The probability that the number of points on the Jacobian of a genus two curve is prime

Wouter Castryck, Hendrik Hubrechts, Alessandra Rigato

- ▶ Say we wish to generate an elliptic curve E/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\leadsto \#E(\mathbb{F}_q)$ should have a large prime factor.
- ► Two approaches:
 - Fix n and construct E/\mathbb{F}_q such that $\#E(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random E/\mathbb{F}_q until $\#E(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- Central question: what is the probability of success?
- For simplicity, throughout this talk we will:
 - ightharpoonup restrict to prime fields \mathbb{F}_p
 - ▶ only consider the probability that $\#E(\mathbb{F}_p)$ is prime.
- Aim of Part I: 'rediscover' a concrete conjecture due to Galbraith & McKee.

- ▶ Say we wish to generate an elliptic curve E/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \#E(\mathbb{F}_q)$ should have a large prime factor.
- ► Two approaches:
 - Fix n and construct E/\mathbb{F}_q such that $\#E(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random E/\mathbb{F}_q until $\#E(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- Central question: what is the probability of success?
- For simplicity, throughout this talk we will:
 - ightharpoonup restrict to prime fields \mathbb{F}_p
 - ▶ only consider the probability that $\#E(\mathbb{F}_p)$ is prime.
- Aim of Part I: 'rediscover' a concrete conjecture due to Galbraith & McKee.

- ▶ Say we wish to generate an elliptic curve E/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \#E(\mathbb{F}_q)$ should have a large prime factor.
- ► Two approaches:
 - Fix n and construct E/\mathbb{F}_q such that $\#E(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random E/\mathbb{F}_q until $\#E(\mathbb{F}_{q})$ has a large prime factor (using point counting algorithms).
- Central question: what is the probability of success?
- ▶ For simplicity, throughout this talk we will:
 - ightharpoonup restrict to prime fields \mathbb{F}_p
 - ▶ only consider the probability that $\#E(\mathbb{F}_p)$ is prime.
- Aim of Part I: 'rediscover' a concrete conjecture due to Galbraith & McKee.

- ▶ Say we wish to generate an elliptic curve E/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \#E(\mathbb{F}_q)$ should have a large prime factor.
- ► Two approaches:
 - Fix n and construct E/F_q such that #E(F_q) = n (using CM).
 Fix q and try random E/F_q until #E(F_q) has a large prime
 - Fix q and try random E/\mathbb{F}_q until $\#E(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- Central question: what is the probability of success?
- For simplicity, throughout this talk we will:
 - ightharpoonup restrict to prime fields \mathbb{F}_p
 - ▶ only consider the probability that $\#E(\mathbb{F}_p)$ is prime.
- Aim of Part I: 'rediscover' a concrete conjecture due to Galbraith & McKee.

- ▶ Say we wish to generate an elliptic curve E/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \#E(\mathbb{F}_q)$ should have a large prime factor.
- Two approaches:
 - Fix n and construct E/\mathbb{F}_q such that $\#E(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random E/\mathbb{F}_q until $\#E(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- Central question: what is the probability of success?
- For simplicity, throughout this talk we will:
 - ightharpoonup restrict to prime fields \mathbb{F}_n
 - ▶ only consider the probability that $\#E(\mathbb{F}_p)$ is prime.
- Aim of Part I: 'rediscover' a concrete conjecture due to Galbraith & McKee.

- ▶ Say we wish to generate an elliptic curve E/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \#E(\mathbb{F}_q)$ should have a large prime factor.
- Two approaches:
 - Fix n and construct E/F_q such that #E(F_q) = n (using CM).
 Fix q and try random E/F_q until #E(F_q) has a large prime
 - Fix q and try random E/\mathbb{F}_q until $\#E(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- Central question: what is the probability of success?
- ► For simplicity, throughout this talk we will:
 - ▶ restrict to prime fields F_p;
 - only consider the probability that $\#E(\mathbb{F}_p)$ is prime.
- Aim of Part I: 'rediscover' a concrete conjecture due to Galbraith & McKee.

- ▶ Let \mathbb{F}_p be a finite prime field, p > 3.
- Let $E: y^2 = x^3 + Ax + B$ be a randomly chosen elliptic curve over \mathbb{F}_p .
 - ▶ That is: (A, B) is chosen from the finite set

$$\left\{ \left. (A,B) \in \mathbb{F}_p^2 \, \right| \, 4A^3 + 27B^2 \neq 0 \right\}$$

▶ By Hasse's theorem, the number N_E of (projective) rational points on E is contained in

$$[p+1-2\sqrt{p}, p+1+2\sqrt{p}].$$

▶ If N_F were uniformly distributed, we would expect

$$P(N_E \text{ is prime}) \approx \frac{1}{\log p}$$

- ▶ Let \mathbb{F}_p be a finite prime field, p > 3.
- ▶ Let $E: y^2 = x^3 + Ax + B$ be a randomly chosen elliptic curve over \mathbb{F}_p .
 - ► That is: (A, B) is chosen from the finite set

$$\left\{\left.\left(A,B\right)\in\mathbb{F}_{p}^{2}\,\right|\,4A^{3}+27B^{2}\neq0\right\}$$

By Hasse's theorem, the number N_E of (projective) rational points on E is contained in

$$[p+1-2\sqrt{p}, p+1+2\sqrt{p}]$$

▶ If N_E were uniformly distributed, we would expect

$$P(N_E \text{ is prime}) \approx \frac{1}{\log p}$$

- ▶ Let \mathbb{F}_p be a finite prime field, p > 3.
- ▶ Let $E: y^2 = x^3 + Ax + B$ be a randomly chosen elliptic curve over \mathbb{F}_p .
 - ► That is: (A, B) is chosen from the finite set

$$\{(A,B) \in \mathbb{F}_p^2 \mid 4A^3 + 27B^2 \neq 0\}$$

▶ By Hasse's theorem, the number N_E of (projective) rational points on E is contained in

$$[p+1-2\sqrt{p}, p+1+2\sqrt{p}].$$

▶ If N_E were uniformly distributed, we would expect

$$P(N_E \text{ is prime}) \approx \frac{1}{\log p}$$

- ▶ Let \mathbb{F}_p be a finite prime field, p > 3.
- ▶ Let $E: y^2 = x^3 + Ax + B$ be a randomly chosen elliptic curve over \mathbb{F}_p .
 - ► That is: (A, B) is chosen from the finite set

$$\{(A,B) \in \mathbb{F}_p^2 \mid 4A^3 + 27B^2 \neq 0\}$$

▶ By Hasse's theorem, the number N_E of (projective) rational points on E is contained in

$$[p+1-2\sqrt{p}, p+1+2\sqrt{p}].$$

▶ If N_F were uniformly distributed, we would expect

$$P(N_E \text{ is prime}) \approx \frac{1}{\log p}$$

- ► For growing *p*, *N*_E tends to follow a semicircular distribution.
 - Translate to obtain

$$T_E = N_E - (p+1) \in \begin{bmatrix} -2\sqrt{p}, 2\sqrt{p} \end{bmatrix}$$

(trace of Frobenius).

Rescale to obtain

$$t_E = T_E/2\sqrt{p} \in [-1, 1].$$

► Then for any a < b in [-1, 1]

$$\lim_{p \to \infty} P(a < t_E < b) = \int_a^b \frac{2}{\pi} \sqrt{1 - t^2} dt.$$

Proof of Birch uses theory of bivariate quadratic forms.

► Experimental evidence: a histogram of 100.000 curves $y^2 = x^3 + Ax + B$ over \mathbb{F}_{7^5} , with interval width 15:

- ► The limit hides some subtleties that are related to the discrete nature of N_E (or T_E).
- Same experiment, but now interval width 1:

- This doesn't seem to converge to a semicircle very 'smoothly' (lots of peaks and valleys).
- ▶ Gaps at $T_E \equiv 0 \mod 7$ (supersingular curves).

- ► The limit hides some subtleties that are related to the discrete nature of N_E (or T_E).
- Same experiment, but now interval width 1:

- ► This doesn't seem to converge to a semicircle very 'smoothly' (lots of peaks and valleys).
- ▶ Gaps at $T_E \equiv 0 \mod 7$ (supersingular curves).

$$\lim_{p\to\infty} P(N_E \text{ is even}) = \frac{2}{3}.$$

- ▶ Proof:
 - The completing-the-cube map

$$\{\text{square-free } x^3 + ax^2 + bx + c\} \rightarrow \{\text{square-free } x^3 + Ax + B\}$$

- Thus we may assume that *E* is defined by $y^2 = f(x)$ for a random square-free $f(x) = x^3 + ax^2 + bx + c$.
- ▶ N_E is even $\Leftrightarrow E(\mathbb{F}_p)$ has 2-torsion $\Leftrightarrow f(x)$ is reducible.
- ► The *irreducible* f(x) are precisely the minimal polynomials of all $\theta \in \mathbb{F}_{n^3} \setminus \mathbb{F}_n$ and the correspondence is 3-to-1.
- ▶ Thus

$$\lim_{q \to \infty} P(f(x) \text{ is irreducible}) = \lim_{p \to \infty} \frac{\frac{1}{3}(p^3 - p)}{p^3 - O(p^2)} = \frac{1}{3}$$

$$\lim_{p\to\infty} P(N_E \text{ is even}) = \frac{2}{3}.$$

Proof:

