Breaking ECC2K-130
(on Cell CPUs and NVIDIA GPUs)

Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner,
Joppe W. Bos, Hsieh-Chung Chen, Chen-Mou Cheng,
Gauthier van Damme, Giacomo de Meulenaer,

Luis Julian Dominguez Perez, Junfeng Fan, Tim Giineysu,
Frank Giirkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens,
Ruben Niederhagen, Christof Paar, Francesco Regazzoni,
Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege, Bo-Yin Yang

April 2, 2010

CARAMEL seminar, INRIA Nancy

How hard is the ECDLP?

The ECDLP
Given an elliptic curve E over a finite field F; and two points P € E(F,)
and Q € (P), find k, such that Q = [k]P.

Breaking ECC2K-130 2

How hard is the ECDLP?

The ECDLP

Given an elliptic curve E over a finite field F; and two points P € E(F,)
and Q € (P), find k, such that Q = [k]P.

» Standard answer (for most elliptic curves): Solving ECDLP takes
O(y/n), where n. = |(P)|, if n is prime

» Best known algorithm if n is prime: Pollard’s rho algorithm, running
time: O(y/n)

» Problem: O-notation hides all linear factors

Breaking ECC2K-130

How hard is the ECDLP?

The ECDLP
Given an elliptic curve E over a finite field F; and two points P € E(F,)
and Q € (P), find k, such that Q = [k]P.

» Standard answer (for most elliptic curves): Solving ECDLP takes
O(y/n), where n. = |(P)|, if n is prime

» Best known algorithm if n is prime: Pollard’s rho algorithm, running
time: O(y/n)

» Problem: O-notation hides all linear factors

Rephrase the question

Given an elliptic curve F and two points P and Q as above and given a
number of computers (or FPGAs, or ASICS, or money), how much time
does it take to solve the specific ECDLP?

Breaking ECC2K-130 2

The Certicom challenges

1997: Certicom announces several ECDLP prizes:

The Challenge is to compute the ECC private keys from the
given list of ECC public keys and associated system parameters.
This is the type of problem facing an adversary who wishes to
completely defeat an elliptic curve cryptosystem.

Objectives:
1. To increase the cryptographic community’s understanding
and appreciation of the difficulty of the ECDLP.

2. To confirm comparisons of the security levels of systems such
as ECC, RSA and DSA that have been made based primarily on
theoretical considerations.

Breaking ECC2K-130

The Certicom challenges (ctd.)

3. To provide information on how users of elliptic curve
public-key cryptosystems should select suitable key lengths for a
desired level of security.

4. To determine whether there is any significant difference in
the difficulty of the ECDLP for elliptic curves over Fom and the
ECDLP for elliptic curves over IF),.

5. To determine whether there is any significant difference in
the difficulty of the ECDLP for random elliptic curves over Fom
and the ECDLP for Koblitz curves.

6. To encourage and stimulate research in computational and
algorithmic number theory and, in particular, the study of the
ECDLP.

Breaking ECC2K-130 4

Three levels of challenges

Level-0 challenges — exercises
Challenges of 79 bits, 89 bits, and 97 bits (size of E(F,)).

Level-0 challenges have all been solved

Level-1 challenges
Challenges of 109 bits, and 131 bits.

109-bit challenges have all been solved, 131-bit challenges have all not
been solved, yet.

Level-2 challenges
Challenges of 163 bits, 191 bits, 239 bits, and 359 bits.

Level-2 challenges have all not been solved, yet.

Breaking ECC2K-130

The “next” open challenge: ECC2K-130

ECC2K-130
Elliptic curve E is the Koblitz curve y? + zy = 23 + 1 over

F2131 = FQ [Z]/(Zl31 + 2’13 + Z2 + 4 + 1)
The order of P is 680564733841876926932320129493409985129 = 2129

Claimed hardness of ECC2K-130

The 131-bit Level | challenges are expected to be infeasible
against realistic software and hardware attacks, unless of
course, a new algorithm for the ECDLP is discovered.

