each variable (t = 1)

» Factorization problem in SL(2,F,n)
degree 1 in each variable (t = 1)
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Degrees and block structure

» Ife=e +e2+ed+...+e_ 120! then

x{ = (Zx,-jvJ> <Z X2 J) (szr 1 2 ;)jt—l
— (ZX’JVJ> <ZX,'J'J> (qu 2 1> ~

degree = Hamming weight of (ep, ..., e1)
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Degrees and block structure

» Ife=e +e2+ed+ ...+ 6121 then

x{ = (Zx,-jvj> <Z X2 J) (szr 1 2 ;)jt—l
= (o) (Cwd) ()"

degree = Hamming weight of (ep, ..., e1)

s F(Xay s Xm) = [Fl1 00+ ..+ [F]L 0,
Since f has degree at most 2t — 1 in each variable x;,

Each [f]} has degree at most t
in each block of variables X; :== {xi1, ..., Xiw}
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New equations ?

» Already n equations in mn’ variables x;, given by
0=F(x1, .., Xm) = [l 6L +...+[f]6,

» Adding new (low degree) equations may accelerate the
resolution
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Frobenius transforms are useless

» Frobenius transforms f =0 = f2 =0
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» Frobenius transforms f = 0= f2 =10

» HW of exponents in f and 2 are equal
= [f]} and [fz]f have the same degrees
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Frobenius transforms are useless

» Frobenius transforms f = 0= f2 =10

» HW of exponents in f and 2 are equal
= [f]} and [fz]f have the same degrees
» But

f2

(i [f]%e,) S0 =

i=1 i=1
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Frobenius transforms are useless

» Frobenius transforms f = 0= f2 =10

» HW of exponents in f and 2 are equal
= [f]} and [fz]f have the same degrees
» But

f2

(Z [f],i 9i> - Z [7‘-],i 9]_2 = Z [f-],i (Z a,j@j)

i=1 i=1 i=1
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Frobenius transforms are useless

» Frobenius transforms f = 0= f2 =10

» HW of exponents in f and 2 are equal
= [f]} and [fz]f have the same degrees
» But

f2

(Z [f],i 9i> - Z [7‘-],i 9]_2 = Z [f-],i (Z a,j@j)

i=1 i=1 i=1

= > <Z ajj [ﬂf) b
j=1

i=1
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Frobenius transforms are useless

» Frobenius transforms f = 0= f2 =10

» HW of exponents in f and 2 are equal
= [f]} and [f2]f have the same degrees
» But

f2

(Z [f],i 91) - Z [7‘-],i 9]_2 = Z [f-],i (Z a,ﬁ,)
= > <Z ajj [ﬂf) b

J=1

same equations! (linear combinations)
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New equations

> OZf:>0:X1f
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New equations

»0=f=0=xf
0:X1f(X]_,...,Xm) — [le]i/el_k_i_[xlf]ien
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New equations

> 0: f:>0:xlf
0:X1f(X]_,...,Xm) — [le]i/el_k_i_[xlf]ien

» x1f has degree < (2%) in x; and < (28 — 1) in xo, ..., Xm
> [x1f]; has degree at most t in each block X;
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New equations

v

0 :le(X]_,...,Xm) — [le]i/el—F 4 [le]ien

v

x1f has degree < (2%) in x; and < (28 — 1) in X2, ..., Xm
[x1f]} has degree at most t in each block X;

v

v

Not the same equations!

In particular, all terms have degree > 1 in block X;
f(X1y. -y Xm) = fo(xa, ..oy Xm) +x1f(x1, X2+ - oy Xim)

= X1 (X1, Xm) = x1fo(X2s - -+, Xm) + X2 A (X1, X2, - -+ 5 Xm)
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New equations

v

0 :le(X]_,...,Xm) — [le]i/el—F 4 [le]ien

» x1f has degree < (2%) in x; and < (28 — 1) in xo, ..., Xm
> [x1f]; has degree at most t in each block X;

» Not the same equations!