► The completing-the-cube map

{square-free
$$x^3 + ax^2 + bx + c$$
} \rightarrow {square-free $x^3 + Ax + B$ }

- Thus we may assume that *E* is defined by $y^2 = f(x)$ for a random square-free $f(x) = x^3 + ax^2 + bx + c$.
- ▶ N_E is even $\Leftrightarrow E(\mathbb{F}_p)$ has 2-torsion $\Leftrightarrow f(x)$ is reducible.
- ► The *irreducible* f(x) are precisely the minimal polynomials of all $\theta \in \mathbb{F}_{n^3} \setminus \mathbb{F}_n$ and the correspondence is 3-to-1.
- ▶ Thus

$$\lim_{p \to \infty} P(f(x) \text{ is irreducible}) = \lim_{p \to \infty} \frac{\frac{1}{3}(p^3 - p)}{p^3 - O(p^2)} = \frac{1}{3}$$

$$\lim_{p\to\infty} P(N_E \text{ is even}) = \frac{2}{3}.$$

Proof:

► The completing-the-cube map

{square-free
$$x^3 + ax^2 + bx + c$$
} \rightarrow {square-free $x^3 + Ax + B$ }

- ► Thus we may assume that *E* is defined by $y^2 = f(x)$ for a random square-free $f(x) = x^3 + ax^2 + bx + c$.
- ▶ N_E is even $\Leftrightarrow E(\mathbb{F}_p)$ has 2-torsion $\Leftrightarrow f(x)$ is reducible.
- ▶ The *irreducible* f(x) are precisely the minimal polynomials of all $\theta \in \mathbb{F}_{n^3} \setminus \mathbb{F}_n$ and the correspondence is 3-to-1.
- ▶ Thus

$$\lim_{p \to \infty} P(f(x) \text{ is irreducible}) = \lim_{p \to \infty} \frac{\frac{1}{3}(p^3 - p)}{p^3 - O(p^2)} = \frac{1}{3}$$

$$\lim_{p\to\infty} P(N_E \text{ is even}) = \frac{2}{3}.$$

Proof:

▶ The completing-the-cube map

{square-free
$$x^3 + ax^2 + bx + c$$
} \rightarrow {square-free $x^3 + Ax + B$ } is uniform.

- ► Thus we may assume that *E* is defined by $y^2 = f(x)$ for a random square-free $f(x) = x^3 + ax^2 + bx + c$.
- ▶ N_E is even $\Leftrightarrow E(\mathbb{F}_R)$ has 2-torsion $\Leftrightarrow f(x)$ is reducible.
- ▶ The *irreducible* f(x) are precisely the minimal polynomials of all $\theta \in \mathbb{F}_{p^3} \setminus \mathbb{F}_p$ and the correspondence is 3-to-1.
- Thus

$$\lim_{q\to\infty} P(f(x) \text{ is irreducible}) = \lim_{p\to\infty}$$

$$\lim_{p\to\infty} P(N_E \text{ is even}) = \frac{2}{3}.$$

- Proof:
 - ► The completing-the-cube map

{square-free
$$x^3 + ax^2 + bx + c$$
} \rightarrow {square-free $x^3 + Ax + B$ }

- ► Thus we may assume that *E* is defined by $y^2 = f(x)$ for a random square-free $f(x) = x^3 + ax^2 + bx + c$.
- ▶ N_E is even $\Leftrightarrow E(\mathbb{F}_p)$ has 2-torsion $\Leftrightarrow f(x)$ is reducible.
- ▶ The *irreducible* f(x) are precisely the minimal polynomials of all $\theta \in \mathbb{F}_{p^3} \setminus \mathbb{F}_p$ and the correspondence is 3-to-1.
- ▶ Thus

$$\lim_{q \to \infty} P(f(x) \text{ is irreducible}) = \lim_{p \to \infty} \frac{\frac{1}{3}(p^3 - p)}{p^3 - O(p^2)} = \frac{1}{3}$$

Let ℓ be any prime number, then

$$\lim_{\rho\to\infty}\left(P(\ell\mid N_E)-\left\{\begin{array}{ll}\frac{1}{\ell-1} & \text{if } p\not\equiv 1 \bmod \ell\\ \frac{\ell}{\ell^2-1} & \text{if } p\equiv 1 \bmod \ell\end{array}\right)=0.$$

- Lenstra used this for estimating the complexity of his elliptic curve based integer factorization algorithm.
- ► Error term is $O(\ell/\sqrt{p})$.
- ▶ Note that in particular:

$$\ell \ll p \implies P(\ell \mid N_E) > \frac{1}{\ell}$$

Let ℓ be any prime number, then

$$\lim_{\rho\to\infty}\left(P(\ell\mid N_E)-\left\{\begin{array}{ll}\frac{1}{\ell-1} & \text{if } p\not\equiv 1 \bmod \ell\\ \frac{\ell}{\ell^2-1} & \text{if } p\equiv 1 \bmod \ell\end{array}\right)=0.$$

- Lenstra used this for estimating the complexity of his elliptic curve based integer factorization algorithm.
- ▶ Error term is $O(\ell/\sqrt{p})$.
- Note that in particular:

$$\ell \ll p \implies P(\ell \mid N_E) > \frac{1}{\ell}$$

Let ℓ be any prime number, then

$$\lim_{\rho\to\infty}\left(P(\ell\mid N_E)-\left\{\begin{array}{ll}\frac{1}{\ell-1} & \text{if } p\not\equiv 1 \bmod \ell\\ \frac{\ell}{\ell^2-1} & \text{if } p\equiv 1 \bmod \ell\end{array}\right)=0.$$

- Lenstra used this for estimating the complexity of his elliptic curve based integer factorization algorithm.
- Error term is $O(\ell/\sqrt{p})$.
- ▶ Note that in particular:

$$\ell \ll p \implies P(\ell \mid N_E) > \frac{1}{\ell},$$

Let ℓ be any prime number, then

$$\lim_{\rho\to\infty}\left(P(\ell\mid N_E)-\left\{\begin{array}{ll}\frac{1}{\ell-1} & \text{if } p\not\equiv 1 \bmod \ell\\ \frac{\ell}{\ell^2-1} & \text{if } p\equiv 1 \bmod \ell\end{array}\right)=0.$$

- Lenstra used this for estimating the complexity of his elliptic curve based integer factorization algorithm.
- ▶ Error term is $O(\ell/\sqrt{p})$.
- Note that in particular:

$$\ell \ll p \implies P(\ell \mid N_E) > \frac{1}{\ell},$$

▶ Proof sketch in case $p \not\equiv 1 \mod \ell$:

One clearly has

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains a point of order ℓ .

▶ $p \not\equiv 1 \mod \ell$ then implies that

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains exactly $\ell - 1$ points of order ℓ .

- ▶ These appear in $\frac{\ell-1}{2}$ pairs $\pm P$.
- ► There exists a curve $X_1(\ell)/\mathbb{F}_p$ whose \mathbb{F}_p -rational points are in 1-1-correspondence with the set

$$\{(E,\pm P)\,|\,E ext{ ell. curve }/\mathbb{F}_p,\ P\in E(\mathbb{F}_p) ext{ has order }\ell\}$$
 1. defined by $\psi_\ell(E_l)(x)\in \mathbb{F}_p(j,x)$).

Therefore,

$$P(\ell \mid N_E) \approx \frac{\frac{2}{\ell-1} \# X_1(\ell)(\mathbb{F}_p)}{2p} = \frac{1}{\ell-1} + O(\ell/\sqrt{p})$$

- ▶ Proof sketch in case $p \not\equiv 1 \mod \ell$:
 - One clearly has

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains a point of order ℓ .

▶ $p \not\equiv 1 \mod \ell$ then implies that

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains exactly $\ell-1$ points of order ℓ .

- ▶ These appear in $\frac{\ell-1}{2}$ pairs $\pm P$.
- ► There exists a curve $X_1(\ell)/\mathbb{F}_p$ whose \mathbb{F}_p -rational points are in 1-1-correspondence with the set

$$\{(E,\pm P) \mid E \text{ ell. curve } / \mathbb{F}_p, \ P \in E(\mathbb{F}_p) \text{ has order } \ell\}$$
.g. defined by $\psi_\ell(E_j)(x) \in \mathbb{F}_p(j,x)$.

► Therefore,

$$P(\ell \mid N_E) \approx \frac{\frac{2}{\ell-1} \# X_1(\ell)(\mathbb{F}_p)}{2p} = \frac{1}{\ell-1} + O(\ell/\sqrt{p})$$

- ▶ Proof sketch in case $p \not\equiv 1 \mod \ell$:
 - One clearly has

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains a point of order ℓ .

▶ $p \not\equiv 1 \mod \ell$ then implies that

$$\ell \mid N_E \quad \Longleftrightarrow \quad \textit{E}(\mathbb{F}_p) \text{ contains exactly } \ell-1 \text{ points of order } \ell.$$

- ▶ These appear in $\frac{\ell-1}{2}$ pairs $\pm P$.
- ► There exists a curve $X_1(\ell)/\mathbb{F}_p$ whose \mathbb{F}_p -rational points are in 1-1-correspondence with the set

$$\{(E,\pm P) \mid E \text{ ell. curve } / \mathbb{F}_p, \ P \in E(\mathbb{F}_p) \text{ has order } \ell\}$$
 (e.g. defined by $\psi_\ell(E_j)(x) \in \mathbb{F}_p(j,x)$).

