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© Computation of the 11 Pairing

© A Coprocessor for the T Pairing Computation
@ A Coprocessor for the Final Exponentiation

© A Coprocessor for the Full Pairing Computation

@ Conclusion
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Example: Three-Party Key Agreement

Key agreement
How can Alice, Bob, and Chris agree upon a shared secret key?

Alice Bob

Chris

(o °C0%00")
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Example: Three-Party Key Agreement

Discrete logarithm problem (DLP)
e G = (P): additively-written group of order n

e DLP: given P, Q, find the integer x € {0,...,n — 1} such that
Q = xP
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Example: Three-Party Key Agreement

Discrete logarithm problem (DLP)
e G = (P): additively-written group of order n
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Alice (3)

abP

@@
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Example: Three-Party Key Agreement
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Example: Three-Party Key Agreement
Alice (5
aP

aP

bP

First round

Chris (©)
cP
@E
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Example: Three-Party Key Agreement

Alice (5

abP

@E
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Example: Three-Party Key Agreement
Alice (&) Bob (%)
abP

acP
@E @E
abP

acP

Second round

Chris (©)
bcP

@.. o
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Example: Three-Party Key Agreement

Alice (5

abcP

@@

Chris (©)

abcP

@@
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Example: Three-Party Key Agreement

Three-party two-round key agreement protocol

Does a three-party one-round key agreement protocol exist?
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Example: Three-Party Key Agreement

Bilinear pairing
e G; = (P): additively-written group
o Gy: multiplicatively-written group with identity 1
@ A bilinear pairing on (Gi, Gy) is a map

é:G1XG1—>G2

that satisfies the following conditions:
@ Bilinearity. For all Q, R, S € G,
8(Q+R,S)=28(Q,5)8(R,S) and 2(Q,R+S)=28(Q,R)e(Q,S).

Non-degeneracy. &(P, P) # 1.
Computability. & can be efficiently computed.
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Example: Three-Party Key Agreement

Bilinear Diffie-Hellman problem (BDHP)
Given P, aP, bP, and cP, compute &(P, P)2b¢

Assumption: the BDHP is difficult
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Example: Three-Party Key Agreement
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Example: Three-Party Key Agreement

Alice (5 bP
aP
=
aP
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Example: Three-Party Key Agreement

Alice (5

&(bP, cP)? &(aP, cP)?

&(bP, cP)? = &(aP, cP)® = &(aP, bP)" = (P, P)*

Chris (©)

&(aP, bP)°

@@

Bob (b)
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Example: Three-Party Key Agreement

Examples of cryptographic bilinear maps
o Weil pairing
o Tate pairing
e 77 pairing (Barreto et al.)
@ Ate pairing (Hess et al.)

Applications
@ ldentity based encryption

@ Short signature
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Computation of the nt Pairing

Elliptic curve over Fzm

Q= (Xqv}’q) /

P = (Xp}’\
P
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1

p

2

Computation of the 17 Pairing — Tower Field

F3om = Faan[p]/(0* — p — 1)

Faom = Fsn[o] /(0% + 1)

Jean-Luc Beuchat (LCIS)
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Computation of the 17 Pairing — Tower Field

]F32m ]F32m F32m

1 o P ap > ap’

Faom 12m bits

I . 2 bits
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Computation of the nt Pairing

nT(P7 Q)
o Addition
@ Multiplication
e Cubing

@ Cube root

Bilinearity of nr(P, Q)"

nr(P, QP (Arith 18)
o Addition
@ Multiplication
e Cubing

mi\ W
nr (P, Q)" = 3d <77T<[3m2_1} 2, Q>3 2 )
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Computation of the nt Pairing

Multiplication over Fzsm — n7(P, Q)
o Tt multiplications

@ Operands: A and B € F36m with

1 o p op p*  op?