In particular, all terms have degree > 1 in block X;
f(X1y. -y Xm) = fo(xa, ..oy Xm) +x1f(x1, X2+ - oy Xim)
= xf(x1, ..., xm) = x1fo(x2, .., Xm) +x12f1(x1,xz7 ey Xm)

» Similar equations with other monomials instead of x;
Many new equations
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New equations, revisited

» Let djjk € I, such that 0,’0j = Zk a,-jkﬁk

n

xf = (Zl [X1],+9i> (Z [71; 91) = ; ai bal} [} k.
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New equations, revisited

» Let djjk € I, such that 0,’9j = Zk a,-jkﬁk

n

xf = (Zl [X1],+9i> (Z [71; 91) = ; ai bal} [} k.

» Hence

Dafli = agbalf [F1f = pulxars - xaw) [F1
ij=1 j=1

with deg(pi) =1

LCChpiCITip Ch.Petit - Loria - Nov 2012



New equations, revisited

» Let djjk € I, such that «9,-0j = Zk a,-ijk

n

xf = (Z [Xl],+ 9!’) (Z [f]j ej) = Z ajjk [Xl],+ [f]j O.

ij k=1
» Hence

Dafli = agbalf [F1f = pulxars - xaw) [F1
ij=1 j=1

with deg(pi) =1

> The “new” equations [x;f]} = 0 are
algebraic combinations of the original ones [f]j =0
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New equations, revisited

» Let djjk € I, such that 0,’9j = Zk a,-ijk

n

xf = (Z [Xl]iiei> (Z [f]j ej) = Z ajjk [Xl],+ [f]j O.

ij k=1
» Hence

Dafli = agbalf [F1f = pulxars - xaw) [F1
ij=1 j=1

with deg(pi) =1
> The “new” equations [x;f]} = 0 are

algebraic combinations of the original ones [f]j =0
» Will be recovered “blindly” by GB algorithms
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First fall degree

» We have

baflh = > pulos. - x.0) 1)
j=1

deg([afl;) = mt,  deg(pu) =1, deg([f];) = mt
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First fall degree

» We have

baflh = > pulos. - x.0) 1)
j=1

deg([afl;) = mt,  deg(pu) =1, deg([f];) = mt

» Non trivial low degree relation !
» First fall degree Dy < mt +1

UCL Crypto Group
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First fall degree

We have

v

baflh = > pulos. - x.0) 1)
j=1

deg([afl;) = mt,  deg(pu) =1, deg([f];) = mt

v

Non trivial low degree relation !
First fall degree Dy < mt + 1

Essentially as small as it could be (unless f degenerate)

v

v
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Heuristic assumption

» We will heuristically assume D,¢; ~ D¢
in most cases,
for f chosen randomly with degrees < 2t1
for V chosen randomly with dimension n’
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Heuristic assumption

» We will heuristically assume D,¢; ~ D¢
in most cases,
for f chosen randomly with degrees < 2t1
for V chosen randomly with dimension n’

» “Classical” assumption in algebraic cryptanalysis
» Experimental evidence for “random” and many “crypto”
systems including HFE
» (Confusion in literature between the two notions)
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Heuristic assumption

» We will heuristically assume D,¢; ~ D¢
in most cases,
for f chosen randomly with degrees < 2t1
for V chosen randomly with dimension n’

» “Classical” assumption in algebraic cryptanalysis

» Experimental evidence for “random” and many “crypto”
systems including HFE
» (Confusion in literature between the two notions)

