On polynomial systems arising from a Weil descent

Based on joint works with JC Faugère, JJ Quisquater, L Perret, G Renault

Christophe Petit







# Algebraic cryptanalysis

 Reduce some cryptanalytic problems to the resolution of some systems of multivariate polynomial equations





# Algebraic cryptanalysis

- Reduce some cryptanalytic problems to the resolution of some systems of multivariate polynomial equations
- Systems usually solved with Gröbner basis algorithms





# Algebraic cryptanalysis

- Reduce some cryptanalytic problems to the resolution of some systems of multivariate polynomial equations
- Systems usually solved with Gröbner basis algorithms
- Success stories :
  - HFE and variants
  - Isomorphism of polynomials
  - MacEliece variants
  - Algebraic side-channel attacks





## Structured systems

- Generic systems are hard to solve, but
   "cryptanalysis" systems are far from generic
- The special structure of these systems helps their resolution
- Sometimes, dedicated algorithms can be built





## Structured systems

- Generic systems are hard to solve, but
   "cryptanalysis" systems are far from generic
- The special structure of these systems helps their resolution
- Sometimes, dedicated algorithms can be built
- This talk : a class of polynomial systems, their analysis, and some cryptographic applications (including ECDLP)





### Outline

Algebraic cryptanalysis

Polynomial systems arising from a Weil descent

Application to ECDLP

Further applications



Ch.Petit - Loria - Nov 2012



## Outline

Algebraic cryptanalysis

Polynomial systems arising from a Weil descent

Application to ECDLP

Further applications



Ch.Petit - Loria - Nov 2012



Polynomial systems

• Let K be a field and  $R := K[x_1, \ldots, x_n]$ . Let  $f_1, \ldots, f_m \in R$ . Solve

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \ldots\\ f_m(x_1,\ldots,x_n)=0 \end{cases}$$





Polynomial systems

• Let K be a field and  $R := K[x_1, ..., x_n]$ . Let  $f_1, ..., f_m \in R$ . Solve

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \ldots\\ f_m(x_1,\ldots,x_n)=0 \end{cases}$$

 Linear systems can be solved by triangulation with Gaussian elimination.
 What about polynomial systems?

What about polynomial systems?





Construct all products

$$g_{i,j} = t_j f_i$$

where  $t_j$  is a monomial and  $deg(g_{i,j}) \leq d$ 





Construct all products

$$g_{i,j} = t_j f_i$$

where  $t_j$  is a monomial and  $deg(g_{i,j}) \leq d$ 

Decompose each product in monomial terms

$$g_{i,j} = \sum_k c_{i,j}^k m_k$$



Ch.Petit - Loria - Nov 2012



Construct all products

$$g_{i,j} = t_j f_i$$

where  $t_j$  is a monomial and  $deg(g_{i,j}) \leq d$ 

Decompose each product in monomial terms

$$g_{i,j} = \sum_k c_{i,j}^k m_k$$

▶ Write all coefficients in a Macaulay matrix M<sub>d</sub>, each row corresponding to one polynomial g<sub>i,j</sub> and each column corresponding to one monomial term m<sub>k</sub>





 If d large enough, some linear combinations of the rows lead to new polynomials with lower degrees





- If d large enough, some linear combinations of the rows lead to new polynomials with lower degrees
- ► If d large enough, linear algebra on M<sub>d</sub> provides a new "triangular" system of equations

$$\begin{cases} g_1(x_1, \ldots, x_{n-1}, x_n) = 0 \\ \vdots \\ g_{m'-1}(x_{n-1}, x_n) = 0 \\ g_{m'}(x_n) = 0 \end{cases}$$





Ch.Petit - Loria - Nov 2012

- If d large enough, some linear combinations of the rows lead to new polynomials with lower degrees
- ► If d large enough, linear algebra on M<sub>d</sub> provides a new "triangular" system of equations

$$\begin{cases} g_1(x_1, \dots, x_{n-1}, x_n) = 0 \\ \dots \\ g_{m'-1}(x_{n-1}, x_n) = 0 \\ g_{m'}(x_n) = 0 \end{cases}$$

 The new system is in fact a Gröbner basis for the lexicographic ordering



## Gröbner bases

- Given an ideal *I*(*f*<sub>1</sub>,...,*f<sub>m</sub>*) and a monomial ordering >, a *Gröbner basis* (GB) for this ordering is
   a basis {*f*'<sub>1</sub>,...,*f*'<sub>ℓ'</sub>} such that for any *f* ∈ *I*(*f*<sub>1</sub>,...,*f*<sub>ℓ</sub>), there exists *i* ∈ {1,...,ℓ'} such that LT(*f*'<sub>i</sub>)|LT(*f*)
   (LT = leading term for the ordering)
- Any  $f \in I$  can be (uniquely) reduced by the GB





## Gröbner bases

- Given an ideal *I*(*f*<sub>1</sub>,..., *f<sub>m</sub>*) and a monomial ordering >, a *Gröbner basis* (GB) for this ordering is
   a basis {*f*'<sub>1</sub>,..., *f*'<sub>ℓ'</sub>} such that for any *f* ∈ *I*(*f*<sub>1</sub>,...,*f*<sub>ℓ</sub>), there exists *i* ∈ {1,..., ℓ'} such that LT(*f*'<sub>*i*</sub>)|LT(*f*)
   (LT = leading term for the ordering)
- Any  $f \in I$  can be (uniquely) reduced by the GB
- ▶ Ideal membership ( $f \in I$ ?) trivial given GB



## Gröbner basis algorithms

- First algorithm by Buchberger [B65]
- ► Connection with linear algebra by Lazard [L83]





## Gröbner basis algorithms

- First algorithm by Buchberger [B65]
- Connection with linear algebra by Lazard [L83]
- Best algorithms today are Faugère's F4 and F5 [F99,F02]
- In F4 and F5, Macaulay matrices of increasing size are successively computed and linearly dependent rows are removed with linear algebra until a Gröbner basis is found





## Gröbner basis algorithms

- First algorithm by Buchberger [B65]
- ► Connection with linear algebra by Lazard [L83]
- Best algorithms today are Faugère's F4 and F5 [F99,F02]
- In F4 and F5, Macaulay matrices of increasing size are successively computed and linearly dependent rows are removed with linear algebra until a Gröbner basis is found
- ► In F5, some rows of the Macaulay matrices are omitted to avoid trivial relations like  $0 = f_1 f_2 f_2 f_1$
- ▶ In F4, the reductions are parallelized



 $\blacktriangleright$  Complexity of GB algorithms  $\approx$  cost of linear algebra on the largest Macaulay matrix





- $\blacktriangleright$  Complexity of GB algorithms  $\approx$  cost of linear algebra on the largest Macaulay matrix
- Important parameter : degree of regularity maximal degree D<sub>reg</sub> of all polynomials computed





- $\blacktriangleright$  Complexity of GB algorithms  $\approx$  cost of linear algebra on the largest Macaulay matrix
- Important parameter : degree of regularity maximal degree D<sub>reg</sub> of all polynomials computed
- # monomials at this degree bounded by  $n^{D_{reg}}$





- $\blacktriangleright$  Complexity of GB algorithms  $\approx$  cost of linear algebra on the largest Macaulay matrix
- Important parameter : degree of regularity maximal degree D<sub>reg</sub> of all polynomials computed
- # monomials at this degree bounded by  $n^{D_{reg}}$
- ▶ Total cost (*n* variables) bounded in time and memory by

$$n^{\omega D_{reg}}$$
 and  $n^{2D_{reg}}$ 

$$\omega \leq$$
 3 linear algebra constant





## "Random" systems

► For a random system of *n* polynomial equations with degrees *d*<sub>1</sub>,..., *d<sub>n</sub>* in *n* variables,

$$D_{reg}=1+\sum_{i=1}^n (d_i-1)$$





## "Random" systems

► For a random system of *n* polynomial equations with degrees *d*<sub>1</sub>,..., *d<sub>n</sub>* in *n* variables,

$$D_{reg} = 1 + \sum_{i=1}^n (d_i - 1)$$

 Overdetermined systems have lower degrees of regularity Adding new equations helps





## Polynomial systems over finite fields

• If  $K := \mathbb{F}_q$ ,

add the field equations  $x_i^q - x_i = 0$  to the system

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ \dots \\ f_m(x_1, \dots, x_n) = 0 \\ x_1^q - x_1 = 0 \\ \dots \\ x_n^q - x_n = 0 \end{cases}$$