Therefore.

$$P(\ell \mid N_E) \approx \frac{\frac{2}{\ell-1} \# X_1(\ell)(\mathbb{F}_p)}{2p} = \frac{1}{\ell-1} + O(\ell/\sqrt{p})$$

▶ One clearly has

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains a point of order ℓ .

▶ $p \not\equiv 1 \mod \ell$ then implies that

- ▶ These appear in $\frac{\ell-1}{2}$ pairs $\pm P$.
- ► There exists a curve $X_1(\ell)/\mathbb{F}_p$ whose \mathbb{F}_p -rational points are in 1-1-correspondence with the set

$$\{(E,\pm P) \mid E \text{ ell. curve } / \mathbb{F}_p, \ P \in E(\mathbb{F}_p) \text{ has order } \ell\}$$
 e.g. defined by $\psi_\ell(E_j)(x) \in \mathbb{F}_p(j,x)$.

► Therefore,

$$P(\ell \mid N_E) \approx \frac{\frac{2}{\ell-1} \# X_1(\ell)(\mathbb{F}_p)}{2p} = \frac{1}{\ell-1} + \frac{O(\ell/\sqrt{p})}{2p}$$

- ▶ Proof sketch in case $p \not\equiv 1 \mod \ell$:
 - One clearly has

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains a point of order ℓ .

▶ $p \not\equiv 1 \mod \ell$ then implies that

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains exactly $\ell-1$ points of order ℓ .

- ▶ These appear in $\frac{\ell-1}{2}$ pairs $\pm P$.
- ► There exists a curve $X_1(\ell)/\mathbb{F}_p$ whose \mathbb{F}_p -rational points are in 1-1-correspondence with the set

$$\{(E, \pm P) \mid E \text{ ell. curve } / \mathbb{F}_p, \ P \in E(\mathbb{F}_p) \text{ has order } \ell\}$$
 (e.g. defined by $\psi_{\ell}(E_i)(x) \in \mathbb{F}_p(j, x)$).

► Therefore.

$$P(\ell \mid N_E) \approx \frac{\frac{2}{\ell-1} \# X_1(\ell)(\mathbb{F}_p)}{2p} = \frac{1}{\ell-1} + O(\ell/\sqrt{p})$$

- ▶ Proof sketch in case $p \not\equiv 1 \mod \ell$:
 - One clearly has

$$\ell \mid N_E \iff E(\mathbb{F}_p)$$
 contains a point of order ℓ .

▶ $p \not\equiv 1 \mod \ell$ then implies that

$$\ell \mid \textit{N}_{\textit{E}} \quad \Longleftrightarrow \quad \textit{E}(\mathbb{F}_{\textit{p}}) \text{ contains exactly } \ell-1 \text{ points of order } \ell.$$

- ▶ These appear in $\frac{\ell-1}{2}$ pairs $\pm P$.
- ► There exists a curve $X_1(\ell)/\mathbb{F}_p$ whose \mathbb{F}_p -rational points are in 1-1-correspondence with the set

$$\{(E,\pm P)\,|\,E \text{ ell. curve }/\mathbb{F}_p,\ P\in E(\mathbb{F}_p) \text{ has order }\ell\}$$

(e.g. defined by $\psi_{\ell}(E_i)(x) \in \mathbb{F}_p(j,x)$).

▶ Therefore,

$$P(\ell \mid N_E) \approx \frac{\frac{2}{\ell-1} \# X_1(\ell)(\mathbb{F}_p)}{2p} = \frac{1}{\ell-1} + O(\ell/\sqrt{p}).$$

Summary:

▶ If $\ell \nmid p - 1$ then

$$P(\ell \mid N_E) \approx \frac{1}{\ell - 1}$$
 vs. $P(\ell \mid \text{random number}) \approx \frac{1}{\ell}$

$$P(\ell \nmid N_E) \approx \frac{\ell - 2}{\ell - 1}$$
 vs. $P(\ell \nmid \text{random number}) \approx \frac{\ell - 1}{\ell}$

If ℓ | p − 1 then

$$P(\ell \mid N_E) \approx \frac{\ell}{\ell^2 - 1}$$
 vs. $P(\ell \mid \text{random number}) \approx \frac{1}{\ell}$

$$P(\ell \nmid N_E) \approx \frac{\ell^2 - \ell - 1}{\ell^2 - 1}$$
 vs. $P(\ell \mid \text{random number}) \approx \frac{\ell - 1}{\ell}$

- Summary:
- If ℓ ∤ p − 1 then

$$P(\ell \mid N_E) pprox rac{1}{\ell-1}$$
 vs. $P(\ell \mid \text{random number}) pprox rac{1}{\ell}$

1

$$P(\ell \nmid N_E) \approx \frac{\ell - 2}{\ell - 1}$$
 vs. $P(\ell \nmid \text{random number}) \approx \frac{\ell - 1}{\ell}$

If ℓ | p − 1 then

$$P(\ell \mid N_E) pprox rac{\ell}{\ell^2 - 1}$$
 vs. $P(\ell \mid \text{random number}) pprox rac{1}{\ell}$

 \downarrow

$$P(\ell \nmid N_E) \approx \frac{\ell^2 - \ell - 1}{\ell^2 - 1}$$
 vs. $P(\ell \mid \text{random number}) \approx \frac{\ell - 1}{\ell}$.

- Summary:
- If ℓ ∤ p − 1 then

$$P(\ell \mid N_E) pprox rac{1}{\ell-1}$$
 vs. $P(\ell \mid ext{random number}) pprox rac{1}{\ell}$

1

$$P(\ell \nmid N_E) \approx \frac{\ell-2}{\ell-1}$$
 vs. $P(\ell \nmid \text{random number}) \approx \frac{\ell-1}{\ell}$

If ℓ | p − 1 then

$$P(\ell \mid N_E) \approx \frac{\ell}{\ell^2 - 1}$$
 vs. $P(\ell \mid \text{random number}) \approx \frac{1}{\ell}$

1

$$P(\ell \nmid N_E) \approx rac{\ell^2 - \ell - 1}{\ell^2 - 1}$$
 vs. $P(\ell \mid \text{random number}) \approx rac{\ell - 1}{\ell}$.

- ▶ Let $P_1(p)$ be the probability that a random number from the Hasse interval is prime.
- ▶ Let $P_2(p) = P(N_E \text{ is prime})$.
- Heuristically,

$$P_1(p) \approx \prod_{\ell \leq \sqrt{p}} \frac{\ell - 1}{\ell} \approx \frac{p}{\log p}$$

► Heuristically (using Lenstra's estimates),

$$P_2(p) pprox \prod_{\substack{\ell \uparrow p-1 \ \ell \leq \sqrt{p}}} rac{\ell-2}{\ell-1} \cdot \prod_{\substack{\ell \mid p-1 \ \ell \leq \sqrt{p}}} rac{\ell^2-\ell-1}{\ell^2-1}.$$

▶ So

$$\frac{P_2(p)}{P_1(p)} \approx \frac{\prod_{\ell \mid p-1} \frac{\ell-2}{\ell-1} \cdot \prod_{\ell \mid p-1} \frac{\ell^2-\ell-1}{\ell^2-1}}{\prod_{\ell \mid \frac{\ell-1}{\ell}}}$$

- Let $P_1(p)$ be the probability that a random number from the Hasse interval is prime.
- ▶ Let $P_2(p) = P(N_E \text{ is prime})$.
- Heuristically,

$$P_1(p) pprox \prod_{\ell \le \sqrt{p}} \frac{\ell-1}{\ell} pprox \frac{p}{\log p}.$$

Heuristically (using Lenstra's estimates),

$$P_2(p) pprox \prod_{\substack{\ell \uparrow p-1 \ \ell \leq \sqrt{p}}} rac{\ell-2}{\ell-1} \cdot \prod_{\substack{\ell \mid p-1 \ \ell \leq \sqrt{p}}} rac{\ell^2-\ell-1}{\ell^2-1}.$$

► So

$$rac{P_2(p)}{P_1(p)}pprox rac{\prod_{\ell
mid p-1} rac{\ell-2}{\ell-1} \cdot \prod_{\ell \mid p-1} rac{\ell^2-\ell-1}{\ell^2-1}}{\prod_{\ell} rac{\ell-1}{\ell}}$$

- Let $P_1(p)$ be the probability that a random number from the Hasse interval is prime.
- ▶ Let $P_2(p) = P(N_F \text{ is prime})$.
- Heuristically,

$$P_1(p) pprox \prod_{\ell \le \sqrt{p}} \frac{\ell-1}{\ell} pprox \frac{p}{\log p}.$$

Heuristically (using Lenstra's estimates),

$$P_2(p) \approx \prod_{\substack{\ell \uparrow p = 1 \\ \ell \leq \sqrt{p}}} \frac{\ell - 2}{\ell - 1} \cdot \prod_{\substack{\ell \mid p = 1 \\ \ell \leq \sqrt{p}}} \frac{\ell^2 - \ell - 1}{\ell^2 - 1}.$$

$$\frac{P_2(p)}{P_1(p)} \approx \frac{\prod_{\ell \nmid p-1} \frac{\ell-2}{\ell-1} \cdot \prod_{\ell \mid p-1} \frac{\ell^2-\ell-1}{\ell^2-1}}{\prod_{\ell \mid p-1} \frac{\ell-1}{\ell^2-1}}$$