» Leads to Dyeg =~ mt +-1
(instead of Dyeg = n(mt — 1) + 1 for generic systems)
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Experimental evidence that Dy, ~ mt + 1

t n| n | m| mt+1]| D, | Av. time (s) | Mem (MB)
1 6 31 2 3| 31 0 10
1 6 2 3 4 3.8 0 10
1 8 4 2 3 3.0 0 11
1| 12 6 2 3 3.6 0 11
1] 12 4 3 4 4.2 0 11
1| 12 3 4 5 5.3 0 14
1] 12 2 6 7 7.4 1 23
1115 5 3 4 4.1 5 20
1|15 3 5 6 6.3 7 114
1116 8 2 3 3.0 14 25
1|16 4 4 5 5.3 16 98
1116 2 8 9 9.6 69 3388
1| 18 9 2 3 3.0 85 74
118 6 3 4 4.1 86 89
118 3 6 7 7.4 233 5398
112010 2 3 3.0 487 201
1120 5 4 5 6.2 515 733
1| 20 4 5 6 6.2 669 3226
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Experimental evidence that Dy, ~ mt + 1

t n| | m| m+1]| Da | Av. time (s) | Mem (MB)
2 6 3 2 5 51 0 10
2 6 2 3 7 6.7 0 10
2 8 4 2 5 51 0 11
2 9 3 3 7 7.2 0 12
2| 12 4 3 7 7.1 1 38
2| 12 3 4 9 9.3 2 95
2|15 5 3 7 7.0 12 263
2| 16 8 2 5 5.1 13 36
3 6 3 2 7 6.6 0 10
3| 12 6 2 7 7.0 1 31
3|12 4 3 10 | 10.1 9 70
3| 12 3 4 13 | 12,6 70 113
3115 5 3 10 | 10.0 118 2371
31|16 8 2 7 7.0 23 253
3|16 4 4 13 | 13.2 1891 20135
4 8 4 2 9 8.7 1 11
4 | 12 4 3 13 | 12,6 199 116
4 | 15 5 3 13 | 13.1 2904 6696
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Complexity analysis

» Assuming Dz = Dg, we have D,oe =~ mt +1
» Time and memory bounded by

n“Pres and p?Pre

w < 3 : linear algebra constant

UCL Crypto Group
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Complexity analysis

» Assuming Dz = Dg, we have D,oe =~ mt +1
» Time and memory bounded by

n“Pre and n?Pre

w < 3 : linear algebra constant

» Block structure = time and memory bounded by

(n/)wD,eg and (nl)2D,eg

UCL Crypto Group
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Remarks

» Heuristic assumption

» Assumption must be adapted (and checked)
in particular cases
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Remarks

» Heuristic assumption

» Assumption must be adapted (and checked)
in particular cases

» Similar analysis for other “small characteristic” fields

Dreg =~ (p—1)mt + 1
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Outline

Application to ECDLP
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Discrete logarithm problem (DLP)

» Discrete logarithm problem
Given G a finite (multiplicative) cyclic group
Given g a generator of G and given h € G
Find k € Z such that gk = h

» Diffie-Hellman key exchange, EIGamal encryption,
Digital Signature algorithm,...
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Discrete logarithm problem (DLP)

» Discrete logarithm problem
Given G a finite (multiplicative) cyclic group
Given g a generator of G and given h € G
Find k € Z such that gk = h

» Diffie-Hellman key exchange, EIGamal encryption,
Digital Signature algorithm,...

» Cryptographic assumption : DLP is “hard” for
» Multiplicative groups of finite fields
» Elliptic curves
» Jacobians of hyperelliptic curves
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Elliptic curves

» For binary fields : y? + xy = x3 4 a,x? + ag with ag # 0
» Group structure given by chord and tangent rule

Q
N—V

R=P+Q
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Elliptic curve discrete logarithm problem

» Elliptic curve discrete logarithm problem (ECDLP)
over binary curves :
Given E over Fon,
Given P € E(F2), given Q €< P >,
Find k € Z such that Q = kP.
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Elliptic curve discrete logarithm problem

» Elliptic curve discrete logarithm problem (ECDLP)
over binary curves :
Given E over Fon,
Given P € E(F2), given Q €< P >,
Find k € Z such that Q = kP.