Ch.Petit - Loria - Nov 2012



## Polynomial systems over finite fields

• If  $K := \mathbb{F}_q$ ,

add the field equations  $x_i^q - x_i = 0$  to the system

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ \dots \\ f_m(x_1, \dots, x_n) = 0 \\ x_1^q - x_1 = 0 \\ \dots \\ x_n^q - x_n = 0 \end{cases}$$

 Degrees of regularity known for "generic" binary systems [BFS04,BFS05]



First fall degree

► Other important parameter : first fall degree D<sub>ff</sub> Lowest degree d such that there exist non trivial g<sub>i</sub> ∈ R with

$$\max \deg(g_i f_i) = d, \qquad \deg\left(\sum g_i f_i\right) < d$$





First fall degree

Other important parameter : first fall degree D<sub>ff</sub> Lowest degree *d* such that there exist non trivial  $g_i \in R$  with

$$\max \deg(g_i f_i) = d, \qquad \deg\left(\sum g_i f_i\right) < d$$

/

Trivial degree fall relations

$$\sum g_i f_i = 0, \qquad \text{or} \qquad (f_i^{q-1} - 1)f_i = 0$$



Ch.Petit - Loria - Nov 2012



First fall degree

 Other important parameter : first fall degree D<sub>ff</sub> Lowest degree d such that there exist non trivial g<sub>i</sub> ∈ R with

$$\max \deg(g_i f_i) = d, \qquad \deg\left(\sum g_i f_i\right) < d$$

Trivial degree fall relations

$$\sum g_i f_i = 0, \qquad \text{or} \qquad (f_i^{q-1} - 1)f_i = 0$$

 Sometimes called *degree of regularity* in the literature [DG10,DH11]





# Degree of regularity vs. first fall degree

For many classes of systems :

first fall degree  $D_{ff} \approx$  degree of regularity  $D_{reg}$ 

 Not true in general but experimental evidence for "random" systems and many "crypto" systems, including HFE and some variants





# Degree of regularity vs. first fall degree

► For many classes of systems :

first fall degree  $D_{\rm ff}$  pprox degree of regularity  $D_{\rm reg}$ 

- Not true in general but experimental evidence for "random" systems and many "crypto" systems, including HFE and some variants
- ► Intuition : for these systems, there are in fact many degree fall relations at D<sub>ff</sub> or D<sub>ff</sub> + 1, that in turn produce many further lower degree relations, etc





# Degree of regularity vs. first fall degree

► For many classes of systems :

first fall degree  $D_{\rm ff}$  pprox degree of regularity  $D_{\rm reg}$ 

- Not true in general but experimental evidence for "random" systems and many "crypto" systems, including HFE and some variants
- ► Intuition : for these systems, there are in fact many degree fall relations at D<sub>ff</sub> or D<sub>ff</sub> + 1, that in turn produce many further lower degree relations, etc
- Assumption  $D_{\rm ff} pprox D_{\rm reg}$  used in our analysis



## Outline

Algebraic cryptanalysis

#### Polynomial systems arising from a Weil descent

Application to ECDLP

Further applications



Ch.Petit - Loria - Nov 2012



- Parameters : n, n', m, t
   f ∈ 𝔽<sub>2<sup>n</sup></sub>[x<sub>1</sub>,...x<sub>m</sub>] with degrees ≤ 2<sup>t</sup> − 1 in all variables
   V a vector subspace of 𝔽<sub>2<sup>n</sup></sub>/𝔽<sub>2</sub> with dimension n'
- Problem : find  $x_i \in V, i = 1, \ldots, m$  such that

$$f(x_1,\ldots,x_m)=0.$$





- Parameters : n, n', m, t
   f ∈ 𝔽<sub>2<sup>n</sup></sub>[x<sub>1</sub>,...x<sub>m</sub>] with degrees ≤ 2<sup>t</sup> − 1 in all variables
   V a vector subspace of 𝔽<sub>2<sup>n</sup></sub>/𝔽<sub>2</sub> with dimension n'
- Problem : find  $x_i \in V, i = 1, \ldots, m$  such that

$$f(x_1,\ldots,x_m)=0.$$

• If  $V := \mathbb{F}_{2^n}$ , we can use Berlekamp [B70]



- Parameters : n, n', m, t
   f ∈ 𝔽<sub>2<sup>n</sup></sub>[x<sub>1</sub>,...x<sub>m</sub>] with degrees ≤ 2<sup>t</sup> − 1 in all variables
   V a vector subspace of 𝔽<sub>2<sup>n</sup></sub>/𝔽<sub>2</sub> with dimension n'
- Problem : find  $x_i \in V, i = 1, \ldots, m$  such that

$$f(x_1,\ldots,x_m)=0.$$

- If  $V := \mathbb{F}_{2^n}$ , we can use Berlekamp [B70]
- If  $mn' \approx n$ , we expect  $\approx 1$  solution



Weil descent : if {v<sub>1</sub>,..., v<sub>n'</sub>} is a basis of V and {θ<sub>1</sub>,..., θ<sub>n</sub>} is a basis of 𝔽<sub>2<sup>n</sup></sub> over 𝔽<sub>2</sub>, define binary variables x<sub>ij</sub> such that x<sub>i</sub> = ∑<sub>i</sub> x<sub>ij</sub>v<sub>j</sub>





▶ Weil descent : if  $\{v_1, ..., v_{n'}\}$  is a basis of V and  $\{\theta_1, ..., \theta_n\}$  is a basis of  $\mathbb{F}_{2^n}$  over  $\mathbb{F}_2$ , define binary variables  $x_{ij}$  such that  $x_i = \sum_j x_{ij} v_j$  substitute in f and "reduce modulo  $x_{ij}^2 - x_{ij} = \mathbf{0}$ " decompose in the basis  $\{\theta_1, ..., \theta_n\}$ 

$$0 = f(x_1, ..., x_m) = f\left(\sum_{j=1}^{n'} x_{1j}v_j, ..., \sum_{j=1}^{n'} x_{mj}v_j\right)$$



Ch.Petit - Loria - Nov 2012



▶ Weil descent : if  $\{v_1, ..., v_{n'}\}$  is a basis of V and  $\{\theta_1, ..., \theta_n\}$  is a basis of  $\mathbb{F}_{2^n}$  over  $\mathbb{F}_2$ , define binary variables  $x_{ij}$  such that  $x_i = \sum_j x_{ij} v_j$  substitute in f and "reduce modulo  $x_{ij}^2 - x_{ij} = \mathbf{0}$ " decompose in the basis  $\{\theta_1, ..., \theta_n\}$ 

$$0 = f(x_1, ..., x_m) = f\left(\sum_{j=1}^{n'} x_{1j} v_j, ..., \sum_{j=1}^{n'} x_{mj} v_j\right) \\ = [f]_1^{\downarrow} \theta_1 + ... + [f]_n^{\downarrow} \theta_n$$

• We get *n* equations  $[f]_k^{\downarrow} = 0$  in *mn'* variables  $x_{ij}$ 



**Applications** 

- Index calculus for binary elliptic curves
   Semaev's polynomials : degree 2<sup>m-1</sup> in each variable
- ▶ Hidden Field Equation (HFE) polynomial degree bounded by 2<sup>t</sup> - 1 but quadratic system over F<sub>2</sub>
- ► Index calculus for F<sup>\*</sup><sub>2<sup>n</sup></sub> degree 1 in each variable (t = 1)
- ► Factorization problem in SL(2, F<sub>2<sup>n</sup></sub>) degree 1 in each variable (t = 1)





#### Degrees and block structure

► If 
$$e = e_0 + e_1 2 + e_2 4 + \ldots + e_{t-1} 2^{t-1}$$
 then  
 $x_i^e = \left(\sum x_{ij} v_j\right)^{e_0} \left(\sum x_{ij}^2 v_j^2\right)^{e_1} \ldots \left(\sum x_{ij}^{2^{t-1}} v_j^{2^{t-1}}\right)^{e_{t-1}}$   
 $= \left(\sum x_{ij} v_j\right)^{e_0} \left(\sum x_{ij} v_j^2\right)^{e_1} \ldots \left(\sum x_{ij} v_j^{2^{t-1}}\right)^{e_{t-1}}$ 

degree = Hamming weight of  $(e_0, \ldots, e_{t-1})$ 





#### Degrees and block structure

► If 
$$e = e_0 + e_1 2 + e_2 4 + \ldots + e_{t-1} 2^{t-1}$$
 then  
 $x_i^e = \left(\sum x_{ij} v_j\right)^{e_0} \left(\sum x_{ij}^2 v_j^2\right)^{e_1} \ldots \left(\sum x_{ij}^{2^{t-1}} v_j^{2^{t-1}}\right)^{e_{t-1}}$   
 $= \left(\sum x_{ij} v_j\right)^{e_0} \left(\sum x_{ij} v_j^2\right)^{e_1} \ldots \left(\sum x_{ij} v_j^{2^{t-1}}\right)^{e_{t-1}}$ 

degree = Hamming weight of  $(e_0, \ldots, e_{t-1})$ 

f(x<sub>1</sub>,...,x<sub>m</sub>) = [f]<sub>1</sub><sup>↓</sup> θ<sub>1</sub> + ... + [f]<sub>n</sub><sup>↓</sup> θ<sub>n</sub>
 Since f has degree at most 2<sup>t</sup> - 1 in each variable x<sub>i</sub>,
 Each [f]<sub>k</sub><sup>↓</sup> has degree at most t
 in each block of variables X<sub>i</sub> := {x<sub>i1</sub>,...,x<sub>i,n'</sub>}