(from Certicom's description of the challenges)

Breaking ECC2K-130

Parallelized Pollard’s rho algorithm

» Algorithm by van Oorschot and Wiener
> Declare an easy-to-recognize subset of |(P)| as distinguished

» Use client-server infrastructure

Breaking ECC2K-130

Parallelized Pollard’s rho algorithm

Algorithm by van Oorschot and Wiener

Declare an easy-to-recognize subset of |(P)| as distinguished
Use client-server infrastructure

Client:

> Generate random point Ry = [ao]P + [bo]@ from random seed s
Apply pseudo-random iteration function f to obtain R;41 = f(R;)
When a distinguished point Rq is reached: Send (s, R4) to the server
Generate new random input point

vV v v Yy

vyvYy

Breaking ECC2K-130

Parallelized Pollard’s rho algorithm

Algorithm by van Oorschot and Wiener
Declare an easy-to-recognize subset of |(P)| as distinguished
Use client-server infrastructure

Client:

> Generate random point Ry = [ao]P + [bo]@ from random seed s
Apply pseudo-random iteration function f to obtain R;41 = f(R;)
When a distinguished point Rq is reached: Send (s, R4) to the server
Generate new random input point

vV v v Yy

vyvYy

v

Server:

» Search incoming distinguished points for duplicates (collision)

> Use the information about the starting points (random seed) to
obtain Ry = [ad]P + [bd]Q and Ry = [Cd]P + [dd]Q

» Compute solution

_ Ci—aq
Q_dd—bd

Breaking ECC2K-130

Parallelized Pollard’s rho algorithm

vV v v Yy

Algorithm by van Oorschot and Wiener
Declare an easy-to-recognize subset of |(P)| as distinguished
Use client-server infrastructure

Client:

> Generate random point Ry = [ao]P + [bo]@ from random seed s
Apply pseudo-random iteration function f to obtain R;41 = f(R;)
When a distinguished point Rq is reached: Send (s, R4) to the server
Generate new random input point

vyvYy

Server:

» Search incoming distinguished points for duplicates (collision)

> Use the information about the starting points (random seed) to
obtain Ry = [ad]P + [bd]Q and Ry = [Cd]P + [dd]Q

» Compute solution

_ Ci—aq
Q_dd—bd

Requires iteration function to preserve knowledge about the linear
combination in P and Q.

Breaking ECC2K-130

How do we choose f7

“Adding walks”
Define f(R;) = R; + [c/]P + [d,]Q where r = h(R;).
Iteration modulo negation
» P and —P have same x-coordinate. Search for xz-coordinate
collision.
» Halves the size of the search space, thus factor-v/2 speedup
» Requires that f(P;) = f(—F;).

> For example use: f(R;) = |R;| + [c,]P + [d,]Q with |R;| as, e.g.,
lexicographic minimum of R;, —R;.

» Comes with some problems (fruitless cycles), not exactly factor-v/2
speedup

Breaking ECC2K-130

How do we choose f (Part Il)

» Negation is an efficiently computable endomorphism

> Koblitz curves have other efficiently computable endomorphisms:
powers of the Frobenius o7 (z,y) = (¥, 5?")

> In our case 130 such endomorphisms
> Idea: Let f operate on equivalence classes modulo 07
» In total: Save a factor of /2131

Breaking ECC2K-130

Qur choice

Distinguished points
We call a point R = (g, yr) distinguished, if HW(xg) (the Hamming
weight of x g in normal-basis representation) is < 34.

[teration function
Our iteration function is

Ri+1 = f(Rz) = Uj(Ri) + RZ‘,
where o is the Frobenius endomorphism and

j = ((HW(zg;)/2) (mod 8)) + 3.

Breaking ECC2K-130

10

Computing the iteration function

Ri+1 = f(Rl) = Gj(Ri) + Ri,

v

One elliptic curve addition

v

One application of o7

v

One conversion to normal-basis representation

v

One Hamming-weight computation

Breaking ECC2K-130

11

Computing the iteration function

Ri+1 = f(Rl) = Gj(Ri) + Ri,

v

One elliptic curve addition

» we use affine coordinates
> 2 multiplications, 1 squaring, 6 additions and 1 inversion

v

One application of o7

v

One conversion to normal-basis representation

v

One Hamming-weight computation

Breaking ECC2K-130

11

Computing the iteration function

Ri+1 = f(Rl) = O'j(Ri) + Ri,

v

One elliptic curve addition

» we use affine coordinates
> 2 multiplications, 1 squaring, 6 additions and 1 inversion

v

One application of o7
» Two computations of the form 22" for3<m <10 (m-squaring)

v

One conversion to normal-basis representation

v

One Hamming-weight computation

Breaking ECC2K-130

11

Computing the iteration function

Ri+1 = f(Rl) = O'j(Ri) + Ri,

» One elliptic curve addition

» we use affine coordinates

> 2 multiplications, 1 squaring, 6 additions and 1 inversion
» One application of ¢/

» Two computations of the form 22" for3<m <10 (m-squaring)
» One conversion to normal-basis representation
» One Hamming-weight computation
» Inversions can be batched and performed using Montgomery's trick
» For large batch: Trade one inversion for 3 multiplications

Breaking ECC2K-130

11

Implementing the iteration function
on the Cell Broadband Engine (Playstation 3)

The technique of bitslicing

| 4

Bernstein set new software speed records for batched binary-field
arithmetic using bitslicing (CRYPTO 2009)

Elements of Fy131 can be represented as a sequence of 131 bits

Instead of putting these 131 bits in ,e.g., two 128-bit register, put
them in 131 registers, one register per bit

Perform arithmetic by simulating a hardware implementation using
bit-logical instructions such as AND and XOR

Inefficient for one field operation, but can process 128 batched
operations in parallel (for 128-bit registers).