» Includes 10/15 curves standardized by NIST (FIPS 186-3)
» Complexity thought to be exponential in n

We argue it is
< 22n2/3 log n
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Index calculus

» General method to solve discrete logarithm problems

1. Define a factor basis 7 C G
2. Relation search : find about |F| relations

aiP+ b;Q = Z e,jPJ
PjE]:

3. Do linear algebra modulo |G| on the relations to get
aP+bQ =0
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Index calculus

» General method to solve discrete logarithm problems

1. Define a factor basis 7 C G
2. Relation search : find about |F| relations

aiP+ b;Q = Z e,jPJ
PjE]:
3. Do linear algebra modulo |G| on the relations to get

aP+bQ =0

» Need “efficient” algorithm to find relations
Choose | F| to balance sieving and linear algebra
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Example : a naive index calculus for F3,

> DLP : given g, h € F5,, find k such that h = gk

» Factor basis made of small “primes”

Fi := {irreducible f(X) € F,[X]| deg(f) < B}
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Example : a naive index calculus for F3,

> DLP : given g, h € F5,, find k such that h = gk

» Factor basis made of small “primes”
Fi := {irreducible f(X) € F,[X]| deg(f) < B}

» Relation search
» Choose random a, b € {1,...,2" — 1}
» Compute r := g?h?
» Factor r with Berlekamp's algorithm
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Example : a naive index calculus for F3,

> DLP : given g, h € F5,, find k such that h = gk

» Factor basis made of small “primes”
Fi := {irreducible f(X) € F,[X]| deg(f) < B}

» Relation search

Choose random a,b € {1,...,2" — 1}

Compute r := g?h?

Factor r with Berlekamp's algorithm

If all factors € Fg, we have a relation g?h? = Hf,-e]-'fi

vV vV v Vv

€
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Example : a naive index calculus for F3,

v

DLP : given g, h € F3,, find k such that h = gk

v

Factor basis made of small “primes”
Fi := {irreducible f(X) € F,[X]| deg(f) < B}

Relation search

» Choose random a, b € {1,...,2" — 1}

» Compute r := g?h?

» Factor r with Berlekamp's algorithm

» If all factors € Fg, we have a relation g?h? = Hf,-e]-'fi

v

v

For B =~ n'/?, we get subexponential complexity
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Index calculus : success stories

» Finite fields : Adleman [A79,A94], Coppersmith [C84],
Adleman and Huang [AH99]
Subexponential complexity

exp(log'/® |K|log®* log | K|)

LCChpiCITip Ch.Petit - Loria - Nov 2012



Index calculus : success stories

» Finite fields : Adleman [A79,A94], Coppersmith [C84],
Adleman and Huang [AH99]
Subexponential complexity

exp(log'/® |K|log®* log | K|)

» Hyperelliptic curves :
Adleman-DeMarrais-Huang [ADH94], Gaudry [GO00],
Gaudry-Thomé-Thériault-Diem [GTTDO07]
Subexponential for large genus; beat BSGS if g > 3
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Index calculus : success stories

» Finite fields : Adleman [A79,A94], Coppersmith [C84],
Adleman and Huang [AH99]
Subexponential complexity

exp(log'/® |K|log®* log | K|)

» Hyperelliptic curves :
Adleman-DeMarrais-Huang [ADH94], Gaudry [GO00],
Gaudry-Thomé-Thériault-Diem [GTTDO07]
Subexponential for large genus; beat BSGS if g > 3

» Elliptic curves : no algorithm at all until 2005
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Index calculus for elliptic curves

» For finite fields, small “primes” are a natural factor basis

» Every element factors uniquely as a product of primes
» “Good"” probability that random elements are smooth
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Index calculus for elliptic curves

» For finite fields, small “primes” are a natural factor basis

» Every element factors uniquely as a product of primes
» “Good"” probability that random elements are smooth