• Already *n* equations in mn' variables  $x_{ij}$ , given by

$$0 = f(x_1,\ldots,x_m) = [f]_1^{\downarrow} \theta_1 + \ldots + [f]_n^{\downarrow} \theta_n$$

 Adding new (low degree) equations may accelerate the resolution





• Frobenius transforms  $f = 0 \Rightarrow f^2 = 0$ 





- Frobenius transforms  $f = 0 \Rightarrow f^2 = 0$
- ▶ HW of exponents in f and  $f^2$  are equal ⇒  $[f]_i^{\downarrow}$  and  $[f^2]_i^{\downarrow}$  have the same degrees





- Frobenius transforms  $f = 0 \Rightarrow f^2 = 0$
- ► HW of exponents in f and  $f^2$  are equal  $\Rightarrow [f]_i^{\downarrow}$  and  $[f^2]_i^{\downarrow}$  have the same degrees
- But

$$f^2 = \left(\sum_{i=1}^n [f]^{\downarrow}_i \theta_i\right)^2 = \sum_{i=1}^n [f]^{\downarrow}_i {\theta_i}^2 =$$



Ch.Petit - Loria - Nov 2012



- Frobenius transforms  $f = 0 \Rightarrow f^2 = 0$
- ► HW of exponents in f and  $f^2$  are equal  $\Rightarrow [f]_i^{\downarrow}$  and  $[f^2]_i^{\downarrow}$  have the same degrees
- But

$$f^2 = \left(\sum_{i=1}^n [f]_i^{\downarrow} \theta_i\right)^2 = \sum_{i=1}^n [f]_i^{\downarrow} \theta_i^2 = \sum_{i=1}^n [f]_i^{\downarrow} \left(\sum_{j=1}^n a_{ij} \theta_j\right)$$





- Frobenius transforms  $f = 0 \Rightarrow f^2 = 0$
- ► HW of exponents in f and  $f^2$  are equal  $\Rightarrow [f]_i^{\downarrow}$  and  $[f^2]_i^{\downarrow}$  have the same degrees
- But

$$f^{2} = \left(\sum_{i=1}^{n} [f]_{i}^{\downarrow} \theta_{i}\right)^{2} = \sum_{i=1}^{n} [f]_{i}^{\downarrow} \theta_{i}^{2} = \sum_{i=1}^{n} [f]_{i}^{\downarrow} \left(\sum_{j=1}^{n} a_{ij} \theta_{j}\right)$$
$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{ij} [f]_{i}^{\downarrow}\right) \theta_{j}$$



Ch.Petit - Loria - Nov 2012



- Frobenius transforms  $f = 0 \Rightarrow f^2 = 0$
- ► HW of exponents in f and  $f^2$  are equal  $\Rightarrow [f]_i^{\downarrow}$  and  $[f^2]_i^{\downarrow}$  have the same degrees
- But

$$f^{2} = \left(\sum_{i=1}^{n} [f]_{i}^{\downarrow} \theta_{i}\right)^{2} = \sum_{i=1}^{n} [f]_{i}^{\downarrow} \theta_{i}^{2} = \sum_{i=1}^{n} [f]_{i}^{\downarrow} \left(\sum_{j=1}^{n} a_{ij} \theta_{j}\right)$$
$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{ij} [f]_{i}^{\downarrow}\right) \theta_{j}$$

same equations! (linear combinations)





• 
$$0 = f \Rightarrow 0 = x_1 f$$





$$\bullet \quad 0 = f \Rightarrow 0 = x_1 f$$
  
$$0 = x_1 f(x_1, \dots, x_m) = [x_1 f]_1^{\downarrow} \theta_1 + \dots + [x_1 f]_n^{\downarrow} \theta_n$$



Ch.Petit - Loria - Nov 2012



- $\bullet \quad 0 = f \Rightarrow 0 = x_1 f$  $0 = x_1 f(x_1, \dots, x_m) = [x_1 f]_1^{\downarrow} \theta_1 + \dots + [x_1 f]_n^{\downarrow} \theta_n$
- $x_1 f$  has degree  $\leq (2^t)$  in  $x_1$  and  $\leq (2^t 1)$  in  $x_2, \ldots, x_m$
- $[x_1 f]_k^{\downarrow}$  has degree at most t in each block  $X_i$





- $\bullet \quad 0 = f \Rightarrow 0 = x_1 f$  $0 = x_1 f(x_1, \dots, x_m) = [x_1 f]_1^{\downarrow} \theta_1 + \dots + [x_1 f]_n^{\downarrow} \theta_n$
- $x_1 f$  has degree  $\leq (2^t)$  in  $x_1$  and  $\leq (2^t 1)$  in  $x_2, \ldots, x_m$
- $[x_1 f]_k^{\downarrow}$  has degree at most t in each block  $X_i$
- ► Not the same equations ! In particular, all terms have degree  $\geq 1$  in block  $X_1$  $f(x_1, \ldots, x_m) = f_0(x_2, \ldots, x_m) + x_1 f_1(x_1, x_2, \ldots, x_m)$  $\Rightarrow x_1 f(x_1, \ldots, x_m) = x_1 f_0(x_2, \ldots, x_m) + x_1^2 f_1(x_1, x_2, \ldots, x_m)$





- $\bullet \quad 0 = f \Rightarrow 0 = x_1 f$  $0 = x_1 f(x_1, \dots, x_m) = [x_1 f]_1^{\downarrow} \theta_1 + \dots + [x_1 f]_n^{\downarrow} \theta_n$
- $x_1 f$  has degree  $\leq (2^t)$  in  $x_1$  and  $\leq (2^t 1)$  in  $x_2, \ldots, x_m$
- $[x_1 f]_k^{\downarrow}$  has degree at most t in each block  $X_i$
- ► Not the same equations ! In particular, all terms have degree  $\geq 1$  in block  $X_1$  $f(x_1, \ldots, x_m) = f_0(x_2, \ldots, x_m) + x_1 f_1(x_1, x_2, \ldots, x_m)$  $\Rightarrow x_1 f(x_1, \ldots, x_m) = x_1 f_0(x_2, \ldots, x_m) + x_1^2 f_1(x_1, x_2, \ldots, x_m)$
- Similar equations with other monomials instead of x<sub>1</sub>
   Many new equations



• Let 
$$a_{ijk} \in \mathbb{F}_2$$
 such that  $\theta_i \theta_j = \sum_k a_{ijk} \theta_k$ 

$$x_1 f = \left(\sum_{i=1}^n [x_1]_i^{\downarrow} \theta_i\right) \left(\sum_{j=1}^n [f]_j^{\downarrow} \theta_j\right) = \sum_{i,j,k=1}^n a_{ijk} [x_1]_i^{\downarrow} [f]_j^{\downarrow} \theta_k.$$





• Let 
$$a_{ijk} \in \mathbb{F}_2$$
 such that  $\theta_i \theta_j = \sum_k a_{ijk} \theta_k$ 

$$x_1 f = \left(\sum_{i=1}^n [x_1]_i^{\downarrow} \theta_i\right) \left(\sum_{j=1}^n [f]_j^{\downarrow} \theta_j\right) = \sum_{i,j,k=1}^n a_{ijk} [x_1]_i^{\downarrow} [f]_j^{\downarrow} \theta_k.$$

Hence

$$[x_1 f]_k^{\downarrow} = \sum_{i,j=1}^n a_{ijk} [x_1]_i^{\downarrow} [f]_j^{\downarrow} = \sum_{j=1}^n p_{ik}(x_{11}, \dots, x_{1,n'}) [f]_j^{\downarrow}$$
with deg $(p_{ik}) = 1$ 