Use spills to the stack to overcome lack of registers

Breaking ECC2K-130

12

Implementing the iteration function
on the Cell Broadband Engine (Playstation 3)

s bitslicing really better?

| 2

>

Bernstein's record was on the Intel Core 2, the Cell is different

Cell SPU: Only 1 bit-logical operation per cycle (Core 2: 3
operations per cycle)

Cell SPU: 128 128-bit registers (Core 2: 16 128-bit registers)

Cell SPU can do one load or store per bit operation (Core 2: 1 load
per 3 bit operations)

Cell SPU has to fit all code and active data set in only 256 KB of
local storage. Bitslicing requires more memory (because of the high
level of parallelism)

Breaking ECC2K-130

13

Implementing the iteration function
on the Cell Broadband Engine (Playstation 3)

s bitslicing really better?

| 2

>

Bernstein's record was on the Intel Core 2, the Cell is different

Cell SPU: Only 1 bit-logical operation per cycle (Core 2: 3
operations per cycle)

Cell SPU: 128 128-bit registers (Core 2: 16 128-bit registers)

Cell SPU can do one load or store per bit operation (Core 2: 1 load
per 3 bit operations)

Cell SPU has to fit all code and active data set in only 256 KB of
local storage. Bitslicing requires more memory (because of the high
level of parallelism)

Decision: Let’s figure out what’s best by implementing both, bitsliced
and non-bitsliced, independently by two groups.

Breaking ECC2K-130

13

Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

Breaking ECC2K-130 14

Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)
> 03 Aug: 1735 (non-bitsliced)

Breaking ECC2K-130 14

Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)

Breaking ECC2K-130 14

Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)

> 10 Aug: 1587 (bitsliced)

Breaking ECC2K-130 14

Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)

> 10 Aug: 1587 (bitsliced)
> 13 Aug: 1389 (bitsliced)

Breaking ECC2K-130 14

Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)

> 10 Aug: 1587 (bitsliced)

> 13 Aug: 1389 (bitsliced
> 19 Aug: 1426 (non-bitsliced) ug (bitsliced)

Breaking ECC2K-130 14

Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)
> 10 Aug: 1587 (bitsliced)
> 13 Aug: 1389 (bitsliced

> 19 Aug: 1426 (non-bitsliced) ue (bitsliced)

> 19 Aug: 1293 (non-bitsliced)

Breaking ECC2K-130 14

Cycles per iteration on each SPU

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

v
v

06 Aug: 6488 (bitsliced)
10 Aug: 1587 (bitsliced)
13 Aug: 1389 (bitsliced)

v

v
v

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)