- Let $P_1(p)$ be the probability that a random number from the Hasse interval is prime.
- ▶ Let $P_2(p) = P(N_E \text{ is prime})$.
- Heuristically,

$$P_1(p) pprox \prod_{\ell \leq \sqrt{p}} \frac{\ell-1}{\ell} pprox \frac{p}{\log p}.$$

► Heuristically (using Lenstra's estimates),

$$P_2(p) \approx \prod_{\substack{\ell \nmid p-1 \\ \ell < \sqrt{p}}} \frac{\ell-2}{\ell-1} \cdot \prod_{\substack{\ell \mid p-1 \\ \ell < \sqrt{p}}} \frac{\ell^2-\ell-1}{\ell^2-1}.$$

► So:

$$\frac{P_2(\rho)}{P_1(\rho)} \approx \frac{\prod_{\ell \nmid \rho-1} \frac{\ell-2}{\ell-1} \cdot \prod_{\ell \mid \rho-1} \frac{\ell^2-\ell-1}{\ell^2-1}}{\prod_{\ell} \frac{\ell-1}{\ell}}$$

Let

$$c_p = \frac{2}{3} \cdot \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} \right) \cdot \prod_{\ell \mid p-1, \ \ell > 2} \left(1 + \frac{1}{(\ell+1)(\ell-2)} \right),$$

then

$$\lim_{\rho\to\infty} (P_2(\rho)/P_1(\rho)-c_\rho)=0.$$

- $c_p \in [0.44, 0.62]$
- Galbraith & McKee give different heuristics!
- They use the analytic Hurwitz-Kronecker class number formula

$$H(t^2-4\rho) = \frac{\sqrt{4\rho-t^2}}{\pi} \cdot \prod_{\ell} \left\{ \left(1 - \left(\frac{t^2-4\rho}{\ell}\right)/\ell\right)^{-1} \psi_3(\ell) \right\}$$

counting equivalence classes of bivariate quadratic forms

Let

$$c_p = \frac{2}{3} \cdot \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} \right) \cdot \prod_{\ell \mid p-1, \ \ell > 2} \left(1 + \frac{1}{(\ell+1)(\ell-2)} \right),$$

then

$$\lim_{p\to\infty} \left(P_2(p)/P_1(p)-c_p\right)=0.$$

- $c_p \in [0.44, 0.62]$
- Galbraith & McKee give different heuristics!
- They use the analytic Hurwitz-Kronecker class number formula

$$H(t^2-4p) = \frac{\sqrt{4p-t^2}}{\pi} \cdot \prod_{\ell} \left\{ \left(1 - \left(\frac{t^2-4p}{\ell}\right)/\ell\right)^{-1} \psi_3(\ell) \right\}$$

counting equivalence classes of bivariate quadratic forms.

Let

$$c_p = \frac{2}{3} \cdot \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} \right) \cdot \prod_{\ell \mid p-1, \ \ell > 2} \left(1 + \frac{1}{(\ell+1)(\ell-2)} \right),$$

then

$$\lim_{p\to\infty} \left(P_2(p)/P_1(p)-c_p\right)=0.$$

- $c_p \in [0.44, 0.62]$
- Galbraith & McKee give different heuristics!
- They use the analytic Hurwitz-Kronecker class number formula

$$H(t^2-4\rho) = \frac{\sqrt{4\rho-t^2}}{\pi} \cdot \prod_{\ell} \left\{ \left(1 - \left(\frac{t^2-4\rho}{\ell}\right)/\ell\right)^{-1} \psi_3(\ell) \right\}$$

counting equivalence classes of bivariate quadratic forms

Let

$$c_p = \frac{2}{3} \cdot \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} \right) \cdot \prod_{\ell \mid p-1, \ \ell > 2} \left(1 + \frac{1}{(\ell+1)(\ell-2)} \right),$$

then

$$\lim_{p\to\infty} \left(P_2(p)/P_1(p)-c_p\right)=0.$$

- $c_p \in [0.44, 0.62]$
- ► Galbraith & McKee give different heuristics!
- They use the analytic Hurwitz-Kronecker class number formula

$$H(t^2-4p) = \frac{\sqrt{4p-t^2}}{\pi} \cdot \prod_{\ell} \left\{ \left(1 - \left(\frac{t^2-4p}{\ell}\right)/\ell\right)^{-1} \psi_3(\ell) \right\}$$

counting equivalence classes of bivariate quadratic forms.

▶ If one follows our heuristics to estimate the number of elliptic curves with given trace *t*, one obtains

$$\frac{\sqrt{4\rho-t^2}}{\pi}\cdot\prod_{\ell}\text{`correcting factors'}.$$

- ▶ E.g. for $\ell = 2$, the correcting factor is
 - ≥ 2/3 if t is odd,
 - ▶ 4/3 if t is even.
- ► This turns out to be a reformulation of the analytic Hurwitz-Kronecker class number formula!
- Schematically:

▶ If one follows our heuristics to estimate the number of elliptic curves with given trace *t*, one obtains

$$\frac{\sqrt{4\rho-t^2}}{\pi}\cdot\prod_{\ell} \text{`correcting factors'}.$$

- ▶ E.g. for $\ell = 2$, the correcting factor is
 - ▶ 2/3 if *t* is odd,
 - ▶ 4/3 if *t* is even.
- ► This turns out to be a reformulation of the analytic Hurwitz-Kronecker class number formula!
- Schematically:

▶ If one follows our heuristics to estimate the number of elliptic curves with given trace *t*, one obtains

$$\frac{\sqrt{4\rho-t^2}}{\pi}\cdot\prod_{\ell} \text{`correcting factors'}.$$

- ▶ E.g. for $\ell = 2$, the correcting factor is
 - ▶ 2/3 if *t* is odd,
 - ▶ 4/3 if *t* is even.
- ► This turns out to be a reformulation of the analytic Hurwitz-Kronecker class number formula!
- Schematically:

Lenstra

$$\hookrightarrow$$
 Galbraith-McKee
 \hookrightarrow
 Hurwitz-Kronecker

 $P(\ell \mid N_E)$
 $P(N_E \text{ prime})$
 $P(N_E = n)$

 proven (algebraic)
 conjectural
 proven (analytic)

 error bound
 exact

The random matrix model

▶ Let gcd(n, p) = 1. To an elliptic curve E/\mathbb{F}_p we can associate its n-torsion subgroup

$$E^{[n]} = \{ P \in E(\overline{\mathbb{F}}_p) \mid [n]P = \infty \}.$$

It is well-known that

$$E^[n] \cong \mathbb{Z}/(n) \times \mathbb{Z}/(n).$$

Let (P, Q) be a $\mathbb{Z}/(n)$ -module basis of $E^{[n]}$, and let $\sigma: E^{[n]} \to E^{[n]}$ be pth power Frobenius. Then we can write

$$P^{\sigma} = {}^{[\alpha]}P + {}^{[\beta]}Q, \quad Q^{\sigma} = {}^{[\gamma]}P + {}^{[\delta]}Q.$$

▶ Important fact: the matrix

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in (\mathbb{Z}/(n))^{2\times 2}$$

has trace $\equiv T_E \mod n$ and determinant $\equiv p \mod n$.

The random matrix model

▶ Let gcd(n, p) = 1. To an elliptic curve E/\mathbb{F}_p we can associate its n-torsion subgroup

$$E^{[n]} = \{ P \in E(\overline{\mathbb{F}}_p) \mid [n]P = \infty \}.$$

It is well-known that

$$E^[n] \cong \mathbb{Z}/(n) \times \mathbb{Z}/(n).$$

▶ Let (P, Q) be a $\mathbb{Z}/(n)$ -module basis of $E^{[n]}$, and let $\sigma : E^{[n]} \to E^{[n]}$ be pth power Frobenius. Then we can write

$$P^{\sigma} = {}^{[\alpha]}P + {}^{[\beta]}Q, \quad Q^{\sigma} = {}^{[\gamma]}P + {}^{[\delta]}Q.$$

Important fact: the matrix

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in (\mathbb{Z}/(n))^{2\times 2}$$

has trace $\equiv T_F \mod n$ and determinant $\equiv p \mod n$.

- ▶ A different choice of basis results in a $GL_2(\mathbb{Z}/(n))$ -conjugated matrix.
- ▶ Thus we can unambiguously associate to E a conjugacy class \mathcal{F}_E of matrices of Frobenius (all having trace T_E and determinant p).
- Let M_p ⊂ GL₂(Z/(n)) be the set of all matrices of determinant p.

Theorem (Katz-Sarnak, Achter, C.-Hubrechts) Let ${\mathcal F}$ be a conjugacy class of matrices of determinant p. Then

$$\lim_{N\to\infty} \left(P(\mathcal{F}_E = \mathcal{F}) - \frac{\#\mathcal{F}}{\#\mathcal{M}_p} \right) = 0.$$

The error term is Cn^2/\sqrt{p} , where C is an explicit and absolute constant

Idea of proof: apply Chebotarev's density theorem to the modular covering X(n) → X(1).