Ch.Petit - Loria - Nov 2012



• Let 
$$a_{ijk} \in \mathbb{F}_2$$
 such that  $\theta_i \theta_j = \sum_k a_{ijk} \theta_k$ 

$$x_1 f = \left(\sum_{i=1}^n [x_1]_i^{\downarrow} \theta_i\right) \left(\sum_{j=1}^n [f]_j^{\downarrow} \theta_j\right) = \sum_{i,j,k=1}^n a_{ijk} [x_1]_i^{\downarrow} [f]_j^{\downarrow} \theta_k.$$

Hence

$$[x_{1}f]_{k}^{\downarrow} = \sum_{i,j=1}^{n} a_{ijk} [x_{1}]_{i}^{\downarrow} [f]_{j}^{\downarrow} = \sum_{j=1}^{n} p_{ik}(x_{11}, \dots, x_{1,n'}) [f]_{j}^{\downarrow}$$

with  $\deg(p_{ik}) = 1$ 

The "new" equations [x₁f]<sup>↓</sup><sub>k</sub> = 0 are algebraic combinations of the original ones [f]<sup>↓</sup><sub>i</sub> = 0





• Let 
$$a_{ijk} \in \mathbb{F}_2$$
 such that  $\theta_i \theta_j = \sum_k a_{ijk} \theta_k$ 

$$x_1 f = \left(\sum_{i=1}^n [x_1]_i^{\downarrow} \theta_i\right) \left(\sum_{j=1}^n [f]_j^{\downarrow} \theta_j\right) = \sum_{i,j,k=1}^n a_{ijk} [x_1]_i^{\downarrow} [f]_j^{\downarrow} \theta_k.$$

Hence

$$[x_1f]_k^{\downarrow} = \sum_{i,j=1}^n a_{ijk} [x_1]_i^{\downarrow} [f]_j^{\downarrow} = \sum_{j=1}^n p_{ik}(x_{11}, \dots, x_{1,n'}) [f]_j^{\downarrow}$$

with  $\deg(p_{ik}) = 1$ 

- The "new" equations [x₁f]<sup>↓</sup><sub>k</sub> = 0 are algebraic combinations of the original ones [f]<sup>↓</sup><sub>j</sub> = 0
- Will be recovered "blindly" by GB algorithms



First fall degree

#### We have

$$[x_1 f]_k^{\downarrow} = \sum_{j=1}^n p_{ik}(x_{11}, \ldots, x_{1,n'}) [f]_j^{\downarrow}$$

$$\mathsf{deg}([x_1f]_k^\downarrow) = mt, \qquad \mathsf{deg}(p_{ik}) = 1, \quad \mathsf{deg}([f]_j^\downarrow) = mt$$





First fall degree

We have

$$[x_1 f]_k^{\downarrow} = \sum_{j=1}^n p_{ik}(x_{11}, \dots, x_{1,n'}) [f]_j^{\downarrow}$$

$$\mathsf{deg}([x_1f]_k^\downarrow) = mt, \qquad \mathsf{deg}(p_{ik}) = 1, \quad \mathsf{deg}([f]_j^\downarrow) = mt$$

- Non trivial low degree relation !
- First fall degree  $D_{ff} \leq mt + 1$





First fall degree

We have

$$[x_1 f]_k^{\downarrow} = \sum_{j=1}^n p_{ik}(x_{11}, \dots, x_{1,n'}) [f]_j^{\downarrow}$$

$$\mathsf{deg}([x_1f]_k^\downarrow) = mt, \qquad \mathsf{deg}(p_{ik}) = 1, \quad \mathsf{deg}([f]_j^\downarrow) = mt$$

- Non trivial low degree relation !
- First fall degree  $D_{\rm ff} \leq mt+1$
- Essentially as small as it could be (unless f degenerate)



## Heuristic assumption

 We will heuristically assume D<sub>reg</sub> ≈ D<sub>ff</sub> in most cases, for *f* chosen randomly with degrees ≤ 2<sup>t-1</sup> for *V* chosen randomly with dimension n'





## Heuristic assumption

- We will heuristically assume D<sub>reg</sub> ≈ D<sub>ff</sub> in most cases, for *f* chosen randomly with degrees ≤ 2<sup>t-1</sup> for *V* chosen randomly with dimension n'
- "Classical" assumption in algebraic cryptanalysis
  - Experimental evidence for "random" and many "crypto" systems including HFE
  - (Confusion in literature between the two notions)





## Heuristic assumption

- We will heuristically assume D<sub>reg</sub> ≈ D<sub>ff</sub> in most cases, for *f* chosen randomly with degrees ≤ 2<sup>t-1</sup> for *V* chosen randomly with dimension n'
- "Classical" assumption in algebraic cryptanalysis
  - Experimental evidence for "random" and many "crypto" systems including HFE
  - (Confusion in literature between the two notions)
- ► Leads to D<sub>reg</sub> ≈ mt + 1 (instead of D<sub>reg</sub> = n(mt - 1) + 1 for generic systems)



# *Experimental evidence that* $D_{reg} \approx mt + 1$

| t | n  | n′ | m | mt + 1 | D <sub>av</sub> | Av. time (s) | Mem (MB) |
|---|----|----|---|--------|-----------------|--------------|----------|
| 1 | 6  | 3  | 2 | 3      | 3.1             | 0            | 10       |
| 1 | 6  | 2  | 3 | 4      | 3.8             | 0            | 10       |
| 1 | 8  | 4  | 2 | 3      | 3.0             | 0            | 11       |
| 1 | 12 | 6  | 2 | 3      | 3.6             | 0            | 11       |
| 1 | 12 | 4  | 3 | 4      | 4.2             | 0            | 11       |
| 1 | 12 | 3  | 4 | 5      | 5.3             | 0            | 14       |
| 1 | 12 | 2  | 6 | 7      | 7.4             | 1            | 23       |
| 1 | 15 | 5  | 3 | 4      | 4.1             | 5            | 20       |
| 1 | 15 | 3  | 5 | 6      | 6.3             | 7            | 114      |
| 1 | 16 | 8  | 2 | 3      | 3.0             | 14           | 25       |
| 1 | 16 | 4  | 4 | 5      | 5.3             | 16           | 98       |
| 1 | 16 | 2  | 8 | 9      | 9.6             | 69           | 3388     |
| 1 | 18 | 9  | 2 | 3      | 3.0             | 85           | 74       |
| 1 | 18 | 6  | 3 | 4      | 4.1             | 86           | 89       |
| 1 | 18 | 3  | 6 | 7      | 7.4             | 233          | 5398     |
| 1 | 20 | 10 | 2 | 3      | 3.0             | 487          | 291      |
| 1 | 20 | 5  | 4 | 5      | 6.2             | 515          | 733      |
| 1 | 20 | 4  | 5 | 6      | 6.2             | 669          | 3226     |

UCL Crypto Group



# *Experimental evidence that* $D_{reg} \approx mt + 1$

| t | n  | n' | m | mt+1 | Dav  | Av. time (s) | Mem (MB) |
|---|----|----|---|------|------|--------------|----------|
| 2 | 6  | 3  | 2 | 5    | 5.1  | Ó            | 10       |
| 2 | 6  | 2  | 3 | 7    | 6.7  | 0            | 10       |
| 2 | 8  | 4  | 2 | 5    | 5.1  | 0            | 11       |
| 2 | 9  | 3  | 3 | 7    | 7.2  | 0            | 12       |
| 2 | 12 | 4  | 3 | 7    | 7.1  | 1            | 38       |
| 2 | 12 | 3  | 4 | 9    | 9.3  | 2            | 95       |
| 2 | 15 | 5  | 3 | 7    | 7.0  | 12           | 263      |
| 2 | 16 | 8  | 2 | 5    | 5.1  | 13           | 36       |
| 3 | 6  | 3  | 2 | 7    | 6.6  | 0            | 10       |
| 3 | 12 | 6  | 2 | 7    | 7.0  | 1            | 31       |
| 3 | 12 | 4  | 3 | 10   | 10.1 | 9            | 70       |
| 3 | 12 | 3  | 4 | 13   | 12.6 | 70           | 113      |
| 3 | 15 | 5  | 3 | 10   | 10.0 | 118          | 2371     |
| 3 | 16 | 8  | 2 | 7    | 7.0  | 23           | 253      |
| 3 | 16 | 4  | 4 | 13   | 13.2 | 1891         | 20135    |
| 4 | 8  | 4  | 2 | 9    | 8.7  | 1            | 11       |
| 4 | 12 | 4  | 3 | 13   | 12.6 | 199          | 116      |
| 4 | 15 | 5  | 3 | 13   | 13.1 | 2904         | 6696     |