» Similarly for elliptic curves, we will need
1. A definition of “small” elements
2. An algorithm to decompose general elements into
(potentially) small elements
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Index calculus for elliptic curves

» For finite fields, small “primes” are a natural factor basis

» Every element factors uniquely as a product of primes
» “Good"” probability that random elements are smooth

» Similarly for elliptic curves, we will need

1. A definition of “small” elements
2. An algorithm to decompose general elements into
(potentially) small elements

» First partial solutions given by Semaev [S04]
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Summation polynomials [so4

» Relate the x-coordinates of points that sum to O
» Si(x1,...,x)=0
= El(x,-,y,-) € E st (X1,y1) + -+ (Xr;yr) =0
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Summation polynomials [so4

» Relate the x-coordinates of points that sum to O
» Si(x1,...,x)=0
= El(x,-,y,-) € E st (x1,y1) + -+ (Xr;yr) =0

» Recursive formulae :
SQ(X]_,XQ) = X1 — X2
S3(x1, X2, X3) = ... (depends on E)
Si(x1,. 0y %) =
Resx (Sr—k(Xh e s Xm—k—1, X), Sk+2(Xr—k7 ey Xpy X))
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Summation polynomials [so4

» Relate the x-coordinates of points that sum to O
» Si(x1,...,x)=0
= El(x,-,y,-) € E st (X1,y1) + -+ (Xr;yr) =0

» Recursive formulae :
SQ(X]_,XQ) = X1 — X2
S3(x1, X2, X3) = ... (depends on E)
Si(x1,. 0y %) =
Resx (Sr—k(Xh e s Xm—k—1, X), Sk+2(Xr—k7 ey Xpy X))

» S, has degree 22 in each variable
Symmetric set of solutions
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Semaev’s variant of index calculus

» Semaev’s variant of index calculus :

» Factor basis :
define Fy :={(x,y) € E|x € V} where V C K
» Relation search : for each relation,
Compute (Xj, Y;) := a;P + b;Q for random a;, b;
Find xj € V with Sy 1(x1,...,Xm, Xj) =0
Find the corresponding y;

LCChpiCITip Ch.Petit - Loria - Nov 2012




Semaev’s variant of index calculus

» Semaev’s variant of index calculus :
» Factor basis :
define Fy :={(x,y) € E|x € V} where V C K
» Relation search : for each relation,
Compute (Xj, Y;) := a;P + b;Q for random a;, b;
Find xj € V with Sy 1(x1,...,Xm, Xj) =0
Find the corresponding y;

» Semaev’s observation : ECDLP reduced to
solving summation’s polynomial with constraints x; € V
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Semaev’s variant of index calculus

» Semaev’s variant of index calculus :

» Factor basis :
define Fy :={(x,y) € E|x € V} where V C K
» Relation search : for each relation,
Compute (Xj, Y;) := a;P + b;Q for random a;, b;
Find xj € V with Sy 1(x1,...,Xm, Xj) =0
Find the corresponding y;

» Semaev’s observation : ECDLP reduced to
solving summation’s polynomial with constraints x; € V

» Remains to define V such that relation search is feasible
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Focus on composite fields

» For K :=T,, Semaev proposed V := {x < B}
But could not solve summation polynomials
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Focus on composite fields

» For K :=T,, Semaev proposed V := {x < B}
But could not solve summation polynomials

» For K := Ty, Gaudry and Diem proposed V :=F,

» Gaudry [G09] : algorithm faster than generic ones
for any g, n > 3 (but still exponential)

» Diem [D11] : subexponential algorithm
when g and n increase in an appropriate way

UCL Crypto Group
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Focus on composite fields

» For K :=T,, Semaev proposed V := {x < B}
But could not solve summation polynomials

» For K := Ty, Gaudry and Diem proposed V :=F,

» Gaudry [G09] : algorithm faster than generic ones
for any g, n > 3 (but still exponential)