v
v

30 Aug: 1180 (bitsliced)

Breaking ECC2K-130 14

Cycles per iteration on each SPU

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

v
v

06 Aug: 6488 (bitsliced)
10 Aug: 1587 (bitsliced)
13 Aug: 1389 (bitsliced)

v

v
v

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

v
v

30 Aug: 1180 (bitsliced)

v

Breaking ECC2K-130 14

Cycles per iteration on each SPU

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

v
v

06 Aug: 6488 (bitsliced)
10 Aug: 1587 (bitsliced)
13 Aug: 1389 (bitsliced)

v

v
v

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

v
v

30 Aug: 1180 (bitsliced)
05 Sep: 1051 (bitsliced)

v
v

Breaking ECC2K-130 14

Cycles per iteration on each SPU

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

v
v

06 Aug: 6488 (bitsliced)
10 Aug: 1587 (bitsliced)
13 Aug: 1389 (bitsliced)

v

v
v

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

v
v

30 Aug: 1180 (bitsliced)
05 Sep: 1051 (bitsliced)
07 Sep: 1047 (bitsliced)

v
v

v

Breaking ECC2K-130 14

Cycles per iteration on each SPU

vy

vyy

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

vy

vvyyvyy

06 Aug:
10 Aug:
13 Aug:

30 Aug:

05 Sep:
07 Sep:

07 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

bitsliced
bitsliced
bitsliced
bitsliced

1180
1051
1047

956

~_~ e~
~— — —

Breaking ECC2K-130

14

Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

vy

vvyyvyy

06 Aug:
10 Aug:
13 Aug:

30 Aug:

05 Sep:

07 Sep:
07 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

bitsliced
bitsliced
bitsliced
bitsliced

1180
1051
1047

956

~_~ e~
~— — —

Breaking ECC2K-130

14

Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

vy

vVvyVvyyypy

06 Aug:
10 Aug:
13 Aug:

30 Aug:

05 Sep:
07 Sep:

07 Oct:
12 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

1180 (bitsliced)
1051 (bitsliced)
1047 (bitsliced)
956 (bitsliced)
903 (bitsliced)

Breaking ECC2K-130

14

Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

vy

vVvyVvyVvyVvyy

06 Aug:
10 Aug:
13 Aug:

30 Aug:

05 Sep:

07 Sep:
07 Oct:
12 Oct:
13 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

bitsliced
bitsliced
bitsliced
bitsliced
bitsliced
bitsliced

1180
1051
1047
956
903
871

—~
~—

P
— N N

Breaking ECC2K-130

14

Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

vy

vVVvyVvYyVvyVYyYYyvyy

06 Aug:
10 Aug:
13 Aug:

30 Aug:

05 Sep:

07 Sep:
07 Oct:
12 Oct:
13 Oct:
14 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

1180 (bitsliced)
1051 (bitsliced)
1047 (bitsliced)
956 (bitsliced)
903 (bitsliced)
871 (bitsliced)
844 (bitsliced)

Breaking ECC2K-130

14

Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

vy

VVVYyVYVYVYVYY

06 Aug:
10 Aug:
13 Aug:

30 Aug:

05 Sep:
07 Sep:

07 Oct:
12 Oct:
13 Oct:
14 Oct:
15 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

bitsliced
bitsliced
bitsliced
bitsliced
bitsliced
bitsliced
bitsliced
bitsliced

1180
1051
1047
956
903
871
844
789

—~
~—

P
— N N N e N N

Breaking ECC2K-130

14

Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

vy

VVvVyVvVyVYyVYVYVYYVYYyY

06 Aug:
10 Aug:
13 Aug:

30 Aug:
05 Sep:
07 Sep:
07 Oct:
12 Oct:
13 Oct:
14 Oct:
15 Oct:
29 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

1180 (bitsliced)
1051 (bitsliced)
1047 (bitsliced)
956 (bitsliced)
903 (bitsliced)
871 (bitsliced)
844 (bitsliced)
789 (bitsliced)
749 (bitsliced)

Breaking ECC2K-130

14

What happened from 08/06 to 09/077

From 6488 cycles to 1047 cycles

» Start with C4++ implementation for the Core 2 (by Bernstein)
» Port to C (6488 cycles)

» Reimplement speed-critical parts in ghasm

» Most important: degree-130 polynomial multiplication

Breaking ECC2K-130

15

What happened from 08/06 to 09/077

From 6488 cycles to 1047 cycles

» Start with C4++ implementation for the Core 2 (by Bernstein)
» Port to C (6488 cycles)
» Reimplement speed-critical parts in ghasm
» Most important: degree-130 polynomial multiplication

> Minimal number of bit operations: 11961 (binary.cr.yp.to)
Turn this into C code: doesn't compile
Decision: Sacrifice some bit operations
2 levels of Karatsuba
Fast degree-32 polynomial multiplication (1286 bit operations)
Write scheduler to obtain code running in 1303 cycles (qhasm)
In total: 14503 cycles for degree-130 polynomial multiplication

vVYyVvYVvVVvYy

Breaking ECC2K-130 15

What happened from 08/06 to 09/077

From 6488 cycles to 1047 cycles

v

Start with C++ implementation for the Core 2 (by Bernstein)
Port to C (6488 cycles)

Reimplement speed-critical parts in ghasm

Most important: degree-130 polynomial multiplication

>

vVYyVvYVvVVvYy

Minimal number of bit operations: 11961 (binary.cr.yp.to)
Turn this into C code: doesn't compile

Decision: Sacrifice some bit operations

2 levels of Karatsuba

Fast degree-32 polynomial multiplication (1286 bit operations)
Write scheduler to obtain code running in 1303 cycles (qhasm)
In total: 14503 cycles for degree-130 polynomial multiplication

Also implement Hamming-weight computation, squarings,
conditional squarings, polynomial reduction in ghasm

Breaking ECC2K-130

15

What happened from 09/07 to 10/157

From 1047 cycles to 789 cycles

» Start with polynomial-basis representation of elements
» How about normal-basis representation?
» Advantages:

> m-squarings are just rotations
» Conversion to normal-basis is free

» Disadvantage: Multiplications are slower

Breaking ECC2K-130

16

What happened from 09/07 to 10/157

From 1047 cycles to 789 cycles

>

Start with polynomial-basis representation of elements

» How about normal-basis representation?