*Complexity analysis* 

- Assuming  $D_{reg} pprox D_{ff}$ , we have  $D_{reg} pprox mt+1$
- Time and memory bounded by

$$n^{\omega D_{reg}}$$
 and  $n^{2D_{reg}}$ 

 $\omega \leq \mathbf{3}$  : linear algebra constant





*Complexity analysis* 

- Assuming  $D_{reg} pprox D_{ff}$ , we have  $D_{reg} pprox mt+1$
- Time and memory bounded by

$$n^{\omega D_{reg}}$$
 and  $n^{2D_{reg}}$ 

- $\omega \leq \mathbf{3}$  : linear algebra constant
- Block structure  $\Rightarrow$  time and memory bounded by

$$(n')^{\omega D_{reg}}$$
 and  $(n')^{2D_{reg}}$ 





#### Remarks

- Heuristic assumption
- Assumption must be adapted (and checked) in particular cases





#### Remarks

- Heuristic assumption
- Assumption must be adapted (and checked) in particular cases
- Similar analysis for other "small characteristic" fields

$$D_{reg} pprox (p-1)mt + 1$$





#### Outline

Algebraic cryptanalysis

Polynomial systems arising from a Weil descent

Application to ECDLP

Further applications



Ch.Petit - Loria - Nov 2012



# Discrete logarithm problem (DLP)

Discrete logarithm problem

Given G a finite (multiplicative) cyclic group Given g a generator of G and given  $h \in G$ Find  $k \in \mathbb{Z}$  such that  $g^k = h$ 

 Diffie-Hellman key exchange, ElGamal encryption, Digital Signature algorithm,...





# Discrete logarithm problem (DLP)

Discrete logarithm problem

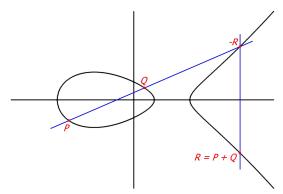
Given G a finite (multiplicative) cyclic group Given g a generator of G and given  $h \in G$ Find  $k \in \mathbb{Z}$  such that  $g^k = h$ 

- Diffie-Hellman key exchange, ElGamal encryption, Digital Signature algorithm,...
- Cryptographic assumption : DLP is "hard" for
  - Multiplicative groups of finite fields
  - Elliptic curves
  - Jacobians of hyperelliptic curves



#### Elliptic curves

- For binary fields :  $y^2 + xy = x^3 + a_2x^2 + a_6$  with  $a_6 \neq 0$
- Group structure given by chord and tangent rule





Ch.Petit - Loria - Nov 2012



# Elliptic curve discrete logarithm problem

Elliptic curve discrete logarithm problem (ECDLP) over binary curves :
 Given E over F<sub>2<sup>n</sup></sub>,
 Given P ∈ E(F<sub>2<sup>n</sup></sub>), given Q ∈ < P >,
 Find k ∈ Z such that Q = kP.



## Elliptic curve discrete logarithm problem

- Elliptic curve discrete logarithm problem (ECDLP) over binary curves :
   Given E over F<sub>2<sup>n</sup></sub>,
   Given P ∈ E(F<sub>2<sup>n</sup></sub>), given Q ∈ < P >,
   Find k ∈ Z such that Q = kP.
- ▶ Includes 10/15 curves standardized by NIST (FIPS 186-3)
- Complexity thought to be exponential in n

We argue it is

$$\leq 2^{2n^{2/3}\log n}$$



#### Index calculus

- General method to solve discrete logarithm problems
  - 1. Define a factor basis  $\mathcal{F} \subset \mathit{G}$
  - 2. Relation search : find about  $|\mathcal{F}|$  relations

$$a_i P + b_i Q = \sum_{P_j \in \mathcal{F}} e_{ij} P_j$$

3. Do **linear algebra** modulo |G| on the relations to get aP + bQ = 0





#### Index calculus

- General method to solve discrete logarithm problems
  - 1. Define a factor basis  $\mathcal{F} \subset \mathit{G}$
  - 2. Relation search : find about  $|\mathcal{F}|$  relations

$$a_i P + b_i Q = \sum_{P_j \in \mathcal{F}} e_{ij} P_j$$

3. Do **linear algebra** modulo |G| on the relations to get

$$aP + bQ = 0$$

Need "efficient" algorithm to find relations
 Choose |F| to balance sieving and linear algebra



- ▶ DLP : given  $g, h \in \mathbb{F}_{2^n}^*$ , find k such that  $h = g^k$
- Factor basis made of small "primes"

$$\mathcal{F}_B := \{ \text{irreducible } f(X) \in \mathbb{F}_2[X] | \deg(f) \leq B \}$$





- ▶ DLP : given  $g, h \in \mathbb{F}_{2^n}^*$ , find k such that  $h = g^k$
- Factor basis made of small "primes"

 $\mathcal{F}_B := \{ \text{irreducible } f(X) \in \mathbb{F}_2[X] | \deg(f) \leq B \}$ 

- Relation search
  - Choose random  $a, b \in \{1, \ldots, 2^n 1\}$
  - Compute r := g<sup>a</sup>h<sup>b</sup>
  - Factor r with Berlekamp's algorithm





- ▶ DLP : given  $g, h \in \mathbb{F}_{2^n}^*$ , find k such that  $h = g^k$
- Factor basis made of small "primes"

 $\mathcal{F}_B := \{ \text{irreducible } f(X) \in \mathbb{F}_2[X] | \deg(f) \leq B \}$ 

- Relation search
  - Choose random  $a, b \in \{1, \ldots, 2^n 1\}$
  - Compute r := g<sup>a</sup>h<sup>b</sup>
  - Factor r with Berlekamp's algorithm
  - If all factors  $\in \mathcal{F}_B$ , we have a relation  $g^a h^b = \prod_{f_i \in \mathcal{F}} f_i^{e_i}$





- ▶ DLP : given  $g, h \in \mathbb{F}_{2^n}^*$ , find k such that  $h = g^k$
- Factor basis made of small "primes"

 $\mathcal{F}_B := \{ \text{irreducible } f(X) \in \mathbb{F}_2[X] | \deg(f) \leq B \}$ 

- Relation search
  - Choose random  $a, b \in \{1, \ldots, 2^n 1\}$
  - Compute r := g<sup>a</sup>h<sup>b</sup>
  - ► Factor *r* with Berlekamp's algorithm
  - If all factors  $\in \mathcal{F}_B$ , we have a relation  $g^a h^b = \prod_{f_i \in \mathcal{F}} f_i^{e_i}$

#### • For $B \approx n^{1/2}$ , we get subexponential complexity



#### Index calculus : success stories

 Finite fields : Adleman [A79,A94], Coppersmith [C84], Adleman and Huang [AH99]
 Subexponential complexity

$$exp(\log^{1/3} |K| \log^{2/3} \log |K|)$$





#### Index calculus : success stories

 Finite fields : Adleman [A79,A94], Coppersmith [C84], Adleman and Huang [AH99]
 Subexponential complexity

$$exp(\log^{1/3} |K| \log^{2/3} \log |K|)$$

Hyperelliptic curves :

Adleman-DeMarrais-Huang [ADH94], Gaudry [G00], Gaudry-Thomé-Thériault-Diem [GTTD07] Subexponential for large genus; beat BSGS if  $g \ge 3$ 





#### Index calculus : success stories

 Finite fields : Adleman [A79,A94], Coppersmith [C84], Adleman and Huang [AH99]
 Subexponential complexity

$$exp(\log^{1/3} |K| \log^{2/3} \log |K|)$$

Hyperelliptic curves :

Adleman-DeMarrais-Huang [ADH94], Gaudry [G00], Gaudry-Thomé-Thériault-Diem [GTTD07] Subexponential for large genus; beat BSGS if  $g \ge 3$ 

• Elliptic curves : no algorithm at all until 2005



## Index calculus for elliptic curves

- ► For finite fields, small "primes" are a natural factor basis
  - Every element factors uniquely as a product of primes
  - "Good" probability that random elements are smooth





## Index calculus for elliptic curves

► For finite fields, small "primes" are a natural factor basis

- Every element factors uniquely as a product of primes
- "Good" probability that random elements are smooth
- Similarly for elliptic curves, we will need
  - 1. A definition of "small" elements
  - 2. An algorithm to decompose general elements into (potentially) small elements





## Index calculus for elliptic curves

- ► For finite fields, small "primes" are a natural factor basis
  - Every element factors uniquely as a product of primes
  - "Good" probability that random elements are smooth
- Similarly for elliptic curves, we will need
  - $1.\ {\sf A}$  definition of "small" elements
  - 2. An algorithm to decompose general elements into (potentially) small elements
- First partial solutions given by Semaev [S04]



## Summation polynomials [504]

Relate the x-coordinates of points that sum to O

► 
$$S_r(x_1,...,x_r) = 0$$
  
 $\Leftrightarrow \exists (x_i,y_i) \in E \quad \text{s.t.} \quad (x_1,y_1) + \cdots + (x_r,y_r) = O$ 