- ▶ A different choice of basis results in a $GL_2(\mathbb{Z}/(n))$ -conjugated matrix.
- ► Thus we can unambiguously associate to E a conjugacy class F_E of matrices of Frobenius (all having trace T_E and determinant p).
- Let M_p ⊂ GL₂(Z/(n)) be the set of all matrices of determinant p.

Theorem (Katz-Sarnak, Achter, C.-Hubrechts)
Let $\mathcal F$ be a conjugacy class of matrices of determinant p. Then

$$\lim_{n\to\infty} \left(P(\mathcal{F}_E = \mathcal{F}) - \frac{\#\mathcal{F}}{\#\mathcal{M}_p} \right) = 0.$$

The error term is Cn^2/\sqrt{p} , where C is an explicit and absolute constant.

▶ Idea of proof: apply Chebotarev's density theorem to the modular covering $X(n) \to X(1)$.

- ▶ A different choice of basis results in a $GL_2(\mathbb{Z}/(n))$ -conjugated matrix.
- ► Thus we can unambiguously associate to E a conjugacy class F_E of matrices of Frobenius (all having trace T_E and determinant p).
- Let M_p ⊂ GL₂(Z/(n)) be the set of all matrices of determinant p.

Theorem (Katz-Sarnak, Achter, C.-Hubrechts) Let F be a conjugacy class of matrices of determinant p. Then

$$\lim_{p\to\infty} \left(P(\mathcal{F}_E = \mathcal{F}) - \frac{\#\mathcal{F}}{\#\mathcal{M}_p} \right) = 0.$$

The error term is Cn^2/\sqrt{p} , where C is an explicit and absolute constant.

▶ Idea of proof: apply Chebotarev's density theorem to the modular covering $X(n) \rightarrow X(1)$.

- ▶ A different choice of basis results in a $GL_2(\mathbb{Z}/(n))$ -conjugated matrix.
- ► Thus we can unambiguously associate to E a conjugacy class F_E of matrices of Frobenius (all having trace T_E and determinant p).
- Let M_p ⊂ GL₂(Z/(n)) be the set of all matrices of determinant p.

Theorem (Katz-Sarnak, Achter, C.-Hubrechts)

Let \mathcal{F} be a conjugacy class of matrices of determinant p. Then

$$\lim_{\rho \to \infty} \left(P(\mathcal{F}_E = \mathcal{F}) - \frac{\# \mathcal{F}}{\# \mathcal{M}_\rho} \right) = 0.$$

The error term is Cn^2/\sqrt{p} , where C is an explicit and absolute constant.

Idea of proof: apply Chebotarev's density theorem to the modular covering X(n) → X(1).

Example to get in touch with the flavor:

- ▶ What proportion of elliptic curves satisfies $E^{[\ell]} \subset E(\mathbb{F}_p)$?
 - ▶ $E^{\lfloor \ell \rfloor} \subset E(\mathbb{F}_p)$ if and only if $E^{\lfloor \ell \rfloor}$ has a basis consisting of \mathbb{F}_p -rational points P and Q.
 - ► Thus: if and only if

$$\mathcal{F}_E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

$$\approx \frac{\#\left\{\begin{pmatrix}1&0\\0&1\end{pmatrix}\right\}}{\#\mathcal{M}_{D}}.$$

- ▶ $\#\mathcal{M}_D = \ell^3 \ell$ (exercise)
- ▶ Thus

$$P(E^[\ell] \subset E(\mathbb{F}_p)) pprox rac{1}{\ell^3 - \ell}$$

- ► Example to get in touch with the flavor:
- ▶ What proportion of elliptic curves satisfies $E^{[\ell]} \subset E(\mathbb{F}_p)$?
 - ▶ $E^{\lfloor \ell \rfloor} \subset E(\mathbb{F}_p)$ if and only if $E^{\lfloor \ell \rfloor}$ has a basis consisting of \mathbb{F}_p -rational points P and Q.
 - ► Thus: if and only if

$$\mathcal{F}_E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$pprox rac{\#\left\{egin{pmatrix}1&0\\0&1\end{pmatrix}
ight\}}{\#\mathcal{M}_{\mathcal{D}}}.$$

- \blacktriangleright # $\mathcal{M}_p = \ell^3 \ell$ (exercise)
- ► Thus

$$P(E^{[\ell]} \subset E(\mathbb{F}_p)) pprox rac{1}{\ell^3 - \ell}$$

- Example to get in touch with the flavor:
- ▶ What proportion of elliptic curves satisfies $E^{[\ell]} \subset E(\mathbb{F}_p)$?
 - $E^{[\ell]} \subset E(\mathbb{F}_p)$ if and only if $E^{[\ell]}$ has a basis consisting of \mathbb{F}_p -rational points P and Q.
 - ► Thus: if and only if

$$\mathcal{F}_E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$pprox rac{\#\left\{egin{pmatrix}1&0\\0&1\end{pmatrix}
ight\}}{\#\mathcal{M}_{\mathcal{D}}}.$$

- \blacktriangleright # $\mathcal{M}_{p} = \ell^{3} \ell$ (exercise)
- ► Thus

$$P(E^{[\ell]} \subset E(\mathbb{F}_p)) pprox rac{1}{\ell^3 - \ell}$$

- ► Example to get in touch with the flavor:
- ▶ What proportion of elliptic curves satisfies $E^{[\ell]} \subset E(\mathbb{F}_p)$?
 - $E^{[\ell]} \subset E(\mathbb{F}_p)$ if and only if $E^{[\ell]}$ has a basis consisting of \mathbb{F}_p -rational points P and Q.
 - ► Thus: if and only if

$$\mathcal{F}_E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

$$pprox rac{\#\left\{egin{pmatrix}1&0\\0&1\end{pmatrix}
ight\}}{\#\mathcal{M}_{\mathcal{D}}}.$$

- $\#\mathcal{M}_p = \ell^3 \ell$ (exercise)
- ▶ Thus

$$P(E^{[\ell]} \subset E(\mathbb{F}_p)) pprox rac{1}{\ell^3 - \ell}$$

- ► Example to get in touch with the flavor:
- ▶ What proportion of elliptic curves satisfies $E^{[\ell]} \subset E(\mathbb{F}_p)$?
 - $E^{[\ell]} \subset E(\mathbb{F}_p)$ if and only if $E^{[\ell]}$ has a basis consisting of \mathbb{F}_p -rational points P and Q.
 - ► Thus: if and only if

$$\mathcal{F}_E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

$$\approx \frac{\#\left\{\begin{pmatrix}1&0\\0&1\end{pmatrix}\right\}}{\#\mathcal{M}_{\text{D}}}.$$

- $\#\mathcal{M}_{D} = \ell^{3} \ell$ (exercise)
- ► Thus

$$P(E^[\ell] \subset E(\mathbb{F}_p)) pprox rac{1}{\ell^3 - \ell}$$

- ► Example to get in touch with the flavor:
- ▶ What proportion of elliptic curves satisfies $E^{[\ell]} \subset E(\mathbb{F}_p)$?
 - $E^{[\ell]} \subset E(\mathbb{F}_p)$ if and only if $E^{[\ell]}$ has a basis consisting of \mathbb{F}_p -rational points P and Q.
 - ► Thus: if and only if

$$\mathcal{F}_E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

$$\approx \frac{\#\left\{\begin{pmatrix}1&0\\0&1\end{pmatrix}\right\}}{\#\mathcal{M}_{D}}.$$

- $\#\mathcal{M}_p = \ell^3 \ell$ (exercise).
- ► Thus

$$P(E^{[\ell]} \subset E(\mathbb{F}_p)) \approx \frac{1}{\ell^3 - \ell}$$

- ► Example to get in touch with the flavor:
- ▶ What proportion of elliptic curves satisfies $E^{[\ell]} \subset E(\mathbb{F}_p)$?
 - $E^{[\ell]} \subset E(\mathbb{F}_p)$ if and only if $E^{[\ell]}$ has a basis consisting of \mathbb{F}_p -rational points P and Q.
 - ► Thus: if and only if

$$\mathcal{F}_E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

$$\approx \frac{\# \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}}{\# \mathcal{M}_{D}}.$$

- $\#\mathcal{M}_p = \ell^3 \ell$ (exercise).
- ▶ Thus

$$P(E^{[\ell]} \subset E(\mathbb{F}_p)) \approx \frac{1}{\ell^3 - \ell}.$$

- Proving Lenstra's results now boils down to counting matrices:
- Exercise:

$$\# \{ M \in \mathcal{M}_p \mid p+1 - \text{Tr}(M) = 0 \}$$

$$= \begin{cases} \ell^2 + \ell & \text{if } p \not\equiv 1 \text{ mod } \ell \\ \ell^2 & \text{if } p \equiv 1 \text{ mod } \ell \end{cases}$$

► Recall: $\#\mathcal{M}_p = \ell^3 - \ell$.

- Proving Lenstra's results now boils down to counting matrices:
- Exercise:

$$\# \{ M \in \mathcal{M}_p \mid p+1 - \text{Tr}(M) = 0 \}$$

$$= \begin{cases} \ell^2 + \ell & \text{if } p \not\equiv 1 \bmod \ell \\ \ell^2 & \text{if } p \equiv 1 \bmod \ell \end{cases}$$

▶ Recall: $\#\mathcal{M}_p = \ell^3 - \ell$.