» Diem [D11] : subexponential algorithm
when g and n increase in an appropriate way

» Idea in both cases : Weil descent on Semaev polynomial
Reduction to a polynomial system of equations
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Focus on composite fields

» Finding relations amounts to
Finding x; € Fq with S 1(x1,...,%,, X;) =0
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Focus on composite fields

v

Finding relations amounts to
Finding x; € Fq with S 1(x1,...,%,, X;) =0

v

See [ as a vector space over [,

v

See polynomial equation S, 1 = 0 over Fgn
as a system of polynomial equations over [,

v

Solve the system
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Focus on composite fields

» Finding relations amounts to
Finding x; € Fq with S 1(x1,...,%,, X;) =0

» See Fgn as a vector space over I

» See polynomial equation S, = 0 over [Fg»
as a system of polynomial equations over [,

» Solve the system

» System harder to solve for larger n
Attack does not work for F,» when n prime
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Diem’s variant of index calculus [p11y]

Let K :=TFon. Fix " <nand m~n/n’

» Factor basis :
Choose a vector subspace V of Fy: with dimension n’
Define Fy :={(x,y) € E|x € V'}
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Diem’s variant of index calculus [p11y]

Let K :=TFon. Fix " <nand m~n/n’

» Factor basis :
Choose a vector subspace V of Fy: with dimension n’
Define Fy :={(x,y) € E|x € V'}

» Relation search : find about 2" relations. For each one,
Compute (X;, Y;) := a;P + b;Q for random a;, b;
Find Xj € V with 5m+1(X1, c. ,Xm,X,') =0
Find the corresponding y;
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Diem’s variant of index calculus [p11y]

Let K :=TFon. Fix " <nand m~n/n’

» Factor basis :
Choose a vector subspace V of Fy: with dimension n’
Define Fy :={(x,y) € E|x € V'}

» Relation search : find about 2" relations. For each one,
Compute (X;, Y;) := a;P + b;Q for random a;, b;
Find Xj € V with 5m+1(X1, c. ,Xm,X,') =0
Find the corresponding y;

» Linear algebra between the relations
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Finding relations : Weil descent

» Find x; € V with S,41(x1, ..., Xxm, Xi) =0
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Finding relations : Weil descent

» Find x; € V with S,41(x1, ..., Xxm, Xi) =0
» Weil descent — polynomial system

» finite field Fon, vector subspace V' dimension n’
» m variables
» degree 2™ 1 in each variable = t = m
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Finding relations : Weil descent

v

Find x; € V with Sp1(x1, ..., Xm, Xi) =0
Weil descent — polynomial system

v

» finite field Fon, vector subspace V' dimension n’
» m variables
» degree 2™ 1 in each variable = t = m

v

Our analysis leads to Dy < mt +1 = m?> + 1 (not tight)

I Summation polynomial not “random” ! (symmetric,...)

v
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Heuristic assumption

» Let n,n’, m, E be fixed.
Let R; = (X, Y;) be a random point of E.
Let V be a random vector space of dimension n'.

» Assumption : after applying a Weil descent to
Sm_|_1(X1, ey Xm, X,) = 0,

the resulting system satisfies Dyeg ~ Dy
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Experimental verification Dyeg ~ Dt

» Random curves E : y? + xy = x> + a4x? + ag for random

dg, de

n|n|mjt|mt+1(>Dg)| D, | Time| Mem.
1116 |2 |2 5 3.0 0 11
1114|313 10 7.1 1 15
1719 ] 2 |2 5 4.0 0 16
1716 | 3|3 10 7.1 | 130 | 2136

Dyeg even lower than expected
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Experimental verification Dyeg ~ Dt

» Koblitz curves E : y?> + xy = x3 + x> + 1

n|n|mjt|mt+1(>Dg)| D, | Time| Mem.
1116 |2 |2 5 3.0 0 11
1114|313 10 7.1 1 15
1719 | 2 |2 5 4.0 0 15
1716 | 3|3 10 7.2 | 132 | 2133