» Advantages:

> m-squarings are just rotations
» Conversion to normal-basis is free

» Disadvantage: Multiplications are slower

Shokrollahi et al.: Efficient conversion from type-2 normal basis to
polynomial basis and back (WAIFI 2007), improvements by
Bernstein and Lange

Use this conversion, apply polynomial multiplcation, apply inverse
conversion

Conversion (of course) also implemented in ghasm

Overhead for conversions is more than compensated by savings in
m-squarings and basis conversion

Breaking ECC2K-130

16

What happened from 10/15 to 10/297

From 789 cycles to 749 cycles

» Only 256 KB of local storage (LS): Batch size for Montgomery
inversions of 14

> ldea: swap the active set of data between LS and main memory
» Has to be done explicitely using DMA transfers

» Transfers can be interleaved with computations = almost no
overhead

> Increase Montgomery batch size to 512

Breaking ECC2K-130

17

NVIDIA GPUs (work in progress)

» Started with a CUDA implementation

» Problem: CUDA compiler nvcc has problems with register allocation
in large kernels

» Writing ptx doesn't help (register allocation is done after generating
ptx)

Breaking ECC2K-130

18

NVIDIA GPUs (work in progress)

» Started with a CUDA implementation

» Problem: CUDA compiler nvcc has problems with register allocation
in large kernels

» Writing ptx doesn't help (register allocation is done after generating
ptx)

> Idea: Use cudasm and decuda (Reverse-engineered assembler and
disassembler for G8x and G9x NVIDIA GPUs)

» Of course: Make ghasm support cudasm as target

Breaking ECC2K-130

18

NVIDIA GPUs (work in progress)

Started with a CUDA implementation

Problem: CUDA compiler nvcc has problems with register allocation
in large kernels

Writing ptx doesn't help (register allocation is done after generating
ptx)

Idea: Use cudasm and decuda (Reverse-engineered assembler and
disassembler for G8x and G9x NVIDIA GPUs)

Of course: Make ghasm support cudasm as target

Impossible to optimize only speed-critical parts (no function calls
possible!)

Write the whole kernel (iteration function) in ghasm
Early version had 125,824 lines of assembly code
Now at 1379 cycles per iteration (with smaller code)

Breaking ECC2K-130

18

Results

Breaking ECC2K-130 in one year takes:
> 2462 Cell CPUs (Playstation 3), or
» 1262 NVIDIA GTX 295 graphic cards

Breaking ECC2K-130 19

Results

Breaking ECC2K-130 in one year takes:
> 2462 Cell CPUs (Playstation 3), or
» 1262 NVIDIA GTX 295 graphic cards,or
» 3039 3-GHz Core 2 CPUs, or
» 2026 XC3S5000 FPGAs.

Breaking ECC2K-130

19

Results

Breaking ECC2K-130 in one year takes:
> 2462 Cell CPUs (Playstation 3), or
» 1262 NVIDIA GTX 295 graphic cards,or
» 3039 3-GHz Core 2 CPUs, or
» 2026 XC3S5000 FPGAs.

That's what Certicom calls “infeasible”!

Breaking ECC2K-130

19

ECC2K-130 online

Progress of the attack: http://ecc-challenge.info
News: https://twitter.com/ECCchallenge

Breaking ECC2K-130 20

http://ecc-challenge.info
https://twitter.com/ECCchallenge
http://eprint.iacr.org/2009/541/
http://eprint.iacr.org/2010/077/
http://eprint.iacr.org/2010/069/

ECC2K-130 online

Progress of the attack: http://ecc-challenge.info
News: https://twitter.com/ECCchallenge

Papers

Breaking ECC2K-130:
http://eprint.iacr.org/2009/541/
ECC2K-130 on Cell CPUs:
http://eprint.iacr.org/2010/077/
Type-ll Optimal Polynomial Bases:
http://eprint.iacr.org/2010/069/

. more on FPGAs and GPUs soon

Breaking ECC2K-130

20

http://ecc-challenge.info
https://twitter.com/ECCchallenge
http://eprint.iacr.org/2009/541/
http://eprint.iacr.org/2010/077/
http://eprint.iacr.org/2010/069/