- ▶ Say we wish to generate a genus 2 hyperelliptic curve H/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\leadsto \# \mathbb{J}(H)(\mathbb{F}_q)$ should have a large prime factor.
- ► Two approaches:
 - Fix n and construct H/\mathbb{F}_q such that $\#\mathbb{J}(H)(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random H/\mathbb{F}_q until $\#\mathbb{J}(H)(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- ▶ Again: what is the probability of success?
- ► For simplicity, we will:
 - work over prime fields \mathbb{F}_p
 - ▶ only consider the probability that $\#J(H)(\mathbb{F}_p)$ is prime.
- Aim of Part II: generalize the Galbraith-McKee conjecture.

- ▶ Say we wish to generate a genus 2 hyperelliptic curve H/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \# \mathbb{J}(H^{1}(\mathbb{F}_{q}))$ should have a large prime factor.
- ► Two approaches:
 - Fix n and construct H/\mathbb{F}_q such that $\#\mathbb{J}(H)(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random H/\mathbb{F}_q until $\#\mathbb{J}(H)(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- ► Again: what is the probability of success?
- For simplicity, we will:
 - work over prime fields \mathbb{F}_p ;
 - ▶ only consider the probability that $\#J(H)(\mathbb{F}_p)$ is prime.
- Aim of Part II: generalize the Galbraith-McKee conjecture.

- ▶ Say we wish to generate a genus 2 hyperelliptic curve H/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \# \mathbb{J}(H^{1}(\mathbb{F}_{q}))$ should have a large prime factor.
- ▶ Two approaches:
 - Fix n and construct H/\mathbb{F}_q such that $\#\mathbb{J}(H)(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random H/\mathbb{F}_q until $\#\mathbb{J}(H)(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- Again: what is the probability of success?
- For simplicity, we will:
 - work over prime fields \mathbb{F}_p ;
 - ▶ only consider the probability that $\#\mathbb{J}(H)(\mathbb{F}_p)$ is prime.
- Aim of Part II: generalize the Galbraith-McKee conjecture.

- ▶ Say we wish to generate a genus 2 hyperelliptic curve H/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \# \mathbb{J}(H^{1}(\mathbb{F}_{q}))$ should have a large prime factor.
- ▶ Two approaches:
 - Fix n and construct H/\mathbb{F}_q such that $\#\mathbb{J}(H)(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random H/\mathbb{F}_q until $\#\mathbb{J}(H)(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- Again: what is the probability of success?
- ► For simplicity, we will:
 - work over prime fields \mathbb{F}_p
 - ▶ only consider the probability that $\#J(H^{j}(\mathbb{F}_{p}))$ is prime.
- Aim of Part II: generalize the Galbraith-McKee conjecture.

- ▶ Say we wish to generate a genus 2 hyperelliptic curve H/\mathbb{F}_q suitable for use in discrete-log based cryptosystems.
- ▶ SPH attack $\rightsquigarrow \# \mathbb{J}(H)(\mathbb{F}_q)$ should have a large prime factor.
- Two approaches:
 - Fix n and construct H/\mathbb{F}_q such that $\#\mathbb{J}(H)(\mathbb{F}_q)=n$ (using CM).
 - Fix q and try random H/\mathbb{F}_q until $\#\mathbb{J}(H)(\mathbb{F}_q)$ has a large prime factor (using point counting algorithms).
- Again: what is the probability of success?
- ► For simplicity, we will:
 - work over prime fields \mathbb{F}_p ;
 - only consider the probability that $\#\mathbb{J}(H)(\mathbb{F}_p)$ is prime.
- Aim of Part II: generalize the Galbraith-McKee conjecture.

- ▶ Let \mathbb{F}_p be a finite prime field, p > 2.
- Let $H: y^2 = f(x)$ be a randomly chosen genus 2 curve over \mathbb{F}_p . That is:
 - ightharpoonup Either f(x) is chosen from the finite set

$$\{f(x) \in \mathbb{F}_p[x] \mid f(x) \text{ monic and squarefree, } \deg f(x) = 5\}$$

uniformly at random.

ightharpoonup Either f(x) is chosen from the finite set

$$\{f(x) \in \mathbb{F}_p[x] \mid f(x) \text{ squarefree, deg } f(x) = 6\}$$

uniformly at random.

▶ By Tate's theorem, the number N_H of rational points on J(H) is contained in

$$[(p+1)^2-4(p+\sqrt{p}+1)\sqrt{p},(p+1)^2+4(p+\sqrt{p}+1)\sqrt{p}].$$

First remark: the above notions are fundamentally different!

- ▶ Let \mathbb{F}_p be a finite prime field, p > 2.
- ▶ Let $H: y^2 = f(x)$ be a randomly chosen genus 2 curve over \mathbb{F}_p . That is:
 - ▶ Either f(x) is chosen from the finite set

$$\{f(x) \in \mathbb{F}_p[x] \mid f(x) \text{ monic and squarefree, } \deg f(x) = 5\}$$

uniformly at random.

ightharpoonup Either f(x) is chosen from the finite set

$$\{f(x) \in \mathbb{F}_p[x] \mid f(x) \text{ squarefree, deg } f(x) = 6\}$$

uniformly at random.

By Tate's theorem, the number N_H of rational points on J(H) is contained in

$$[(p+1)^2 - 4(p+\sqrt{p}+1)\sqrt{p}, (p+1)^2 + 4(p+\sqrt{p}+1)\sqrt{p}].$$

First remark: the above notions are fundamentally different!

- ▶ Let \mathbb{F}_p be a finite prime field, p > 2.
- Let $H: y^2 = f(x)$ be a randomly chosen genus 2 curve over \mathbb{F}_p . That is:
 - Either f(x) is chosen from the finite set

$$\{f(x) \in \mathbb{F}_p[x] \mid f(x) \text{ monic and squarefree, } \deg f(x) = 5\}$$

uniformly at random.

▶ Either f(x) is chosen from the finite set

$$\{f(x) \in \mathbb{F}_p[x] \mid f(x) \text{ squarefree, deg } f(x) = 6\}$$

uniformly at random.

▶ By Tate's theorem, the number N_H of rational points on $\mathbb{J}(H)$ is contained in

$$[(p+1)^2-4(p+\sqrt{p}+1)\sqrt{p},(p+1)^2+4(p+\sqrt{p}+1)\sqrt{p}].$$

First remark: the above notions are fundamentally different!

- ▶ Let \mathbb{F}_p be a finite prime field, p > 2.
- Let $H: y^2 = f(x)$ be a randomly chosen genus 2 curve over \mathbb{F}_p . That is:
 - Either f(x) is chosen from the finite set

$$\{f(x) \in \mathbb{F}_{\rho}[x] \mid f(x) \text{ monic and squarefree, } \deg f(x) = 5\}$$

uniformly at random.

• Either f(x) is chosen from the finite set

$$\{f(x) \in \mathbb{F}_{\rho}[x] \mid f(x) \text{ squarefree, deg } f(x) = 6\}$$

uniformly at random.

▶ By Tate's theorem, the number N_H of rational points on $\mathbb{J}(H)$ is contained in

$$[(p+1)^2-4(p+\sqrt{p}+1)\sqrt{p},(p+1)^2+4(p+\sqrt{p}+1)\sqrt{p}].$$

First remark: the above notions are fundamentally different!

Let H/\mathbb{F}_q be a curve of genus 2. Each of the 15 non-trivial 2-torsion points of $\mathbb{J}(H)$ (thought of as a divisor class) contains a unique pair of divisors $\{P_i - P_j, P_j - P_i\}$, where P_i and P_j are distinct Weierstrass points.

▶ Proof:

- ► Think of the P_i as the points $(x_i, 0)$ on some Weierstrass model $y^2 = f(x)$ with deg f = 6.
- ▶ $2P_i 2P_j \sim 0$, hence $P_i P_j \sim P_j P_i$ has 2-torsion.
- ▶ $P_i P_i \not\sim 0$ by Riemann-Roch.
- ► All pairs are distinct:
 - $\triangleright (P_1 P_2) (P_1 P_3) \sim P_2 P_3.$
 - $(P_1 P_2) (P_3 P_4) \sim P_5 P_6.$
- ► There are $\binom{6}{2} = 15$ such point pairs, so every 2-torsion points must appear in this way.

- Proof:
- ► Think of the P_i as the points $(x_i, 0)$ on some Weierstrass model $y^2 = f(x)$ with deg f = 6.
- ▶ $2P_i 2P_j \sim 0$, hence $P_i P_j \sim P_j P_i$ has 2-torsion.
- ▶ $P_i P_i \not\sim 0$ by Riemann-Roch.
- ▶ All pairs are distinct:
 - $(P_1 P_2) (P_1 P_3) \sim P_2 P_3.$
 - $\triangleright (P_1 P_2) (P_3 P_4) \sim P_5 P_6.$
- ► There are $\binom{6}{2} = 15$ such point pairs, so every 2-torsion points must appear in this way.

Let H/\mathbb{F}_q be a curve of genus 2. Each of the 15 non-trivial 2-torsion points of $\mathbb{J}(H)$ (thought of as a divisor class) contains a unique pair of divisors $\{P_i-P_j,P_j-P_i\}$, where P_i and P_j are distinct Weierstrass points.