D,y even lower than expected

UCL Crypto Group
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Complexity of Diem’s algorithm

» Computing S,,+1 with resultants : cost 2 where

t ~ m(m+ 1)
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Complexity of Diem’s algorithm

» Computing S,, 1 with resultants : cost 2% where
t1 =~ m(m+1)
» Finding 2" relations : total cost 2 where
tr ~ n' + mlogm+w(m?+1)logn’

» Each one costs (n')<(mt+1) = (n’)W(m2+1)
» Additional factor m! lost due to symmetry
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Complexity of Diem’s algorithm

» Computing S,, 1 with resultants : cost 2% where
t1 =~ m(m+1)
» Finding 2" relations : total cost 2 where
tr ~ n' + mlogm+w(m?+1)logn’

» Each one costs (n')<(mt+1) — (n’)W(m2+1)
» Additional factor m! lost due to symmetry

. . /
» (Sparse) linear algebra on relations : cost 2*'" where

ts ~ logm + logn+ w'n’
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Estimations for “small” parameters

n m n t1 t t3 tmax
50 2 25 6 97 57 97
100 2 50 6 137 108 137
160 2 30 6 177 168 177
200 2 100 6 202 209 209
500 3 167 12 393 344 393

1000 4 | 250 | 20 664 512 664
2000 4 | 500 | 20 965 1013 1013
5000 6 833 42 1926 1682 1926
10000 | 7 | 1429 | 56 | 3020 | 2873 | 3020
20000 | 9 | 2222 | 90 | 4986 | 4462 | 4986
50000 | 11 | 4545 | 132 | 9030 | 9110 | 9110
100000 | 14 | 7143 | 210 | 14762 | 14306 | 14762
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Asymptotic estimates

» Fix i :=n®and m:=n'"® fora:=2/3
t n?/3,
ty (1/3)n3log n + n?/® 4 (2/3)wn®®log n,
ts ~ (4/3)logn+w'n®?

Q

Q
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Asymptotic estimates

» Fix n :=n®and m:=n'"® fora:=2/3
h =~ n2/37
ty (1/3)n3log n + n?/® 4 (2/3)wn®®log n,

ty ~ (4/3)logn+w'n*?

Q

» Overall complexity

2
2" with T~cn*logn and c:= 3w s 2
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Outline

Further applications
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Applications

» Index calculus for binary elliptic curves
Semaev's polynomials : degree 2™~1 in each variable

» Hidden Field Equation (HFE) polynomial
degree bounded by 2" — 1 but quadratic system over [F,

» Index calculus for [F3,
degree 1 in each variable (t = 1)

» Factorization problem in SL(2,F,n)
degree 1 in each variable (t = 1)
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HFE cryptosystem

» Public Key Cryptosystem proposed by Patarin [P96]
» Private key is a polynomial f € Fan[x]
Public key is a disguised version of its Weil descent
Attacker only knows the disguised system
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HFE cryptosystem

» Public Key Cryptosystem proposed by Patarin [P96]
» Private key is a polynomial f € Fan[x]
Public key is a disguised version of its Weil descent
Attacker only knows the disguised system
» Particularities
» “Disguised” ... but no impact on GB complexity
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HFE cryptosystem

» Public Key Cryptosystem proposed by Patarin [P96]
» Private key is a polynomial f € Fan[x]
Public key is a disguised version of its Weil descent
Attacker only knows the disguised system
» Particularities

» “Disguised” ... but no impact on GB complexity
» Monovariate (m = 1)
» f has a particular shape

iy o) i
f(x):= g apx> T ¢ E bix* + ¢
2i42i<D 2i<D

Weil descent on f leads to a quadratic system
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HFE as a particular case

» Cryptanalysis leads to a particular case of our systems
with m =1t = [log, D], V = Fs

Dyeg = D > mt +1 = [log, D] +1
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HFE as a particular case

» Cryptanalysis leads to a particular case of our systems
with m =1t = [log, D], V = Fs

Dyeg = D > mt +1 = [log, D] +1
We recover [KS99,FJ03,GJS06,DG10,DH11,...]
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HFE as a particular case

» Cryptanalysis leads to a particular case of our systems
with m =1t = [log, D], V = Fs
Dyeg = D > mt +1 = [log, D] +1
We recover [KS99,FJ03,GJS06,DG10,DH11,...]