## Summation polynomials [504]

- Relate the x-coordinates of points that sum to O
- ►  $S_r(x_1,...,x_r) = 0$  $\Leftrightarrow \exists (x_i,y_i) \in E \quad \text{s.t.} \quad (x_1,y_1) + \cdots + (x_r,y_r) = O$
- Recursive formulae :

$$S_{2}(x_{1}, x_{2}) = x_{1} - x_{2}$$
  

$$S_{3}(x_{1}, x_{2}, x_{3}) = \dots \quad (\text{depends on } E)$$
  

$$S_{r}(x_{1}, \dots, x_{r}) =$$
  

$$Res_{X} \left( S_{r-k}(x_{1}, \dots, x_{m-k-1}, X), S_{k+2}(x_{r-k}, \dots, x_{r}, X) \right)$$





# Summation polynomials [504]

- Relate the x-coordinates of points that sum to O
- ►  $S_r(x_1,...,x_r) = 0$  $\Leftrightarrow \exists (x_i,y_i) \in E \quad \text{s.t.} \quad (x_1,y_1) + \cdots + (x_r,y_r) = O$
- Recursive formulae :

$$\begin{split} S_2(x_1, x_2) &= x_1 - x_2 \\ S_3(x_1, x_2, x_3) &= \dots \\ S_r(x_1, \dots, x_r) &= \\ Res_X \left( S_{r-k}(x_1, \dots, x_{m-k-1}, X), S_{k+2}(x_{r-k}, \dots, x_r, X) \right) \end{split}$$

► S<sub>r</sub> has degree 2<sup>r-2</sup> in each variable Symmetric set of solutions



## Semaev's variant of index calculus

- Semaev's variant of index calculus :
  - Factor basis :

define  $\mathcal{F}_V := \{(x, y) \in E | \mathbf{x} \in \mathbf{V}\}$  where  $V \subset K$ 

 ▶ Relation search : for each relation, Compute (X<sub>i</sub>, Y<sub>i</sub>) := a<sub>i</sub>P + b<sub>i</sub>Q for random a<sub>i</sub>, b<sub>i</sub>
 Find x<sub>j</sub> ∈ V with S<sub>m+1</sub>(x<sub>1</sub>,..., x<sub>m</sub>, X<sub>i</sub>) = 0
 Find the corresponding y<sub>j</sub>





## Semaev's variant of index calculus

- Semaev's variant of index calculus :
  - Factor basis :

define  $\mathcal{F}_V := \{(x, y) \in E | \mathbf{x} \in \mathbf{V}\}$  where  $V \subset K$ 

- ▶ Relation search : for each relation, Compute (X<sub>i</sub>, Y<sub>i</sub>) := a<sub>i</sub>P + b<sub>i</sub>Q for random a<sub>i</sub>, b<sub>i</sub>
   Find x<sub>j</sub> ∈ V with S<sub>m+1</sub>(x<sub>1</sub>,..., x<sub>m</sub>, X<sub>i</sub>) = 0
   Find the corresponding y<sub>j</sub>
- ► Semaev's observation : ECDLP reduced to solving summation's polynomial with constraints x<sub>i</sub> ∈ V





## Semaev's variant of index calculus

- Semaev's variant of index calculus :
  - Factor basis :

define  $\mathcal{F}_V := \{(x, y) \in E | \mathbf{x} \in \mathbf{V}\}$  where  $V \subset K$ 

- ▶ Relation search : for each relation, Compute (X<sub>i</sub>, Y<sub>i</sub>) := a<sub>i</sub>P + b<sub>i</sub>Q for random a<sub>i</sub>, b<sub>i</sub>
   Find x<sub>j</sub> ∈ V with S<sub>m+1</sub>(x<sub>1</sub>,..., x<sub>m</sub>, X<sub>i</sub>) = 0
   Find the corresponding y<sub>j</sub>
- ► Semaev's observation : ECDLP reduced to solving summation's polynomial with constraints x<sub>i</sub> ∈ V
- Remains to define V such that relation search is feasible



For K := 𝔽<sub>p</sub>, Semaev proposed V := {x < B}</li>
 But could not solve summation polynomials





- For K := 𝔽<sub>p</sub>, Semaev proposed V := {x < B} But could not solve summation polynomials
- For  $K := \mathbb{F}_{q^n}$ , Gaudry and Diem proposed  $V := \mathbb{F}_q$ 
  - ► Gaudry [G09] : algorithm faster than generic ones for any q, n ≥ 3 (but still exponential)
  - Diem [D11] : subexponential algorithm when q and n increase in an appropriate way





- For K := 𝔽<sub>p</sub>, Semaev proposed V := {x < B}</li>
   But could not solve summation polynomials
- ▶ For  $K := \mathbb{F}_{q^n}$ , Gaudry and Diem proposed  $V := \mathbb{F}_q$ 
  - ► Gaudry [G09] : algorithm faster than generic ones for any q, n ≥ 3 (but still exponential)
  - Diem [D11] : subexponential algorithm when q and n increase in an appropriate way
- Idea in both cases : Weil descent on Semaev polynomial Reduction to a polynomial system of equations



 $\blacktriangleright$  Finding relations amounts to Finding  $x_j \in \mathbb{F}_q$  with  $S_{n+1}(x_1,\ldots,x_n,X_i)=0$ 





- $\blacktriangleright$  Finding relations amounts to Finding  $x_j \in \mathbb{F}_q$  with  $S_{n+1}(x_1,\ldots,x_n,X_i)=0$
- See  $\mathbb{F}_{q^n}$  as a vector space over  $\mathbb{F}_q$
- ► See polynomial equation S<sub>n+1</sub> = 0 over F<sub>q<sup>n</sup></sub> as a system of polynomial equations over F<sub>q</sub>
- Solve the system



- $\blacktriangleright$  Finding relations amounts to Finding  $x_j \in \mathbb{F}_q$  with  $S_{n+1}(x_1,\ldots,x_n,X_i)=0$
- See  $\mathbb{F}_{q^n}$  as a vector space over  $\mathbb{F}_q$
- ► See polynomial equation S<sub>n+1</sub> = 0 over F<sub>q<sup>n</sup></sub> as a system of polynomial equations over F<sub>q</sub>
- Solve the system
- ► System harder to solve for larger *n* Attack does not work for F<sub>2<sup>n</sup></sub> when *n* prime





#### Diem's variant of index calculus [D11b]

Let 
$$K := \mathbb{F}_{2^n}$$
. Fix  $n' < n$  and  $m \approx n/n'$ 

#### Factor basis :

Choose a **vector subspace** V of  $\mathbb{F}_{2^n}$  with dimension n' Define  $\mathcal{F}_V := \{(x, y) \in E | x \in V\}$ 





#### Diem's variant of index calculus [D11b]

Let  $K := \mathbb{F}_{2^n}$ . Fix n' < n and  $m \approx n/n'$ 

Factor basis :

Choose a **vector subspace** V of  $\mathbb{F}_{2^n}$  with dimension n' Define  $\mathcal{F}_V := \{(x, y) \in E | x \in V\}$ 

 ▶ Relation search : find about 2<sup>n'</sup> relations. For each one, Compute (X<sub>i</sub>, Y<sub>i</sub>) := a<sub>i</sub>P + b<sub>i</sub>Q for random a<sub>i</sub>, b<sub>i</sub> Find x<sub>j</sub> ∈ V with S<sub>m+1</sub>(x<sub>1</sub>,..., x<sub>m</sub>, X<sub>i</sub>) = 0 Find the corresponding y<sub>j</sub>





#### Diem's variant of index calculus [D11b]

Let  $K := \mathbb{F}_{2^n}$ . Fix n' < n and  $m \approx n/n'$ 

Factor basis :

Choose a **vector subspace** V of  $\mathbb{F}_{2^n}$  with dimension n' Define  $\mathcal{F}_V := \{(x, y) \in E | x \in V\}$ 

- ► Relation search : find about 2<sup>n'</sup> relations. For each one, Compute (X<sub>i</sub>, Y<sub>i</sub>) := a<sub>i</sub>P + b<sub>i</sub>Q for random a<sub>i</sub>, b<sub>i</sub> Find x<sub>j</sub> ∈ V with S<sub>m+1</sub>(x<sub>1</sub>,..., x<sub>m</sub>, X<sub>i</sub>) = 0 Find the corresponding y<sub>j</sub>
- Linear algebra between the relations



#### Finding relations : Weil descent

Find  $x_j \in V$  with  $S_{m+1}(x_1, \ldots, x_m, X_i) = 0$ 



#### Finding relations : Weil descent

- Find  $x_j \in V$  with  $S_{m+1}(x_1, \ldots, x_m, X_i) = 0$
- $\blacktriangleright$  Weil descent  $\rightarrow$  polynomial system
  - finite field  $\mathbb{F}_{2^n}$ , vector subspace V dimension n'
  - *m* variables
  - degree  $2^{m-1}$  in each variable  $\Rightarrow t = m$



#### Finding relations : Weil descent

- Find  $x_j \in V$  with  $S_{m+1}(x_1, \ldots, x_m, X_i) = 0$
- $\blacktriangleright$  Weil descent  $\rightarrow$  polynomial system
  - finite field  $\mathbb{F}_{2^n}$ , vector subspace V dimension n'
  - *m* variables
  - degree  $2^{m-1}$  in each variable  $\Rightarrow t = m$
- Our analysis leads to  $D_{\rm ff} \leq mt + 1 = m^2 + 1$  (not tight)
- ▶ ! Summation polynomial not "random" ! (symmetric,...)