- Proof:
- ► Think of the P_i as the points $(x_i, 0)$ on some Weierstrass model $y^2 = f(x)$ with deg f = 6.
- ▶ $2P_i 2P_j \sim 0$, hence $P_i P_j \sim P_j P_i$ has 2-torsion.
- ▶ $P_i P_i \not\sim 0$ by Riemann-Roch.
- All pairs are distinct:

$$(P_1 - P_2) - (P_1 - P_3) \sim P_2 - P_3$$

$$\triangleright (P_1 - P_2) - (P_3 - P_4) \sim P_5 - P_6.$$

► There are $\binom{6}{2} = 15$ such point pairs, so every 2-torsion points must appear in this way.

- Proof:
- ► Think of the P_i as the points $(x_i, 0)$ on some Weierstrass model $y^2 = f(x)$ with deg f = 6.
- ▶ $2P_i 2P_j \sim 0$, hence $P_i P_j \sim P_j P_i$ has 2-torsion.
- ▶ $P_i P_i \not\sim 0$ by Riemann-Roch.
- All pairs are distinct:
 - $(P_1 P_2) (P_1 P_3) \sim P_2 P_3.$
 - $(P_1 P_2) (P_3 P_4) \sim P_5 P_6.$
- ► There are $\binom{6}{2} = 15$ such point pairs, so every 2-torsion points must appear in this way.

- Proof:
- ► Think of the P_i as the points $(x_i, 0)$ on some Weierstrass model $y^2 = f(x)$ with deg f = 6.
- ▶ $2P_i 2P_j \sim 0$, hence $P_i P_j \sim P_j P_i$ has 2-torsion.
- ▶ $P_i P_i \not\sim 0$ by Riemann-Roch.
- ► All pairs are distinct:
 - $(P_1 P_2) (P_1 P_3) \sim P_2 P_3$.
 - $(P_1 P_2) (P_3 P_4) \sim P_5 P_6.$
- ► There are $\binom{6}{2} = 15$ such point pairs, so every 2-torsion points must appear in this way.

- ▶ Proof:
- ► Think of the P_i as the points $(x_i, 0)$ on some Weierstrass model $y^2 = f(x)$ with deg f = 6.
- ▶ $2P_i 2P_j \sim 0$, hence $P_i P_j \sim P_j P_i$ has 2-torsion.
- ▶ $P_i P_i \not\sim 0$ by Riemann-Roch.
- ► All pairs are distinct:
 - $(P_1 P_2) (P_1 P_3) \sim P_2 P_3.$
 - $(P_1 P_2) (P_3 P_4) \sim P_5 P_6.$
- ► There are $\binom{6}{2} = 15$ such point pairs, so every 2-torsion points must appear in this way.

- ► Corollary: $\mathbb{J}(H)$ has 2-torsion if and only if H has an ' \mathbb{F}_p -rational' Weierstrass point pair:
 - either two \mathbb{F}_p -rational Weierstrass points,
 - either two Weierstrass points that are swapped by Galois conjugation.
- ► In degree 6:
 - f(x) has two linear factors or
 - \rightarrow f(x) has a quadratic factor.

Exercise: probability that this happens is $\approx 26/45 \approx 58\%$.

- ▶ In degree 5, our curve automatically has an \mathbb{F}_p -rational Weierstrass point. Thus there is 2-torsion if
 - \triangleright f(x) has a linear factor or
 - f(x) has a quadratic factor

or in other words if f(x) is reducible! The probability that this happens is $\approx 4/5 = 80\%$ (same proof as before).

▶ Luckily, for all $\ell > 2$ the probabilities are no longer affected (follows from the random matrix model).

- ► Corollary: $\mathbb{J}(H)$ has 2-torsion if and only if H has an ' \mathbb{F}_p -rational' Weierstrass point pair:
 - either two \mathbb{F}_p -rational Weierstrass points,
 - either two Weierstrass points that are swapped by Galois conjugation.
- ▶ In degree 6:
 - f(x) has two linear factors or
 - f(x) has a quadratic factor.

Exercise: probability that this happens is $\approx 26/45 \approx 58\%$.

- ▶ In degree 5, our curve automatically has an \mathbb{F}_p -rational Weierstrass point. Thus there is 2-torsion if
 - f(x) has a \$\partial(i)49223(8\partial(x)\)904239865(4))904239846(\partial(x)\)-22993245(

- ► Corollary: $\mathbb{J}(H)$ has 2-torsion if and only if H has an ' \mathbb{F}_p -rational' Weierstrass point pair:
 - either two \mathbb{F}_p -rational Weierstrass points,
 - either two Weierstrass points that are swapped by Galois conjugation.
- ▶ In degree 6:
 - f(x) has two linear factors or
 - f(x) has a quadratic factor.

Exercise: probability that this happens is $\approx 26/45 \approx 58\%$.

- ▶ In degree 5, our curve automatically has an \mathbb{F}_p -rational Weierstrass point. Thus there is 2-torsion if
 - f(x) has a linear factor or
 - f(x) has a quadratic factor

or in other words if f(x) is reducible! The probability that this happens is $\approx 4/5 = 80\%$ (same proof as before).

▶ Luckily, for all $\ell > 2$ the probabilities are no longer affected (follows from the random matrix model).

The random matrix model in genus 2

▶ Let gcd(n, p) = 1. To a genus 2 curve H/\mathbb{F}_p we can associate the n-torsion subgroup of $\mathbb{J}(H)$

$$\mathbb{J}(H)^{[n]} = \{ P \in \mathbb{J}(H) (\overline{\mathbb{F}}_p) \mid [n]P = 0 \}.$$

It is well-known that

$$E^{[n]} \cong \mathbb{Z}/(n) \times \mathbb{Z}/(n) \times \mathbb{Z}/(n) \times \mathbb{Z}/(n).$$

Let (P, Q, R, S) be a $\mathbb{Z}/(n)$ -module basis of $\mathbb{J}(H)^{[n]}$, and let $\sigma : \mathbb{J}(H)^{[n]} \to \mathbb{J}(H)^{[n]}$ be pth power Frobenius. Then we can write

$$P^{\sigma} = {}^{[}\alpha]P + {}^{[}\beta]Q + {}^{[}\gamma]R + {}^{[}\delta]S, \dots$$

Important fact: the corresponding matrix in

$$(\mathbb{Z}/(n))^{4\times 4}$$

has trace $\equiv T_E \mod n$ and determinant $\equiv p \mod n$.

The random matrix model in genus 2

▶ Let gcd(n, p) = 1. To a genus 2 curve H/\mathbb{F}_p we can associate the n-torsion subgroup of $\mathbb{J}(H)$

$$\mathbb{J}(H)^{[n]} = \{ P \in \mathbb{J}(H) (\overline{\mathbb{F}}_p) \mid [n]P = 0 \}.$$

It is well-known that

$$E^{[n]} \cong \mathbb{Z}/(n) \times \mathbb{Z}/(n) \times \mathbb{Z}/(n) \times \mathbb{Z}/(n).$$

▶ Let (P, Q, R, S) be a $\mathbb{Z}/(n)$ -module basis of $\mathbb{J}(H)^{[n]}$, and let $\sigma : \mathbb{J}(H)^{[n]} \to \mathbb{J}(H)^{[n]}$ be pth power Frobenius. Then we can write

$$P^{\sigma} = {}^{[\alpha]}P + {}^{[\beta]}Q + {}^{[\gamma]}R + {}^{[\delta]}S, \dots$$

► Important fact: the corresponding matrix in

$$(\mathbb{Z}/(n))^{4\times 4}$$

has trace $\equiv T_E \mod n$ and determinant $\equiv p \mod n$.

The random matrix model in genus 2

▶ Let gcd(n, p) = 1. To a genus 2 curve H/\mathbb{F}_p we can associate the n-torsion subgroup of $\mathbb{J}(H)$

$$\mathbb{J}(H)^{[n]} = \{ P \in \mathbb{J}(H) (\overline{\mathbb{F}}_p) \mid [n]P = 0 \}.$$

It is well-known that

$$E^{[n]} \cong \mathbb{Z}/(n) \times \mathbb{Z}/(n) \times \mathbb{Z}/(n) \times \mathbb{Z}/(n).$$

▶ Let (P, Q, R, S) be a $\mathbb{Z}/(n)$ -module basis of $\mathbb{J}(H)^{[n]}$, and let $\sigma : \mathbb{J}(H)^{[n]} \to \mathbb{J}(H)^{[n]}$ be pth power Frobenius. Then we can write

$$P^{\sigma} = {}^{[\alpha]}P + {}^{[\beta]}Q + {}^{[\gamma]}R + {}^{[\delta]}S, \dots$$

Important fact: the corresponding matrix in

$$(\mathbb{Z}/(n))^{4\times 4}$$

has trace $\equiv T_E \mod n$ and determinant $\equiv p \mod n$.

- ► However: we will no longer consider *any* basis!
- ▶ J(H) is endowed with a *symplectic structure*, induced by the Weil pairing. We will restrict to symplectic bases.
- Now we associate to H an orbit under $\operatorname{GSp}_4(\mathbb{Z}/(n^j)$ -conjugation of matrices in $\operatorname{Sp}_4^{(p)}(\mathbb{Z}/(n^j))$. Denote this orbit by \mathcal{F}_H .