» No impact of HFE special shape
Other restrictions may have a (positive) impact [DH11]
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Similarities with HFE

» Polynomial system arising from a Weil descent
» Many low degree relations [CO1,.. ]
» First fall degree [DG10,DH11,.. ]
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Similarities with HFE

v

Polynomial system arising from a Weil descent

v

Many low degree relations [CO01,...]
First fall degree [DG10,DH11,...]

v

v

Subsystem with smaller number of variables [GJS06,...]
(not discussed here)
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Similarities with HFE

v

Polynomial system arising from a Weil descent

v

Many low degree relations [CO01,...]
First fall degree [DG10,DH11,...]

v

v

Subsystem with smaller number of variables [GJS06,...]
(not discussed here)

» Assumption Dy, ~ D
widely verified for HFE polynomials [FJ03,GJS06,...]
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Index calculus in F3,

» Discrete logarithm problem :
Given a generator g € F3,,
Given h an element of F3,,

Find k € Z such that h = g*
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Index calculus in F3,

» Discrete logarithm problem :
Given a generator g € F3,,
Given h an element of F3,,

Find k € Z such that h = g*

» Index calculus

» Factor basis :
a vector subspace V C Fan, dim(V)=n'

» Relation search : for each relation,
Compute r; := ga"hb" for random a;, b;
Find xj € V with [[_; x; =

» Linear algebra on the relations
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Link with our analysis

» For each relation, find x; € V with [[, x; = r;
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Link with our analysis

» For each relation, find x; € V' with H:"lej =r
» Weil descent — polynomial system
n equations, mn’ variables, multilinear case (t = 1)
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Link with our analysis

» For each relation, find x; € V' with H:"lej =r
» Weil descent — polynomial system

n equations, mn’ variables, multilinear case (t = 1)
» Total time 27 where

1
T~ cn*?logn and c:%§2
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Link with our analysis

v

For each relation, find x; € V with [[", x; =r;

v

Weil descent — polynomial system
n equations, mn’ variables, multilinear case (t = 1)

Total time 27 where

v

T ~cn*?logn and c=-—— <2

v

Comparison with Coppersmith's algorithm [C84]
» Other heuristic assumption
» Coppersmith much faster : 2m"/* log”
Ours is similar to Adleman's first index calculus [A79]
... Improvements ?

/3 p
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Outline
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Conclusion

» Polynomial systems arising from a Weil descent

» Very important class of systems for cryptography
» ECDLP, HFE, DLP, factoring in SL(2,Fan), ...
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Conclusion

» Polynomial systems arising from a Weil descent

» Very important class of systems for cryptography
» ECDLP, HFE, DLP, factoring in SL(2,Fan), ...

» ECDLP subexponential for binary curves?

Reasonable evidence under heuristic assumption
Diem'’s algorithm would beat BSGS for n > 2000
NIST curves remain safe so far

>
>
>
» Extension to any “small” characteristic field
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Conclusion

» Polynomial systems arising from a Weil descent

» Very important class of systems for cryptography
» ECDLP, HFE, DLP, factoring in SL(2,Fan), ...

» ECDLP subexponential for binary curves?

» Reasonable evidence under heuristic assumption
» Diem’s algorithm would beat BSGS for n > 2000
» NIST curves remain safe so far

» Extension to any “small” characteristic field

» Future work

» Better algorithms, remove heuristic assumptions
» Extension to prime fields?
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