### Heuristic assumption

- Let n, n', m, E be fixed.
   Let R<sub>i</sub> = (X<sub>i</sub>, Y<sub>i</sub>) be a random point of E.
   Let V be a random vector space of dimension n'.
- Assumption : after applying a Weil descent to

$$S_{m+1}(x_1,\ldots,x_m,X_i)=0,$$

the resulting system satisfies  $D_{reg} \approx D_{ff}$ 





## Experimental verification $D_{reg} \approx D_{ff}$

► Random curves  $E: y^2 + xy = x^3 + a_4x^2 + a_6$  for random  $a_4, a_6$ 

| n  | n′ | т | t | $mt+1~(\geq D_{ff})$ | D <sub>av</sub> | Time | Mem. |
|----|----|---|---|----------------------|-----------------|------|------|
| 11 | 6  | 2 | 2 | 5                    | 3.0             | 0    | 11   |
| 11 | 4  | 3 | 3 | 10                   | 7.1             | 1    | 15   |
| 17 | 9  | 2 | 2 | 5                    | 4.0             | 0    | 16   |
| 17 | 6  | 3 | 3 | 10                   | 7.1             | 130  | 2136 |

#### D<sub>reg</sub> even *lower* than expected



Ch.Petit - Loria - Nov 2012



## Experimental verification $D_{reg} \approx D_{ff}$

• Koblitz curves 
$$E: y^2 + xy = x^3 + x^2 + 1$$

| n  | n' | т | t | $mt+1~(\geq D_{ff})$ | D <sub>av</sub> | Time | Mem. |
|----|----|---|---|----------------------|-----------------|------|------|
| 11 | 6  | 2 | 2 | 5                    | 3.0             | 0    | 11   |
| 11 | 4  | 3 | 3 | 10                   | 7.1             | 1    | 15   |
| 17 | 9  | 2 | 2 | 5                    | 4.0             | 0    | 15   |
| 17 | 6  | 3 | 3 | 10                   | 7.2             | 132  | 2133 |

#### $D_{reg}$ even *lower* than expected





# Complexity of Diem's algorithm

• Computing  $S_{m+1}$  with resultants : cost  $2^{t_1}$  where

 $t_1 \approx m(m+1)$ 





# Complexity of Diem's algorithm

• Computing  $S_{m+1}$  with resultants : cost  $2^{t_1}$  where

 $t_1 \approx m(m+1)$ 

▶ Finding 2<sup>n'</sup> relations : total cost 2<sup>t<sub>2</sub></sup> where

$$t_2 pprox n' + m\log m + \omega(m^2 + 1)\log n'$$

- Each one costs  $(n')^{\omega(mt+1)} = (n')^{\omega(m^2+1)}$
- Additional factor m! lost due to symmetry





# Complexity of Diem's algorithm

• Computing  $S_{m+1}$  with resultants : cost  $2^{t_1}$  where

 $t_1 \approx m(m+1)$ 

• Finding  $2^{n'}$  relations : total cost  $2^{t_2}$  where

$$t_2 pprox n' + m\log m + \omega(m^2 + 1)\log n'$$

- Each one costs  $(n')^{\omega(mt+1)} = (n')^{\omega(m^2+1)}$
- ► Additional factor *m*! lost due to symmetry
- (Sparse) linear algebra on relations : cost  $2^{\omega' t_3}$  where

$$t_3 \approx \log m + \log n + \omega' n'$$





### Estimations for "small" parameters

| n      | т  | n'   | $t_1$ | t <sub>2</sub> | t <sub>3</sub> | t <sub>max</sub> |
|--------|----|------|-------|----------------|----------------|------------------|
| 50     | 2  | 25   | 6     | 97             | 57             | 97               |
| 100    | 2  | 50   | 6     | 137            | 108            | 137              |
| 160    | 2  | 80   | 6     | 177            | 168            | 177              |
| 200    | 2  | 100  | 6     | 202            | 209            | 209              |
| 500    | 3  | 167  | 12    | 393            | 344            | 393              |
| 1000   | 4  | 250  | 20    | 664            | 512            | 664              |
| 2000   | 4  | 500  | 20    | 965            | 1013           | 1013             |
| 5000   | 6  | 833  | 42    | 1926           | 1682           | 1926             |
| 10000  | 7  | 1429 | 56    | 3020           | 2873           | 3020             |
| 20000  | 9  | 2222 | 90    | 4986           | 4462           | 4986             |
| 50000  | 11 | 4545 | 132   | 9030           | 9110           | 9110             |
| 100000 | 14 | 7143 | 210   | 14762          | 14306          | 14762            |





## Asymptotic estimates

► Fix 
$$n' := n^{\alpha}$$
 and  $m := n^{1-\alpha}$  for  $\alpha := 2/3$   
 $t_1 \approx n^{2/3}$ ,  
 $t_2 \approx (1/3)n^{1/3}\log n + n^{2/3} + (2/3)\omega n^{2/3}\log n$ ,  
 $t_3 \approx (4/3)\log n + \omega' n^{2/3}$ 





## Asymptotic estimates

► Fix 
$$n' := n^{\alpha}$$
 and  $m := n^{1-\alpha}$  for  $\alpha := 2/3$   
 $t_1 \approx n^{2/3}$ ,  
 $t_2 \approx (1/3)n^{1/3}\log n + n^{2/3} + (2/3)\omega n^{2/3}\log n$ ,  
 $t_3 \approx (4/3)\log n + \omega' n^{2/3}$ 

Overall complexity

$$2^T$$
 with  $T \approx cn^{2/3} \log n$  and  $c := \frac{2}{3}\omega \le 2$ 





Ch.Petit - Loria - Nov 2012

#### Outline

Algebraic cryptanalysis

Polynomial systems arising from a Weil descent

Application to ECDLP

Further applications



Ch.Petit - Loria - Nov 2012



**Applications** 

- Index calculus for binary elliptic curves
   Semaev's polynomials : degree 2<sup>m-1</sup> in each variable
- ▶ Hidden Field Equation (HFE) polynomial degree bounded by 2<sup>t</sup> - 1 but quadratic system over F<sub>2</sub>
- ► Index calculus for F<sup>\*</sup><sub>2<sup>n</sup></sub> degree 1 in each variable (t = 1)
- ► Factorization problem in SL(2, F<sub>2<sup>n</sup></sub>) degree 1 in each variable (t = 1)







- Public Key Cryptosystem proposed by Patarin [P96]
- Private key is a polynomial f ∈ 𝔽<sub>2<sup>n</sup></sub>[x]
   Public key is a disguised version of its Weil descent
   Attacker only knows the disguised system





## *HFE cryptosystem*

- Public Key Cryptosystem proposed by Patarin [P96]
- Private key is a polynomial f ∈ 𝔽<sub>2<sup>n</sup></sub>[x]
   Public key is a disguised version of its Weil descent
   Attacker only knows the disguised system
- Particularities
  - "Disguised" ... but no impact on GB complexity





## *HFE cryptosystem*

- Public Key Cryptosystem proposed by Patarin [P96]
- Private key is a polynomial f ∈ 𝔽<sub>2<sup>n</sup></sub>[x]
   Public key is a disguised version of its Weil descent
   Attacker only knows the disguised system
- Particularities
  - "Disguised" ... but no impact on GB complexity
  - Monovariate (m = 1)
  - f has a particular shape

$$f(x) := \sum_{2^i + 2^j < D} a_{ij} x^{2^i + 2^j} + \sum_{2^i < D} b_i x^{2^i} + c$$

Weil descent on f leads to a *quadratic* system





#### HFE as a particular case

► Cryptanalysis leads to a particular case of our systems with m = 1, t = ⌈log<sub>2</sub> D⌉, V = 𝔽<sub>2<sup>n</sup></sub>

$$D_{reg} pprox D_{ff} \ge mt + 1 = \lceil \log_2 D \rceil + 1$$





#### HFE as a particular case

► Cryptanalysis leads to a particular case of our systems with m = 1, t = ⌈log<sub>2</sub> D⌉, V = 𝔽<sub>2<sup>n</sup></sub>

$$D_{reg} pprox D_{ff} \ge mt + 1 = \lceil \log_2 D \rceil + 1$$

We recover [KS99,FJ03,GJS06,DG10,DH11,...]