B=|-rg|vy¥q| —n0| O =1 0

1o, Yp, @nd yq € Fam

@ Cost: 13 multiplications and 46 additions over F3m

Multiplication over [F3sm — Exponentiation
@ Only one multiplication
@ Operands: A and B € F3om

@ Cost: 18 multiplications and 58 additions over F3m
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(%p. ¥p)

A Coprocessor for the 1 Pairing Computation
= (X, ¥q)

Exponentiation

Pv w
(Waifi 2007) (P Q)
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A Coprocessor for the 1 Pairing Computation

(%p. ¥p)

P Exponentiation
Q = (xq, ¥q)

P, w
(Waifi 2007) (P Q)

Computation of n7(P, Q): multiplication over Fssm

@ New algorithm

15 multiplications and 29 additions over Fzm
Allows one to share operands between multipliers (less registers)

@ Architecture

9 multipliers
Most significant coefficient first (Horner's rule)
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A Coprocessor for the 1 Pairing Computation
Prototype

o Field: Fzor = F3[x]/(x°" + x'2 +2)
e FPGA: Cyclone Il EP2C35 (Altera)
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A Coprocessor for the 1 Pairing Computation

Prototype
o Field: Fzor = F3[x]/(x°" + x12 4+ 2)
e FPGA: Cyclone Il EP2C35 (Altera)

nr(P, Q) (Arith 18)

@ Arithmetic over 307

9 multipliers
2 adders
1 cubing unit

@ Area: 14895 LEs
o Frequency: 149 MHz

o Computation time: 33 us
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v
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Exponentiation (Waifi 2007)

Challenge
Raise n7(P, Q) to the W power

@ in 33 us (or less)

@ with the smallest amount of
hardware
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A Coprocessor for the 1 Pairing Computation

Why FPGAs?

@ Prototyping
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A Coprocessor for the 1 Pairing Computation

Why FPGAs?
Prototyping

Short time to market

(]
@ Small series
[~

Hardware accelerators for some applications (e.g. cryptography)
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A Coprocessor for the Final Exponentiation

Final exponentiation: operations over [F3m

Additions 477
Multiplications 78
Cubings 3m+3
Inversion 1
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A Coprocessor for the Final Exponentiation

Addition over F3m

am—1 bm—l

Modulo 3
addition

Sm—1 = (am—1 + bm—1) mod 3

ai by

Modulo 3
addition

s1 = (a1 + b1) mod 3

ao bo

Modulo 3
addition

so = (a0 + bo) mod 3

Jean-Luc Beuchat (LCIS)
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A Coprocessor for the Final Exponentiation

Addition, subtraction, and accumulation over F3m
Enable Add/Accumulate

Addition of 3 operands

Multiplication
by 1 or2

Enable 2b(x) = —b(x) (mod 3)
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A Coprocessor for the Final Exponentiation

Multiplication over Fzm
e Array multiplier (|m/3] clock cycles)

@ Most significant coefficient first (Horner's rule)
Enable

b(x)

asj

EEnabIe and
reset

Shift register

Addition of 4 operands

a(x)

azj+2
Load and
shift

Multiplication by 0, 1, or 2
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A Coprocessor for the Final Exponentiation

Cubing over F3[x]/(x°" + x'2 +2)

|396|395|394| |32| |

(a0l *
a60 a61

| a3 | 364 | | 365 | 393 | 360 361 389

i

Addition of 3 operands

a(x)?
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A Coprocessor for the Final Exponentiation

Arithmetic operators over [Fzor on a Cyclone || FPGA
Ctrl
() 6 5 4 2
o) ti Area | Control b(x) ]
peration 1l 1 Es] | [bits]
Add./sub. 970 6 Addition Hultiplicat Cubing
Mult. 1375 5
Cubing 668 4
| ALU || 3308 | 17 |
p(x)

Jean-Luc Beuchat (LCIS) nt Pairing in Characteristic Three 24 / 38



A Coprocessor for the Final Exponentiation

Unified arithmetic operator

o Operations

Addition
Subtraction
Accumulation
Multiplication
Cubing

@ Area (Cyclone Il): 2676 LEs (instead of 3308)
o Control bits: 11 (instead of 17)

@ Inversion: Fermat's little theorem (96 cubings and 9 multiplications)

23" 2 =371 where a e F3m
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A Coprocessor for the Final Exponentiation