Theorem (Katz-Sarnak, Achter, work to be done) Let $H: y^2 = f(x)$ be a genus 2 curve, where f(x) is chosen from

$$\{f(x) \in \mathbb{F}_p[x] \mid f(x) \text{ squarefree, } \deg f(x) = 6\}$$

uniformly at random. Let \mathcal{F} be an orbit under $GSp_4(\mathbb{Z}/(n))$ -conjugation. Then

$$\lim_{p\to\infty}\left(P(\mathcal{F}_H=\mathcal{F})-\frac{\#\mathcal{F}}{\#\text{Sp}_4^{(p)}(\mathbb{Z}/(n^{))}}\right)=0.$$

So: counting appropriate matrices!

▶
$$\# Sp_4(\mathbb{Z}/(\ell)) = \# Sp_4^{(p)}(\mathbb{Z}/(\ell)) = \ell^4(\ell^4 - 1)(\ell^2 - 1)$$

▶ We guess (via interpolation) that the proportion of $M \in \operatorname{Sp}_4^{(p)}(\mathbb{Z}/(\ell))$ for which $\chi(M)(1) = 0$ equals

$$\begin{cases} \frac{\ell^2 - 2}{(\ell^2 - 1)(\ell - 1)} & \text{if } p \not\equiv 1 \bmod \ell \\ \frac{(\ell^4 - \ell - 1)\ell}{(\ell^4 - 1)(\ell^2 - 1)} & \text{if } p \equiv 1 \bmod \ell. \end{cases}$$

- So: counting appropriate matrices!
- $\# Sp_4(\mathbb{Z}/(\ell)) = \# Sp_4^{(p)}(\mathbb{Z}/(\ell)) = \ell^4(\ell^4 1)(\ell^2 1)$
- ▶ We guess (via interpolation) that the proportion of $M \in \operatorname{Sp}_4^{(p)}(\mathbb{Z}/(\ell))$ for which $\chi(M)(1) = 0$ equals

$$\begin{cases} \frac{\ell^2 - 2}{(\ell^2 - 1)(\ell - 1)} & \text{if } p \not\equiv 1 \bmod \ell \\ \frac{(\ell^4 - \ell - 1)\ell}{(\ell^4 - 1)(\ell^2 - 1)} & \text{if } p \equiv 1 \bmod \ell. \end{cases}$$

- ▶ Let $P_1(p)$ be the probability that a random number from the Weil interval is prime.
- ▶ Let $P_2(p) = P(N_H \text{ is prime})$.

$$S_p = \frac{38}{45} \prod_{\ell > 2} \left(1 - \frac{1}{(\ell - 1)^2} + \frac{\ell}{(\ell - 1)^2 (\ell^2 - 1)} \right) \prod_{\ell \mid p - 1, \ell > 2} \left(1 + \frac{\ell^4 - \ell^3 - \ell - 2}{(\ell + 1)(\ell^2 + 1)(\ell^3 - 2\ell^2 - \ell + 3)} \right)$$

$$\lim_{p \to \infty} (P_2(p)/P_1(p) - c_p) = 0.$$

- $c_p \in [0.63, 0.80]$ (cf. elliptic curves: [0.44, 0.62])
- Recall: the above is for random squarefree f(x) of degree
- For random squarefree monic f(x) of degree 5, the factor 38/45 must be replaced by 2/5.
- ▶ Then $c_p \in [0.30, 0.38]$

- ▶ Let $P_1(p)$ be the probability that a random number from the Weil interval is prime.
- ▶ Let $P_2(p) = P(N_H \text{ is prime})$.

$$c_{\rho} = \frac{38}{45} \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} + \frac{\ell}{(\ell-1)^2(\ell^2-1)} \right) \prod_{\ell \mid \rho-1, \ell > 2} \left(1 + \frac{\ell^4 - \ell^3 - \ell - 2}{(\ell+1)(\ell^2+1)(\ell^3 - 2\ell^2 - \ell + 3)} \right),$$

$$\lim_{p \to \infty} (P_2(p)/P_1(p) - c_p) = 0.$$

- $c_n \in [0.63, 0.80]$ (cf. elliptic curves: [0.44, 0.62])
- Recall: the above is for random squarefree f(x) of degree 6
- For random squarefree monic f(x) of degree 5, the factor 38/45 must be replaced by 2/5.
- ▶ Then $c_p \in [0.30, 0.38]$

- ▶ Let $P_1(p)$ be the probability that a random number from the Weil interval is prime.
- ▶ Let $P_2(p) = P(N_H \text{ is prime})$.

$$c_{\rho} = \frac{38}{45} \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} + \frac{\ell}{(\ell-1)^2(\ell^2-1)} \right) \prod_{\ell \mid \rho-1, \ell > 2} \left(1 + \frac{\ell^4 - \ell^3 - \ell - 2}{(\ell+1)(\ell^2+1)(\ell^3 - 2\ell^2 - \ell + 3)} \right),$$

$$\lim_{p \to \infty} (P_2(p)/P_1(p) - c_p) = 0.$$

- $c_p \in [0.63, 0.80]$ (cf. elliptic curves: [0.44, 0.62])
- Recall: the above is for random squarefree f(x) of degree 6.
- For random squarefree monic f(x) of degree 5, the factor 38/45 must be replaced by 2/5.
- ▶ Then $c_o \in [0.30, 0.38]$

- ▶ Let $P_1(p)$ be the probability that a random number from the Weil interval is prime.
- ▶ Let $P_2(p) = P(N_H \text{ is prime})$.

$$c_p = \frac{38}{45} \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} + \frac{\ell}{(\ell-1)^2 (\ell^2-1)} \right) \prod_{\ell \mid p-1, \ell > 2} \left(1 + \frac{\ell^4 - \ell^3 - \ell - 2}{(\ell+1)(\ell^2+1)(\ell^3 - 2\ell^2 - \ell + 3)} \right),$$

$$\lim_{p \to \infty} (P_2(p)/P_1(p) - c_p) = 0.$$

- $c_p \in [0.63, 0.80]$ (cf. elliptic curves: [0.44, 0.62])
- Recall: the above is for random squarefree f(x) of degree
 6.
- For random squarefree monic f(x) of degree 5, the factor 38/45 must be replaced by 2/5.
- ▶ Then $c_p \in {}^{\mathsf{L}}0.30, 0.38$]

- ▶ Let $P_1(p)$ be the probability that a random number from the Weil interval is prime.
- ▶ Let $P_2(p) = P(N_H \text{ is prime})$.

$$c_{p} = \frac{38}{45} \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} + \frac{\ell}{(\ell-1)^2(\ell^2-1)} \right) \prod_{\ell \mid p-1, \ell > 2} \left(1 + \frac{\ell^4 - \ell^3 - \ell - 2}{(\ell+1)(\ell^2+1)(\ell^3 - 2\ell^2 - \ell + 3)} \right),$$

$$\lim_{p \to \infty} (P_2(p)/P_1(p) - c_p) = 0.$$

- $c_p \in [0.63, 0.80]$ (cf. elliptic curves: [0.44, 0.62])
- Recall: the above is for random squarefree f(x) of degree
 6.
- ► For random squarefree monic f(x) of degree 5, the factor 38/45 must be replaced by 2/5.
- ▶ Then $c_p \in {}^{\mathsf{L}}0.30, 0.38$]

- ▶ Let $P_1(p)$ be the probability that a random number from the Weil interval is prime.
- ▶ Let $P_2(p) = P(N_H \text{ is prime})$.

$$c_{\rho} = \frac{38}{45} \prod_{\ell > 2} \left(1 - \frac{1}{(\ell-1)^2} + \frac{\ell}{(\ell-1)^2(\ell^2-1)} \right) \prod_{\ell \mid \rho-1, \ell > 2} \left(1 + \frac{\ell^4 - \ell^3 - \ell - 2}{(\ell+1)(\ell^2+1)(\ell^3 - 2\ell^2 - \ell + 3)} \right),$$

$$\lim_{p \to \infty} (P_2(p)/P_1(p) - c_p) = 0.$$

- $c_p \in [0.63, 0.80]$ (cf. elliptic curves: [0.44, 0.62])
- ► Recall: the above is for random squarefree f(x) of degree 6.
- ► For random squarefree monic f(x) of degree 5, the factor 38/45 must be replaced by 2/5.
- ▶ Then $c_p \in [0.30, 0.38]$.

► Future work:

- Finish this research.
- Invert the reasoning and construct a genus 2 Hurwitz-Kronecker class number formula.
- ▶ Does the effect of favoring non-primes flatten out as $g \to \infty$?
- Many thanks for your attention!

- ▶ Future work:
 - Finish this research.
 - Invert the reasoning and construct a genus 2 Hurwitz-Kronecker class number formula.
 - Does the effect of favoring non-primes flatten out as g → ∞?
- Many thanks for your attention!

- Future work:
 - Finish this research.
 - Invert the reasoning and construct a genus 2 Hurwitz-Kronecker class number formula.
 - ▶ Does the effect of favoring non-primes flatten out as $g \to \infty$?
- Many thanks for your attention!

- Future work:
 - Finish this research.
 - Invert the reasoning and construct a genus 2 Hurwitz-Kronecker class number formula.
 - ▶ Does the effect of favoring non-primes flatten out as $g \to \infty$?
- Many thanks for your attention!