### HFE as a particular case

► Cryptanalysis leads to a particular case of our systems with m = 1, t = ⌈log<sub>2</sub> D⌉, V = 𝔽<sub>2<sup>n</sup></sub>

$$D_{reg} pprox D_{ff} \ge mt + 1 = \lceil \log_2 D \rceil + 1$$

We recover [KS99,FJ03,GJS06,DG10,DH11,...]

 No impact of HFE special shape Other restrictions may have a (positive) impact [DH11]





## Similarities with HFE

- Polynomial system arising from a Weil descent
- Many low degree relations [C01,...]
- First fall degree [DG10,DH11,...]





## Similarities with HFE

- Polynomial system arising from a Weil descent
- Many low degree relations [C01,...]
- ► First fall degree [DG10,DH11,...]
- Subsystem with smaller number of variables [GJS06,...] (not discussed here)



## Similarities with HFE

- Polynomial system arising from a Weil descent
- Many low degree relations [C01,...]
- ► First fall degree [DG10,DH11,...]
- Subsystem with smaller number of variables [GJS06,...] (not discussed here)
- ► Assumption D<sub>reg</sub> ≈ D<sub>ff</sub> widely verified for HFE polynomials [FJ03,GJS06,...]



Index calculus in  $\mathbb{F}_{2^n}^*$ 

#### Discrete logarithm problem :

Given a generator  $g \in \mathbb{F}_{2^n}^*$ , Given h an element of  $\mathbb{F}_{2^n}^*$ , Find  $k \in \mathbb{Z}$  such that  $h = g^k$ 





Index calculus in  $\mathbb{F}_{2^n}^*$ 

#### Discrete logarithm problem :

Given a generator  $g \in \mathbb{F}_{2^n}^*$ , Given h an element of  $\mathbb{F}_{2^n}^*$ , Find  $k \in \mathbb{Z}$  such that  $h = g^k$ 

- Index calculus
  - Factor basis :

a vector subspace  $V \subset \mathbb{F}_{2^n}$ ,  $\dim(V) = n'$ 

- ▶ **Relation search** : for each relation, Compute  $r_i := g^{a_i} h^{b_i}$  for random  $a_i, b_i$ Find  $x_j \in V$  with  $\prod_{i=1}^m x_j = r_i$
- Linear algebra on the relations



• For each relation, find  $x_j \in V$  with  $\prod_{i=1}^m x_j = r_i$ 





- For each relation, find  $x_j \in V$  with  $\prod_{i=1}^m x_j = r_i$
- ► Weil descent → polynomial system *n* equations, *mn'* variables, *multilinear* case (t = 1)





- ▶ For each relation, find  $x_j \in V$  with  $\prod_{i=1}^m x_j = r_i$
- Weil descent → polynomial system
   n equations, mn' variables, multilinear case (t = 1)
- Total time  $2^{T}$  where

$$T \approx c n^{1/2} \log n$$
 and  $c = \frac{\omega + 1}{2} \le 2$ 





- For each relation, find  $x_j \in V$  with  $\prod_{i=1}^m x_j = r_i$
- ▶ Weil descent → polynomial system
   *n* equations, *mn'* variables, *multilinear* case (t = 1)
- Total time  $2^{T}$  where

$$T \approx c n^{1/2} \log n$$
 and  $c = \frac{\omega + 1}{2} \le 2$ 

- ► Comparison with Coppersmith's algorithm [C84]
  - Other heuristic assumption
  - Coppersmith much faster : 2<sup>n<sup>1/3</sup> log<sup>2/3</sup> n Ours is similar to Adleman's first index calculus [A79] ... Improvements ?
    </sup>



#### Outline

Algebraic cryptanalysis

Polynomial systems arising from a Weil descent

Application to ECDLP

Further applications



Ch.Petit - Loria - Nov 2012



#### Conclusion

- Polynomial systems arising from a Weil descent
  - Very important class of systems for cryptography
  - ECDLP, HFE, DLP, factoring in  $SL(2, \mathbb{F}_{2^n}), \ldots$





### Conclusion

- Polynomial systems arising from a Weil descent
  - Very important class of systems for cryptography
  - ECDLP, HFE, DLP, factoring in  $SL(2, \mathbb{F}_{2^n}), \ldots$
- ECDLP subexponential for binary curves?
  - Reasonable evidence under heuristic assumption
  - Diem's algorithm would beat BSGS for  $n \ge 2000$
  - NIST curves remain safe so far
  - Extension to any "small" characteristic field





## Conclusion

- Polynomial systems arising from a Weil descent
  - Very important class of systems for cryptography
  - ▶ ECDLP, HFE, DLP, factoring in  $SL(2, \mathbb{F}_{2^n}), \ldots$
- ECDLP subexponential for binary curves?
  - Reasonable evidence under heuristic assumption
  - Diem's algorithm would beat BSGS for  $n \ge 2000$
  - NIST curves remain safe so far
  - Extension to any "small" characteristic field
- Future work
  - Better algorithms, remove heuristic assumptions
  - Extension to prime fields?



References

- JC Faugère, L Perret, C Petit, G Renault, Improving the complexity of index calculus for elliptic curves over binary fields.
- C Petit, JJ Quisquater. On polynomial systems arising from a Weil descent.





- [B65] B Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal.
- [L83] D Lazard. Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations.
- ▶ [F99] JC Faugère. A new efficient algorithm for computing Gröbner bases (F4).
- ► [F02] JC Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5).
- [FGLM93] JC Faugère, P Gianni, D Lazard, T Mora. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering



- [BFS04] M Bardet, JC Faugère, B Salvy. On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations.
- [BFS05] M Bardet, JC Faugère, B Salvy. Asymptotic Expansion of the Degree of Regularity for Semi-Regular Systems of Equations.
- [DG10] V Dubois and N Gama. The Degree of Regularity of HFE Systems.
- [DH11] J Ding and T Hodges. Inverting HFE Systems Is Quasi-Polynomial for All Fields.
- [B70] E Berlekamp. *Factoring polynomials over large finite fields*.



- [A79] L Adleman. A Subexponential Algorithm for the Discrete Logarithm Problem with Applications to Cryptography.
- [C84] D Coppersmith. Fast evaluation of logarithms in fields of characteristic two.
- ▶ [A94] L Adleman. *The function field sieve.*
- [AH99] L Adleman and MD Huang. Function Field Sieve Method for Discrete Logarithms over Finite Fields.
- [ADH94] L Adleman, J DeMarrais, MD Huang. A subexponential algorithm for discrete logarithms over the rational subgroup of the jacobians of large genus hyperelliptic curves over finite fields.



- ► [G00] P Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves.
- [G07] P Gaudry, E Thomé, N Thériault, C Diem. A double large prime variation for small genus hyperelliptic index calculus.
- ► [S04] I Semaev. Summation polynomials and the discrete logarithm problem on elliptic curves.
- [G09] P Gaudry. Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem.
- [D11] C Diem. On the discrete logarithm problem in elliptic curves.



References

- ► [D11b] C Diem. On the discrete logarithm problem in elliptic curves (II).
- [P11] C Petit. Towards factoring in  $SL(2, \mathbb{F}_{2^n})$ .
- ▶ [FPPR11] JC Faugère, C Petit, L Perret, G Renault, New subexponential algorithms for factoring in SL(2, F<sub>2<sup>n</sup></sub>)
- ► [B92] L Babai, A Seress, On the diameter of permutation groups
- [H08] H Helfgott, Growth and generation in SL2(Z/pZ)
- [Z91] G Zémor. Hash functions and Cayley graphs
- [TZ94] JP Tillich, G Zémor. Group-theoretic hash functions.



- [P09] C Petit. On graph-based cryptographic hash functions.
- [P96]J Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP) : Two New Families of Asymmetric Algorithms.
- [KS99] A Kipnis, A Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization.
- [FJ03] JC Faugère and A Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases.
- ► [GJS06] L Granboulan and A Joux and J Stern. *Inverting HFE Is Quasipolynomial.*