Unified arithmetic operator

gllo g g

R2
a2(x)
——t
aos;
R1
di(x)
——t
d0si 1
Load
L
Shift I_V_i Enable
register
d0(x) c RO
a0s;+2
p(x)
Shift Load ‘ .
y
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A Coprocessor for the Final Exponentiation

Prototype

o Field: Fzor = F3[x]/(x°" + x12 4+ 2)
e FPGA: Cyclone Il EP2C35 (Altera)

nr(P, Q) (Arith 18)

@ Arithmetic over 307

9 multipliers
2 adders
1 cubing unit

@ Area: 14895 LEs
o Frequency: 149 MHz

o Computation time: 33 us

v

Exponentiation (Waifi 2007)
@ Unified operator
@ Area: 2787 LEs
@ Frequency: 159 MHz
o Computation time: 26 us
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A Coprocessor for the Full Pairing Computation

Operations over [F3m

Single unified operator for computing n7(P, Q)"

Additions 51. '"T_l + 503

1
Multiplications 15 - mT +86
Cubings 10m+2

Inversion 1
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A Coprocessor for the Full Pairing Computation

Results (CHES 2007)
o FPGA: Xilinx Virtex-1l Pro 4
o F3[x]/(x°" +x12 +2)
@ Area: 1888 slices + 6 memory blocks
o Clock frequency: 147 MHz
@ Clock cycles for a full pairing: 32618
°

Calculation time: 222us
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A Coprocessor for the Full Pairing Computation

Results (CHES 2007)
o FPGA: Xilinx Virtex-1l Pro 4
o F3[x]/(x°" +x12 +2)
@ Area: 1888 slices + 6 memory blocks
o Clock frequency: 147 MHz
@ Clock cycles for a full pairing: 32618
o Calculation time: 222us

Extended Euclidean algorithm (EEA)
@ Area: 2210 additional slices
o Clock cycles for a full pairing: 32419 instead of 32618
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Conclusion

Comparisons

Architecture Area Calc.ulatlon FPGA
time
Arith 18 & Waifi 2007 18000 LEs 33 us Cyclone Il
CHES 2007 1888 slices 222 pis Virtex-11 Pro

Grabher and Page (CHES 2005) 4481 slices 432 us Virtex-Il Pro
Kerins et al. (CHES 2005) 55616 slices 850 us Virtex-Il Pro
Ronan et al. (ITNG 2007) 10000 slices 178 us Virtex-II Pro

(1 slice =~ 2 LEs)
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Conclusion

VHDL code generator

o Generation of an unified operator according to Fpm and f(x)
@ Support for the following operations:

Addition

Multiplication

Frobenius (a(x)? mod f(x))

Inverse Frobenius ({/a(x) mod f(x))

Jean-Luc Beuchat (LCIS) m7 Pairing in Characteristic Three
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Conclusion

VHDL code generator

o Generation of an unified operator according to Fpm and f(x)
@ Support for the following operations:

Addition

Multiplication

Frobenius (a(x)? mod f(x))

Inverse Frobenius ({/a(x) mod f(x))

Future work
@ Automatic generation of the control unit
@ Application (e.g. short signature)

e Genus 2

@ Side-channel
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Multiplication over Fzem — n7(P, Q)

A (=1 + ypyqo — rop — p2) = co + c1o + cap + c30p + cap® + csop?
| Co | C1o0 || C2p | CG3op || C4P2 | C50P2 |

—aaghy —as —aplhy —aih —aoh —ash

—dap —as —a4 —ds —dp —al

—dz —as —ag —ds

—aaghy —as
—a0r5 | aoypyq || —a2rg | aaypye || —aarg | aaypyg
—dYpYq | —a1 rc? —asYpYq _33rg —asYpYq —a5rg
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Multiplication over Fzem — n7(P, Q)

A (=18 + Ypyqo — rop — p°) = o + 10 + c2p + c30p + cap® + cs0p?

2 2
| 0 | o || C2p | Gop || Cap | Gop |
—adalh —ashy —dolo —ailo —a2l —ash
—ar —as —da —ads —dao —ai
—dz —as —ag —ds
—aaghy —as
2 2 2
—aohy 30Ypy§1 —anh 32}’py57 —asghy 34Ypy§7
—d1YpYq | —a1lp —a3YpYq | —asly —3ds5YpYq | —ashy

@ Compute in parallel rg, YpYq: doro, airo, a2ro, asro, asrg, and asry (8
multiplications)
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Multiplication over Fzem — n7(P, Q)

A (=1 + ypyqo — rop — p2) = co + c1o + cap + c30p + cap® + csop?

Co C1o0 H C2p CG3op H C4P2 C50P2 \
—daghy —as —aplhy —aih —ash —ash
—ar —as —da —ads —dao —ai

—ap —as —ag —ds
—aaghy —as
—a0f5 | aypYq || a5 | ypeye || —aarg | aayeye
—ai1YpYq _alrg —as3YpYq _33ro2 —asypYq _35r§

@ Compute in parallel rg, YpYq: doro, airo, a2ro, asro, asrg, and asry (8
multiplications)

@ Apply Karatsuba's algorithm to compute the remaining products by
means of 9 multipliers
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Multiplication over Fzem — n7(P, Q)

A (=18 + Ypyqo — rop — p?) = co + 10 + cap + c30p + cap?® + csap

—aorg

aoYpYq

—a» rg

axypYq

—a4r§

a4YpYq

—d1YpYq

—alrg

—asYpYq

—as rg

—asYpYq

—a5r§

Karatsuba's algorithm (9 multiplications performed in parallel):

a0YpYq — alrg = (a0 + a1) % (Vpyq — rg) + aoxrg — a1XYpYq
aYpYq — a3r§ = (a2 + a3) < (Vpyq — rg) + agxrg — a3XYpYq

asypyq — a5r§ = (as + as) < (Vpyq — rg) + a4><r§ — a5 X YpYq

Jean-Luc Beuchat (LCIS) nt Pairing in Characteristic Three

2

34 /38



Multiplication over Fzem — n7(P, Q)

Shift Load Load Load Load

My | My | M, | ﬁﬂ]gﬂ

aoho arhy asghy

aorg azrg a4rg

DO

@ Three multipliers @) clear

Select

@ Common operand:

ro or rg Load

b__|

Synchronous reset
Clear
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Multiplication over Fzem — n7(P, Q)

Shift Load Load Load Load

T T e

aih ash as
a1YpYq | a3YpYq | 85YpYq

DO

@ Three multipliers @) ciear

Select

@ Common operand:

1o or yp yq Load

b__|

Synchronous reset
Clear

Jean-Luc Beuchat (LCIS) nt Pairing in Characteristic Three



Multiplication over Fzsn — n7(P, Q)

Load Load Load
: @ @ e 8
—. Select
._ - Shift
| M | M, | Ms | [ ‘ —&) Load
2
"o YpYq -
(ao+31)>< (32 +a3)>< (a4+a5)>< _.Load
(YpYa — rg) (YpYq — "g) (YpYq — ”02) o
Select
Synchronous reset -
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A Coprocessor for the 1 Pairing Computation
Mux0 |J1"‘ o
He
di
' !
DO Ctrl D1 DO Ctrl D1 Do Ctrl D1
pe_mult_block_t1_generic< pe_mult_block_t1_generic pe_mult_block_t2_generic<
Q Q Q
\—l |
'
DO D1 D2
Ctrl pe_add
5]
Ctrl Y0 1/ Mux1
D
Ctrl  pe_cubing

C

Mux2

_°/
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A Coprocessor for the Full Pairing Computation

nr(P.QY
P, Q 7 d2(x) p(x) f—
198 bits d1(x)  ynified
do(x)
operator
2
Select 3
7 bits @ Control
Addr -
Wen 11 bits 104 bits
10 bits [
ROM  pgqr Finite State
Q Machine
32 bits I 1
Start  Done
Port B Port A Processing element

l _ _ e e e ey

Counter

Address 5 Address

u]

)
I
il

it
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